1
|
Zhou M, Li S, Tan Y, Huang W, Li Y, Yuan X, Li Z. Global Profiling Lysine Reactivity and Ligandability with Oxidant-Triggered Bioconjugation Chemistry. Angew Chem Int Ed Engl 2024:e202418473. [PMID: 39543955 DOI: 10.1002/anie.202418473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
Due to the high abundance and diverse functions of lysine residues, both in the interior and on the surface of proteins, the development of new methods to characterize their reactivity and ligandability could significantly expand the pool of druggable targets. To date, only a limited number of aminophilic electrophiles have been assessed for interactions with the lysine proteome, resulting in a substantial fraction remaining inaccessible to current probes. Here, to the best of our knowledge, we report the first oxidant-triggered bioconjugation platform for in-depth profiling of lysines. We quantified over 7000 covalently modifiable lysine residues, which significantly expands the coverage of ligandable lysines in the whole proteome. Chemical proteomics enabled the mapping of more than 100 endogenous kinases, thus providing a comprehensive landscape of ligandable catalytic lysines within the kinome. Moreover, we identified a suite of new ligandable lysines such as K60 of ENO1 and K31 of PPIA, offering insights for exploring new functional and targetable residues. These findings could provide valuable clues for the development of targeted covalent inhibitors (TCIs).
Collapse
Affiliation(s)
- Mengya Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China
| | - Shengrong Li
- Guangdong Second Provincial General Hospital, Postdoctoral Station of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, China
| | - Yi Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China
| | - Weizhen Huang
- The First Huizhou Affiliated Hospital of Guangdong Medical University, 516001, Huizhou, China
| | - Yifang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China
| | - Xia Yuan
- The First Huizhou Affiliated Hospital of Guangdong Medical University, 516001, Huizhou, China
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China
| |
Collapse
|
2
|
Pace PE, Fu L, Hampton MB, Winterbourn CC. Redox proteomic analysis of H 2O 2 -treated Jurkat cells and effects of bicarbonate and knockout of peroxiredoxins 1 and 2. Free Radic Biol Med 2024; 227:221-232. [PMID: 39489196 DOI: 10.1016/j.freeradbiomed.2024.10.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Oxidation of thiol proteins and redox signaling occur in cells exposed to H2O2 but mechanisms are unclear. We used redox proteomics to seek evidence of oxidation of specific proteins either by a mechanism involving reaction of H2O2 with CO2/bicarbonate to give the more reactive peroxymonocarbonate, or via a relay involving peroxiredoxins (Prdxs). Changes in oxidation state of specific Cys-SH residues on treating Jurkat T lymphoma cells with H2O2 were measured by isotopically labeling reduced thiols and analysis by mass spectrometry. The effects of bicarbonate and of knocking out either Prdx1 or Prdx2 were examined. Approximately 14,000 Cys-peptides were detected, of which ∼1 % underwent 2-10 fold loss in thiol content with H2O2. Those showing the most oxidation were not affected by the presence of bicarbonate or knockout of either Prdx. Consistent with previous evidence that bicarbonate potentiates inactivation of glyceraldehyde-3-phosphate dehydrogenase, the GAPDH active site Cys residues were significantly more sensitive to H2O2 when bicarbonate was present. Several other proteins were identified as promising candidates for further investigation. Although we identified some potential protein candidates for Prdx-dependent oxidation, most of the significant differences between KO and WT cells were seen in proteins for which H2O2 unexpectedly increased their CysSH content over untreated cells. We conclude that facilitation of protein oxidation by bicarbonate or Prdx-mediated relays is restricted to a small number of proteins and is insufficient to explain the majority of the oxidation of the cell thiols that occured in response to H2O2.
Collapse
Affiliation(s)
- Paul E Pace
- Mātai Hāora - Centre for Redox Biology & Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Mark B Hampton
- Mātai Hāora - Centre for Redox Biology & Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Christine C Winterbourn
- Mātai Hāora - Centre for Redox Biology & Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
3
|
Fu S, Chen Z, Luo Z, Nie M, Fu T, Zhou Y, Yang Q, Zhu F, Ni F. Chem(Pro)2: the atlas of chemoproteomic probes labelling human proteins. Nucleic Acids Res 2024:gkae943. [PMID: 39436046 DOI: 10.1093/nar/gkae943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Chemoproteomic probes (CPPs) have been widely considered as powerful molecular biological tools that enable the highly efficient discovery of both binding proteins and modes of action for the studied compounds. They have been successfully used to validate targets and identify binders. The design of CPP has been considered extremely challenging, which asks for the generalization using a large number of probe data. However, none of the existing databases gives such valuable data of CPPs. Herein, a database entitled 'Chem(Pro)2' was therefore developed to systematically describe the atlas of diverse types of CPPs labelling human protein in living cell/lysate. With the booming application of chemoproteomic technique and artificial intelligence in current chemical biology study, Chem(Pro)2 was expected to facilitate the AI-based learning of interacting pattern among molecules for discovering innovative targets and new drugs. Till now, Chem(Pro)2 has been open to all users without any login requirement at: https://idrblab.org/chemprosquare/.
Collapse
Affiliation(s)
- Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Luo
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| | - Meiyun Nie
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| |
Collapse
|
4
|
Wiest A, Kielkowski P. Improved deconvolution of natural products' protein targets using diagnostic ions from chemical proteomics linkers. Beilstein J Org Chem 2024; 20:2323-2341. [PMID: 39290210 PMCID: PMC11406061 DOI: 10.3762/bjoc.20.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Identification of interactions between proteins and natural products or similar active small molecules is crucial for understanding of their mechanism of action on a molecular level. To search elusive, often labile, and low-abundant conjugates between proteins and active compounds, chemical proteomics introduces a feasible strategy that allows to enrich and detect these conjugates. Recent advances in mass spectrometry techniques and search algorithms provide unprecedented depth of proteome coverage and the possibility to detect desired modified peptides with high sensitivity. The chemical 'linker' connecting an active compound-protein conjugate with a detection tag is the critical component of all chemical proteomic workflows. In this review, we discuss the properties and applications of different chemical proteomics linkers with special focus on their fragmentation releasing diagnostic ions and how these may improve the confidence in identified active compound-peptide conjugates. The application of advanced search options improves the identification rates and may help to identify otherwise difficult to find interactions between active compounds and proteins, which may result from unperturbed conditions, and thus are of high physiological relevance.
Collapse
Affiliation(s)
- Andreas Wiest
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Pavel Kielkowski
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
5
|
Liu Y, Yu Z, Li P, Yang T, Ding K, Zhang ZM, Tan Y, Li Z. Proteome-wide Ligand and Target Discovery by Using Strain-Enabled Cyclopropane Electrophiles. J Am Chem Soc 2024. [PMID: 39018468 DOI: 10.1021/jacs.4c04695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The evolving use of covalent ligands as chemical probes and therapeutic agents could greatly benefit from an expanded array of cysteine-reactive electrophiles for efficient and versatile proteome profiling. Herein, to expand the current repertoire of cysteine-reactive electrophiles, we developed a new class of strain-enabled electrophiles based on cyclopropanes. Proteome profiling has unveiled that C163 of lactate dehydrogenase A (LDHA) and C88 of adhesion regulating molecule 1 (ADRM1) are ligandable residues to modulate the protein functions. Moreover, fragment-based ligand discovery (FBLD) has revealed that one fragment (Y-35) shows strong reactivity toward C66 of thioredoxin domain-containing protein 12 (TXD12), and its covalent binding has been demonstrated to impact its downstream signal pathways. TXD12 plays a pivotal role in enabling Y-35 to exhibit its antisurvival and antiproliferative effects. Finally, dicarbonitrile-cyclopropane has been demonstrated to be an electrophilic warhead in the development of GSTO1-involved dual covalent inhibitors, which is promising to alleviate drug resistance.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhongtang Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Peishan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Tao Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhi-Min Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yi Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
6
|
Zhao Y, Duan K, Fan Y, Li S, Huang L, Tu Z, Sun H, Cook GM, Yang J, Sun P, Tan Y, Ding K, Li Z. Catalyst-free late-stage functionalization to assemble α-acyloxyenamide electrophiles for selectively profiling conserved lysine residues. Commun Chem 2024; 7:31. [PMID: 38355988 PMCID: PMC10866925 DOI: 10.1038/s42004-024-01107-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Covalent probes coupled with chemical proteomics represent a powerful method for investigating small molecule and protein interactions. However, the creation of a reactive warhead within various ligands to form covalent probes has been a major obstacle. Herein, we report a convenient and robust process to assemble a unique electrophile, an α-acyloxyenamide, through a one-step late-stage coupling reaction. This procedure demonstrates remarkable tolerance towards other functional groups and facilitates ligand-directed labeling in proteins of interest. The reactive group has been successfully incorporated into a clinical drug targeting the EGFR L858R mutant, erlotinib, and a pan-kinase inhibitor. The resulting probes have been shown to be able to covalently engage a lysine residue proximal to the ATP-binding pocket of the EGFR L858R mutant. A series of active sites, and Mg2+, ATP-binding sites of kinases, such as K33 of CDK1, CDK2, CDK5 were detected. This is the first report of engaging these conserved catalytic lysine residues in kinases with covalent inhibition. Further application of this methodology to natural products has demonstrated its success in profiling ligandable conserved lysine residues in whole proteome. These findings offer insights for the development of new targeted covalent inhibitors (TCIs).
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Kang Duan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Youlong Fan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Shengrong Li
- Guangdong Second Provincial General Hospital, Postdoctoral Station of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Liyan Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zhengchao Tu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 TatChee Avenue, Kowloon, Hong Kong, 999077, China
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Jing Yang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Pinghua Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Yi Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| | - Ke Ding
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Cao Y, Liu XT, Mao PZ, Chen ZL, Tarn C, Dong MQ. Comparative Analysis of Chemical Cross-Linking Mass Spectrometry Data Indicates That Protein STY Residues Rarely React with N-Hydroxysuccinimide Ester Cross-Linkers. J Proteome Res 2023; 22:2593-2607. [PMID: 37494005 DOI: 10.1021/acs.jproteome.3c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
When it comes to mass spectrometry data analysis for identification of peptide pairs linked by N-hydroxysuccinimide (NHS) ester cross-linkers, search engines bifurcate in their setting of cross-linkable sites. Some restrict NHS ester cross-linkable sites to lysine (K) and protein N-terminus, referred to as K only for short, whereas others additionally include serine (S), threonine (T), and tyrosine (Y) by default. Here, by setting amino acids with chemically inert side chains such as glycine (G), valine (V), and leucine (L) as cross-linkable sites, which serves as a negative control, we show that software-identified STY-cross-links are only as reliable as GVL-cross-links. This is true across different NHS ester cross-linkers including DSS, DSSO, and DSBU, and across different search engines including MeroX, xiSearch, and pLink. Using a published data set originated from synthetic peptides, we demonstrate that STY-cross-links indeed have a high false discovery rate. Further analysis revealed that depending on the data and the search engine used to analyze the data, up to 65% of the STY-cross-links identified are actually K-K cross-links of the same peptide pairs, up to 61% are actually K-mono-links, and the rest tend to contain short peptides at high risk of false identification.
Collapse
Affiliation(s)
- Yong Cao
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Xin-Tong Liu
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Peng-Zhi Mao
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Lin Chen
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ching Tarn
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
8
|
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Nguyễn KB, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. Cell Chem Biol 2023; 30:811-827.e7. [PMID: 37419112 PMCID: PMC10510412 DOI: 10.1016/j.chembiol.2023.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxICAT, Biotin Switch, and SP3-Rox, these methods typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. Here we establish the local cysteine capture (Cys-LoC) and local cysteine oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole-cell proteomic analysis. Application of the Cys-LOx method to LPS-stimulated immortalized murine bone marrow-derived macrophages (iBMDM), revealed previously unidentified, mitochondrially localized cysteine oxidative modifications upon pro-inflammatory activation, including those associated with oxidative mitochondrial metabolism.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Andréa B Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Kaitlyn B Nguyễn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Stephanie L Yen
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
MacKenzie TMG, Cisneros R, Maynard RD, Snyder MP. Reverse-ChIP Techniques for Identifying Locus-Specific Proteomes: A Key Tool in Unlocking the Cancer Regulome. Cells 2023; 12:1860. [PMID: 37508524 PMCID: PMC10377898 DOI: 10.3390/cells12141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
A phenotypic hallmark of cancer is aberrant transcriptional regulation. Transcriptional regulation is controlled by a complicated array of molecular factors, including the presence of transcription factors, the deposition of histone post-translational modifications, and long-range DNA interactions. Determining the molecular identity and function of these various factors is necessary to understand specific aspects of cancer biology and reveal potential therapeutic targets. Regulation of the genome by specific factors is typically studied using chromatin immunoprecipitation followed by sequencing (ChIP-Seq) that identifies genome-wide binding interactions through the use of factor-specific antibodies. A long-standing goal in many laboratories has been the development of a 'reverse-ChIP' approach to identify unknown binding partners at loci of interest. A variety of strategies have been employed to enable the selective biochemical purification of sequence-defined chromatin regions, including single-copy loci, and the subsequent analytical detection of associated proteins. This review covers mass spectrometry techniques that enable quantitative proteomics before providing a survey of approaches toward the development of strategies for the purification of sequence-specific chromatin as a 'reverse-ChIP' technique. A fully realized reverse-ChIP technique holds great potential for identifying cancer-specific targets and the development of personalized therapeutic regimens.
Collapse
Affiliation(s)
| | - Rocío Cisneros
- Sarafan ChEM-H/IMA Postbaccalaureate Fellow in Target Discovery, Stanford University, Stanford, CA 94305, USA
| | - Rajan D Maynard
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Liu Z, Chen X, Yang S, Tian R, Wang F. Integrated mass spectrometry strategy for functional protein complex discovery and structural characterization. Curr Opin Chem Biol 2023; 74:102305. [PMID: 37071953 DOI: 10.1016/j.cbpa.2023.102305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/20/2023]
Abstract
The discovery of functional protein complex and the interrogation of the complex structure-function relationship (SFR) play crucial roles in the understanding and intervention of biological processes. Affinity purification-mass spectrometry (AP-MS) has been proved as a powerful tool in the discovery of protein complexes. However, validation of these novel protein complexes as well as elucidation of their molecular interaction mechanisms are still challenging. Recently, native top-down MS (nTDMS) is rapidly developed for the structural analysis of protein complexes. In this review, we discuss the integration of AP-MS and nTDMS in the discovery and structural characterization of functional protein complexes. Further, we think the emerging artificial intelligence (AI)-based protein structure prediction is highly complementary to nTDMS and can promote each other. We expect the hybridization of integrated structural MS with AI prediction to be a powerful workflow in the discovery and SFR investigation of functional protein complexes.
Collapse
Affiliation(s)
- Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shirui Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Steinmetz B, Smok I, Bikaki M, Leitner A. Protein-RNA interactions: from mass spectrometry to drug discovery. Essays Biochem 2023; 67:175-186. [PMID: 36866608 PMCID: PMC10070478 DOI: 10.1042/ebc20220177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 03/04/2023]
Abstract
Proteins and RNAs are fundamental parts of biological systems, and their interactions affect many essential cellular processes. Therefore, it is crucial to understand at a molecular and at a systems level how proteins and RNAs form complexes and mutually affect their functions. In the present mini-review, we will first provide an overview of different mass spectrometry (MS)-based methods to study the RNA-binding proteome (RBPome), most of which are based on photochemical cross-linking. As we will show, some of these methods are also able to provide higher-resolution information about binding sites, which are important for the structural characterisation of protein-RNA interactions. In addition, classical structural biology techniques such as nuclear magnetic resonance (NMR) spectroscopy and biophysical methods such as electron paramagnetic resonance (EPR) spectroscopy and fluorescence-based methods contribute to a detailed understanding of the interactions between these two classes of biomolecules. We will discuss the relevance of such interactions in the context of the formation of membrane-less organelles (MLOs) by liquid-liquid phase separation (LLPS) processes and their emerging importance as targets for drug discovery.
Collapse
Affiliation(s)
- Benjamin Steinmetz
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
- RNA Biology PhD Program, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Izabela Smok
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
- RNA Biology PhD Program, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Maria Bikaki
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Xiao W, Chen Y, Wang C. Quantitative Chemoproteomic Methods for Reactive Cysteinome Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Weidi Xiao
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| | - Ying Chen
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| |
Collapse
|
13
|
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525042. [PMID: 36711448 PMCID: PMC9882296 DOI: 10.1101/2023.01.22.525042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxiCat, Biotin Switch, and SP3-Rox, they typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. To obviate requirements for laborious biochemical fractionation, here, we develop and apply an unprecedented two step cysteine capture method to establish the Local Cysteine Capture (Cys-LoC), and Local Cysteine Oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole cell proteomic analysis. Application of the Cys-LOx method to LPS stimulated murine immortalized bone marrow-derived macrophages (iBMDM), revealed previously unidentified mitochondria-specific inflammation-induced cysteine oxidative modifications including those associated with oxidative phosphorylation. These findings shed light on post-translational mechanisms regulating mitochondrial function during the cellular innate immune response.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Ashley R. Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Anthony E. Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Andréa B. Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Lisa M. Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Alexandra C. Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Stephanie L. Yen
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Heta S. Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Ajit S. Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Keriann M. Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
14
|
Leitner A. Probing the secrets of probes. Nat Chem Biol 2022; 18:799-800. [PMID: 35864331 DOI: 10.1038/s41589-022-01092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|