1
|
Zeng H, Wu Y, Long X. Cap-specific terminal N6-methyladeonsine methylation of RNA mediated by PCIF1 and possible therapeutic implications. Genes Dis 2025; 12:101181. [PMID: 39524541 PMCID: PMC11550742 DOI: 10.1016/j.gendis.2023.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2024] Open
Abstract
Posttranscriptional RNA modification is an important mode of epigenetic regulation in various biological and pathological contexts. N6, 2'-O-dimethyladenosine (m6Am) is one of the most abundant methylation modifications in mammals and usually occurs at the first transcribed nucleotide. Accumulating evidence indicates that m6Am modifications have important roles in RNA metabolism and physiological and pathological processes. PCIF1 (phosphorylated C-terminal domain interacting factor 1) is a protein that can bind to the phosphorylated C-terminal domain of RNA polymerase II through its WW domain. PCIF1 is named after this binding ability. Recently, PCIF1 has been identified as a cap-specific adenine N6-methyltransferase responsible for m6Am formation. Discovered as the sole m6Am methyltransferase for mammalian mRNA, PCIF1 has since received more extensive and in-depth study. Dysregulation of PCIF1 contributes to various pathological processes. Targeting PCIF1 may hold promising therapeutic significance. In this review, we provide an overview of the current knowledge of PCIF1. We explore the current understanding of the structure and the biological characteristics of PCIF1. We further review the molecular mechanisms of PCIF1 in cancer and viral infection and discuss its therapeutic potential.
Collapse
Affiliation(s)
- Hui Zeng
- Center of Clinical Laboratory, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang 311225, China
| | - Yidong Wu
- Center of Clinical Laboratory, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang 311225, China
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
2
|
Chen Z, Shang Y, Duan W, Zhu L, Ji X, Gong S, Xiang X. Androgens have therapeutic potential in T2 asthma by mediating METTL3 in bronchial epithelial cells. Int Immunopharmacol 2024; 143:113322. [PMID: 39369464 DOI: 10.1016/j.intimp.2024.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Studies have shown that androgens can alleviate the symptoms of T2 asthma and are inversely correlated with the severity of allergic asthma. METTL3, a crucial component of m6A modification, mitigates the development of T2 asthma by inhibiting Th2 cell differentiation. However, the impact of androgens, such as dihydrotestosterone (DHT), on the progression of T2 asthma through METTL3 has yet to be investigated. At the clinical level, patients with T2 asthma exhibited reduced levels of DHT and METTL3 mRNA, along with increased levels of 17β-estradiol (E2). DHT and METTL3 were found to be negatively associated with the severity of T2 asthma, while E2 was positively associated with it. Administration of DHT and E2 in induced T2 asthma mouse models showed that DHT improved lung function, reduced airway inflammation, and inhibited Th2 cell differentiation. Interestingly, DHT reversed the damage to METTL3, whereas E2 had the opposite effect. In vitro studies of mouse bronchial epithelial cells (BECs) confirmed that METTL3-dependent m6A modification inhibited the T2 inflammatory response, and DHT inhibited Th2 cell differentiation in T2 asthma by promoting METTL3 expression in BECs. In conclusion, our study suggests that DHT has therapeutic potential for T2 asthma by regulating METTL3 in BECs.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Yulin Shang
- Ophthalmology and Otorhinolaryngology, Zigui County Traditional Chinese Medicine Hospital, 30 Pinghu Avenue, Zigui, Hubei 443600, China
| | - Wentao Duan
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital, 61 West Jiefang Road, Changsha, Hunan 410005, China
| | - Liming Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital, 61 West Jiefang Road, Changsha, Hunan 410005, China
| | - Xiaoying Ji
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, Guizhou 550004, China.
| | - Subo Gong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Xudong Xiang
- Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
Xue Q, Ma K, Yang F, Liu H, Cao W, Liu P, Zhu Z, Zheng H. Foot-and-mouth disease virus 2B protein antagonizes STING-induced antiviral activity by targeting YTHDF2. FASEB J 2024; 38:e70224. [PMID: 39641410 DOI: 10.1096/fj.202402209r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Foot-and-mouth disease virus (FMDV) infection modulates the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) pathways to inhibit the innate immune responses in the host. However, the mechanism by which FMDV antagonizes the DNA-induced signaling pathway remains to be clarified. In this study, we determined that FMDV infection inhibited stimulator of interferon genes (STING) at the levels of both mRNA and protein expression, and FMDV 2B and 3Cpro proteins promoted STING decline. FMDV 3Cpro induced the decrease in STING depending on its protease activity. FMDV 2B reduced STING expression by disrupting its mRNA level. Mechanistically, 2B inhibited the mRNA of STING by recruiting YTH m6A RNA-binding protein 2 (YTHDF2) to bind to STING mRNA, repressing the generation of FMDV-induced type-I interferon and facilitating virus replication. This effect was triggered by residue 105 of 2B. The 2B K105A mutant FMDV was successfully rescued, and further studies showed that the pathogenicity was attenuated by mutation at site K105 of FMDV 2B. YTHDF2 also promoted FMDV replication through interferon-dependent and interferon-independent pathways. Moreover, YTHDF2-deficient mice showed stronger resistance to FMDV infection. Our study reveals a potential mechanism for FMDV 2B negatively modulating innate immunity at transcriptional levels, promoting the understanding of immune evasion and YTHDF2 function in the FMDV infection process.
Collapse
Affiliation(s)
- Qiao Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ke Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huisheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengfei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
4
|
Pan X, Bruch A, Blango MG. Past, Present, and Future of RNA Modifications in Infectious Disease Research. ACS Infect Dis 2024; 10:4017-4029. [PMID: 39569943 DOI: 10.1021/acsinfecdis.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In early 2024, the National Academies of Sciences, Engineering, and Medicine (NASEM) released a roadmap for the future of research into mapping ribonucleic acid (RNA) modifications, which underscored the importance of better defining these diverse chemical changes to the RNA macromolecule. As nearly all mature RNA molecules harbor some form of modification, we must understand RNA modifications to fully appreciate the functionality of RNA. The NASEM report calls for massive mobilization of resources and investment akin to the transformative Human Genome Project of the early 1990s. Like the Human Genome Project, a concerted effort in improving our ability to assess every single modification on every single RNA molecule in an organism will change the way we approach biological questions, accelerate technological advance, and improve our understanding of the molecular world. Consequently, we are also at the start of a revolution in defining the impact of RNA modifications in the context of host-microbe and even microbe-microbe interactions. In this perspective, we briefly introduce RNA modifications to the infection biologist, highlight key aspects of the NASEM report and exciting examples of RNA modifications contributing to host and pathogen biology, and finally postulate where infectious disease research may benefit from this exciting new endeavor in globally mapping RNA modifications.
Collapse
Affiliation(s)
- Xiaoqing Pan
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| |
Collapse
|
5
|
Wang L, Zhu W, Gong L, Kang Y, Lv L, Zhai Y, Zhang Y, Qiu X, Zhuang G, Sun A. MDV-encoded protein kinase U S3 phosphorylates WTAP to inhibit transcriptomic m 6A modification and cellular protein translation. Vet Microbiol 2024; 300:110335. [PMID: 39644648 DOI: 10.1016/j.vetmic.2024.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Marek's disease virus (MDV)-encoded US3 is a highly conserved serine/threonine protein kinase in alpha-herpesviruses. In other alpha-herpesviruses, such as pseudorabies virus (PRV), US3 phosphorylates the N6-methyladenosine (m6A) methyltransferase Wilms tumor 1-associated protein (WTAP), inhibiting m6A modification. However, the role and mechanism of US3-mediated WTAP phosphorylation during MDV infection remain undefined. Our study revealed that MDV infection in vitro does not alter WTAP expression, while significant changes in WTAP expression occur during the MDV life cycle in vivo. We demonstrated that MDV-encoded US3 interacts with and co-localizes with WTAP in the nucleus. Further analysis showed that US3 binds to WTAP's C-terminal domain and phosphorylates WTAP at S273, S305, S314, and S375. Notably, the interaction between US3 and WTAP does not affect WTAP stability but inhibits transcriptomic m6A modification and cellular protein translation. Therefore, these findings enhance our understanding of the molecular mechanisms underlying MDV infection.
Collapse
Affiliation(s)
- Lele Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenhui Zhu
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lele Gong
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunzhe Kang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lijie Lv
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunyun Zhai
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangqi Qiu
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoqing Zhuang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou 450046, China.
| | - Aijun Sun
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Lai J, Chen L, Li Q, Zhao G, Li X, Guo D, Chen Z, Zhang Y, Fan J, Zhao H, Liang J, Tian L, Chen X, Lin J, Chen Q. tRNA methyltransferase DNMT2 promotes hepatocellular carcinoma progression and enhances Bortezomib resistance through inhibiting TNFSF10. Cell Signal 2024; 127:111533. [PMID: 39617358 DOI: 10.1016/j.cellsig.2024.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
The tRNA methyltransferase DNMT2 (TRDMT1) plays a crucial role in various biological functions; however, its role in cancer, particularly in liver cancer, remains incompletely understood. In this study, we demonstrate that high DNMT2 expression is negatively correlated with prognosis in clinical liver cancer patients. A series of in vitro and in vivo experiments showed that DNMT2 promotes the proliferation, colony formation, and metastasis of hepatocellular carcinoma cells. We identified the pro-apoptotic gene TNFSF10 (TRAIL) as a downstream target of DNMT2, regulated by the N6-methyladenosine (m6A) demethylase FTO. Epigenetically, DNMT2 deletion increased FTO expression, leading to a reduction in m6A methylation levels. FTO upregulated TNFSF10 expression, significantly reducing the proliferation and metastasis of DNMT2-deficient hepatocellular carcinoma cells. Furthermore, DNMT2 deletion was shown to significantly upregulate chemokine expression in tumors. Finally, we demonstrated that the NF-κB inhibitor Bortezomib further enhances DNMT2 deletion-induced apoptosis in hepatocellular carcinoma cells. This study reveals DNMT2's role in liver cancer and presents a new therapeutic target for future treatments.
Collapse
Affiliation(s)
- Junzhong Lai
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Guangjian Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Xinxin Li
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dong Guo
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Yong Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Jiadi Liang
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ling Tian
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaolan Chen
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
7
|
Sun X, Chen YL, Xin F, Zhang S. Transcriptome-wide identification and analysis reveals m6A regulation of metabolic reprogramming in shrimp (Marsupenaeus japonicus) under virus infection. BMC Genomics 2024; 25:1103. [PMID: 39563253 PMCID: PMC11575114 DOI: 10.1186/s12864-024-11032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND It has been reported that the most common post-transcriptional modification of eukaryotic RNA is N6-methyladenosine (m6A). Previous studies show m6A is a key regulator for viral infection and immune response. However, whether there is a pathogen stimulus-dependent m6A regulation in invertebrate shrimp has not been studied. RESULTS In this study, we performed a transcriptome-wide profiling of mRNA m6A methylation in shrimp (Marsupenaeus japonicus) after white spot syndrome virus (WSSV) infection by methylated RNA immunoprecipitation sequencing (MeRIP-seq). A total of 15,436 m6A peaks were identified in the shrimp, distributed in 8,108 genes, mainly enriched in the CDS, 3' UTR region and near the stop codon. After WSSV infection, we identified 2,260 m6A peaks with significantly changes, of which 1,973 peaks were significantly up-regulated and 287 peaks were significantly down-regulated. 1,795 genes were identified as differentially methylated genes. GO and KEGG analysis showed that hyper-methylated genes or hypo-methylated genes were highly associated with innate immune process and related to metabolic pathways including HIF-1 signaling pathway, lysine degradation and Wnt signaling pathway. Combined analysis showed a positive correlation between m6A methylation levels and mRNA expression levels. In addition, computational predictions of protein-protein interaction indicated that genes with altered levels of m6A methylation and mRNA expression clustered in metabolism, DNA replication, and protein ubiquitination. ZC3H12A and HIF-1 were two hub genes in protein-protein interaction (PPI) network that involved in immune and metabolism processes, respectively. CONCLUSION Our study explored the m6A methylation pattern of mRNA in shrimp after WSSV infection, exhibited the first m6A map of shrimp at the stage of WSSV induced metabolic reprogramming. These findings may reveal the possible mechanisms of m6A-mediated innate immune response in invertebrates.
Collapse
Affiliation(s)
- Xumei Sun
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, P. R. China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361000, PR China
| | - Fan Xin
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, PR China
| | - Siyuan Zhang
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, P. R. China.
| |
Collapse
|
8
|
Ochiai Y, Clifton B, Le Coz M, Terenzio M, Laurino P. SUPREM: an engineered non-site-specific m6A RNA methyltransferase with highly improved efficiency. Nucleic Acids Res 2024; 52:12158-12172. [PMID: 39417589 PMCID: PMC11551740 DOI: 10.1093/nar/gkae887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
N 6-Methyladenine (m6A) RNA methylation plays a key role in RNA processing and translational regulation, influencing both normal physiological and pathological processes. Yet, current techniques for studying RNA methylation struggle to isolate the effects of individual m6A modifications. Engineering of RNA methyltransferases (RNA MTases) could enable development of improved synthetic biology tools to manipulate RNA methylation, but it is challenging due to limited understanding of structure-function relationships in RNA MTases. Herein, using ancestral sequence reconstruction, we explore the sequence space of the bacterial DNA methyltransferase EcoGII (M.EcoGII), a promising target for protein engineering due to its lack of sequence specificity and its residual activity on RNA. We thereby created an efficient non-specific RNA MTase termed SUPer RNA EcoGII Methyltransferase (SUPREM), which exhibits 8-fold higher expression levels, 7°C higher thermostability and 12-fold greater m6A RNA methylation activity compared with M.EcoGII. Immunofluorescent staining and quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis confirmed SUPREM's higher RNA methylation activity compared with M.EcoGII in mammalian cells. Additionally, Nanopore direct RNA sequencing highlighted that SUPREM is capable of methylating a larger number of RNA methylation sites than M.EcoGII. Through phylogenetic and mutational analysis, we identified a critical residue for the enhanced RNA methylation activity of SUPREM. Collectively, our findings indicate that SUPREM holds promise as a versatile tool for in vivo RNA methylation and labeling.
Collapse
Affiliation(s)
- Yoshiki Ochiai
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Ben E Clifton
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Madeleine Le Coz
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Chen Z, Zhang J, Wang J, Tong H, Pan W, Ma F, Wu Q, Dai J. N6-methyladenosine RNA modification promotes Severe Fever with Thrombocytopenia Syndrome Virus infection. PLoS Pathog 2024; 20:e1012725. [PMID: 39585899 PMCID: PMC11627400 DOI: 10.1371/journal.ppat.1012725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/09/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV), a novel bunyavirus primarily transmitted by Haemaphysalis longicornis, induces severe disease with a high mortality rate. N6-methyladenosine (m6A) is a prevalent internal chemical modification in eukaryotic mRNA that has been reported to regulate viral infection. However, the role of m6A modification during SFTSV infection remains elusive. We here reported that SFTSV RNAs bear m6A modification during infection. Manipulating the expressions or activities of host m6A regulators significantly impacted SFTSV infection. Mechanistically, SFTSV recruited m6A regulators through the nucleoprotein to modulate the m6A modification of viral RNA, eventually resulting in enhanced infection by promoting viral mRNA translation efficiency and/or genome RNA stability. m6A mutations in the S genome diminished virus particle production, while m6A mutations in the G transcript impaired the replication of recombinant vesicular stomatitis virus (rVSV) expressing G protein in vitro and in vivo. Interestingly, m6A modification was evolutionarily conserved and facilitated SFTSV infection in primary tick cells. These findings may open an avenue for the development of m6A-targeted anti-SFTSV vaccines, drugs, and innovative strategies for the prevention and control of tick-borne disease.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinyu Zhang
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Wang
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hao Tong
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wen Pan
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Feng Ma
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Li W, Zhou J, Gu Y, Chen Y, Huang Y, Yang J, Zhu X, Zhao K, Yan Q, Zhao Z, Li X, Chen G, Jia X, Gao SJ, Lu C. Lactylation of RNA m 6A demethylase ALKBH5 promotes innate immune response to DNA herpesviruses and mpox virus. Proc Natl Acad Sci U S A 2024; 121:e2409132121. [PMID: 39413129 PMCID: PMC11513906 DOI: 10.1073/pnas.2409132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/31/2024] [Indexed: 10/18/2024] Open
Abstract
RNA N6-methyladenosine (m6A) demethylase AlkB homolog 5 (ALKBH5) plays a crucial role in regulating innate immunity. Lysine acylation, a widespread protein modification, influences protein function, but its impact on ALKBH5 during viral infections has not been well characterized. This study investigates the presence and regulatory mechanisms of a previously unidentified lysine acylation in ALKBH5 and its role in mediating m6A modifications to activate antiviral innate immune responses. We demonstrate that ALKBH5 undergoes lactylation, which is essential for an effective innate immune response against DNA herpesviruses, including herpes simplex virus type 1 (HSV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), and mpox virus (MPXV). This lactylation attenuates viral replication. Mechanistically, viral infections enhance ALKBH5 lactylation by increasing its interaction with acetyltransferase ESCO2 and decreasing its interaction with deacetyltransferase SIRT6. Lactylated ALKBH5 binds interferon-beta (IFN-β) messenger RNA (mRNA), leading to demethylation of its m6A modifications and promoting IFN-β mRNA biogenesis. Overexpression of ESCO2 or depletion of SIRT6 further enhances ALKBH5 lactylation to strengthen IFN-β mRNA biogenesis. Our results identify a posttranslational modification of ALKBH5 and its role in regulating antiviral innate immune responses through m6A modification. The finding provides an understanding of innate immunity and offers a potential therapeutic target for HSV-1, KSHV, and MPXV infections.
Collapse
Affiliation(s)
- Wan Li
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing210004, People’s Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Jing Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Yang Gu
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Yuheng Chen
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Yiming Huang
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Jingxin Yang
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Xiaojuan Zhu
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing210009, People’s Republic of China
| | - Kangchen Zhao
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing210009, People’s Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Zongzheng Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun130122, People’s Republic of China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun130122, People’s Republic of China
| | - Guochun Chen
- Changzhou Medical Center, Nanjing Medical University, Nanjing211166, People’s Republic of China
- Department of Infectious Diseases, Changzhou Third People’s Hospital, Changzhou213000, People’s Republic of China
| | - Xuemei Jia
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing210004, People’s Republic of China
| | - Shou-Jiang Gao
- Tumor Virology Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15232
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15232
| | - Chun Lu
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing210004, People’s Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing211166, People’s Republic of China
| |
Collapse
|
11
|
Truffinet F, Arco-Hierves A, Shalabi H, Pascaud J, Mazet P, Rivière E, E Silva-Saffar S, Fabbri L, Leboucher S, Besse L, Messaoudi C, Attina A, David A, Vagner S, Nocturne G, Mariette X, Bechara R. m 6A RNA methylation controls salivary gland epithelial cell function and has a protective role in Sjögren's disease. Ann Rheum Dis 2024:ard-2024-226224. [PMID: 39299724 DOI: 10.1136/ard-2024-226224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVES The RNA epitranscriptomic modification known as N6-methyladenosine (m6A) represents a novel mechanism of gene regulation that is poorly understood in human autoimmune diseases. Our research explores the role of this RNA m6A modification in salivary gland epithelial cells (SGEC) and its impact on the pathogenesis of Sjögren's disease (SjD). METHODS SGECs from SjD patients and controls were analysed for m6A writers METTL3 and METTL14 expression using RNA-seq, quantitative PCR and immunohistochemistry. Functional assays assessed the impact of METTL3 knockdown or pharmacological inhibition on proinflammatory gene expression and immune cell interactions (using transwell and coculture systems). Mechanistic studies examined METTL3-mediated m6A modifications in double-stranded RNA (dsRNA) formation through immunofluorescence. Unsupervised clustering identified patterns of interferon activation in salivary glands and their correlation with m6A writers. RESULTS METTL3 and METTL14 were elevated in SGEC from SjD patients in comparison to controls. Paradoxically, inhibiting METTL3 increased proinflammatory gene expression, enhancing SGEC's ability to attract immune cells and activate B cells. Conversely, inhibiting the eraser FTO had the opposite effect. METTL3-mediated m6A modifications prevented dsRNA formation and IFN signalling activation. SGEC from SjD showed insufficient METTL3 upregulation compared with controls in response to inflammatory triggers, indicating a limited capacity to regulate the inflammatory response. SjD patients with elevated disease activity and higher interferon signature exhibit reduced METTL3 expression. CONCLUSIONS Impairment of m6A modifications in SGEC in response to inflammatory triggers favour the formation of dsRNA, potentially amplifying the interferon loop and contributing to SjD pathogenesis.
Collapse
Affiliation(s)
- Frederic Truffinet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm U1184, Le Kremlin-Bicetre, France
| | - Alejandro Arco-Hierves
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm U1184, Le Kremlin-Bicetre, France
- Fondation Arthritis, Neuilly Sur Seine, France
| | - Hosnia Shalabi
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm U1184, Le Kremlin-Bicetre, France
| | - Juliette Pascaud
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm U1184, Le Kremlin-Bicetre, France
| | - Paul Mazet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm U1184, Le Kremlin-Bicetre, France
| | - Elodie Rivière
- UMR 1125, Sorbonne Paris Nord University, AP-HP, GHUPSSD, Department of Rheumatology, INSERM, Bobigny, France
| | - Sacha E Silva-Saffar
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm U1184, Le Kremlin-Bicetre, France
| | - Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France
- Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
| | - Sophie Leboucher
- Histology Platform, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Laetitia Besse
- Multimodal Imaging Center, Institut Curie, CNRS UAR2016, INSERM US43, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Cedric Messaoudi
- Multimodal Imaging Center, Institut Curie, CNRS UAR2016, INSERM US43, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Aurore Attina
- PPC, IRBM, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Alexandre David
- PPC, IRBM, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
- IRCM, Univ Montpellier, ICM, INSERM, Montpellier, France
| | - Stephan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France
- Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
| | - Gaetane Nocturne
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm U1184, Le Kremlin-Bicetre, France
- Hôpitaux de Paris, Hôpital Bicêtre, Department of Rheumatology, APHP, Le Kremlin Bicêtre, France
| | - Xavier Mariette
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm U1184, Le Kremlin-Bicetre, France
- Hôpitaux de Paris, Hôpital Bicêtre, Department of Rheumatology, APHP, Le Kremlin Bicêtre, France
| | - Rami Bechara
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Inserm U1184, Le Kremlin-Bicetre, France
| |
Collapse
|
12
|
Mishra T, Phillips S, Maldonado C, Stapleton JT, Wu L. Antiretroviral Therapy Suppresses RNA N6-Methyladenosine Modification in Peripheral Blood Mononuclear Cells from HIV-1-Infected Individuals. AIDS Res Hum Retroviruses 2024; 40:511-520. [PMID: 38753726 PMCID: PMC11535450 DOI: 10.1089/aid.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
RNA N6-methyladenosine (m6A) modification is important for regulating gene expression and innate immune responses to viral infection. HIV-1 in vitro infection induces a significant increase in m6A modification of cellular RNA; however, whether m6A levels of cellular RNA are affected by HIV-1 replication or by antiretroviral therapy (ART) in infected individuals remains unknown. Using dot blot or enzyme-linked immunosorbent assay, we measured RNA m6A levels of peripheral blood mononuclear cells (PBMCs) from healthy donors or HIV-1-infected individuals with or without ART. Using a reverse transcription-quantitative polymerase chain reaction array, we quantified expression levels of 84 type-I interferon (IFN-I)-responsive genes in PBMCs from some individuals of these three groups. RNA m6A levels in PBMCs from HIV-1 viremic patients (n = 10) were significantly higher (p ≤ .0001) compared with ART-treated individuals (n = 22) or 1.5-fold higher compared with healthy donors (n = 14). However, the increase in RNA m6A levels did not correlate with changes in the expression of 10 m6A-regulatory genes. We found significant upregulation and downregulation in the expression of several IFN-I-responsive genes from HIV-1 viremic patients (n = 4) and ART-treated patients (n = 6) compared with healthy donors (n = 5), respectively. Our results suggest that post-transcriptional m6A modification may contribute to the regulation of IFN-I-responsive gene expression during HIV-1 infection and ART.
Collapse
Affiliation(s)
- Tarun Mishra
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stacia Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Crystal Maldonado
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jack T. Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Division of Infectious Diseases, Department of Internal Medicine, Carver College of Medicine, University of Iowa, The Iowa City VA Healthcare System, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Tarasova O, Petrou A, Ivanov SM, Geronikaki A, Poroikov V. Viral Factors in Modulation of Host Immune Response: A Route to Novel Antiviral Agents and New Therapeutic Approaches. Int J Mol Sci 2024; 25:9408. [PMID: 39273355 PMCID: PMC11395507 DOI: 10.3390/ijms25179408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Viruses utilize host cells at all stages of their life cycle, from the transcription of genes and translation of viral proteins to the release of viral copies. The human immune system counteracts viruses through a variety of complex mechanisms, including both innate and adaptive components. Viruses have an ability to evade different components of the immune system and affect them, leading to disruption. This review covers contemporary knowledge about the virus-induced complex interplay of molecular interactions, including regulation of transcription and translation in host cells resulting in the modulation of immune system functions. Thorough investigation of molecular mechanisms and signaling pathways that are involved in modulating of host immune response to viral infections can help to develop novel approaches for antiviral therapy. In this review, we consider new therapeutic approaches for antiviral treatment. Modern therapeutic strategies for the treatment and cure of human immunodeficiency virus (HIV) are considered in detail because HIV is a unique example of a virus that leads to host T lymphocyte deregulation and significant modulation of the host immune response. Furthermore, peculiarities of some promising novel agents for the treatment of various viral infections are described.
Collapse
Affiliation(s)
- Olga Tarasova
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | |
Collapse
|
14
|
Chen K, Nan J, Xiong X. Genetic regulation of m 6A RNA methylation and its contribution in human complex diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1591-1600. [PMID: 38764000 DOI: 10.1007/s11427-024-2609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
N6-methyladenosine (m6A) has been established as the most prevalent chemical modification in message RNA (mRNA), playing an essential role in determining the fate of RNA molecules. Dysregulation of m6A has been revealed to lead to abnormal physiological conditions and cause various types of human diseases. Recent studies have delineated the genetic regulatory maps for m6A methylation by mapping the quantitative trait loci of m6A (m6A-QTLs), thereby building up the regulatory circuits linking genetic variants, m6A, and human complex traits. Here, we review the recent discoveries concerning the genetic regulatory maps of m6A, describing the methodological and technical details of m6A-QTL identification, and introducing the key findings of the cis- and trans-acting drivers of m6A. We further delve into the tissue- and ethnicity-specificity of m6A-QTL, the association with other molecular phenotypes in light of genetic regulation, the regulators underlying m6A genetics, and importantly, the functional roles of m6A in mediating human complex diseases. Lastly, we discuss potential research avenues that can accelerate the translation of m6A genetics studies toward the development of therapies for human genetic diseases.
Collapse
Affiliation(s)
- Kexuan Chen
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Jiuhong Nan
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xushen Xiong
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311121, China.
| |
Collapse
|
15
|
Li F, Zeng C, Liu J, Wang L, Yuan X, Yuan L, Xia X, Huang W. The YTH domain-containing protein family: Emerging players in immunomodulation and tumour immunotherapy targets. Clin Transl Med 2024; 14:e1784. [PMID: 39135292 PMCID: PMC11319238 DOI: 10.1002/ctm2.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The modification of N6-methyladenosine (m6A) plays a pivotal role in tumor by altering both innate and adaptive immune systems through various pathways, including the regulation of messenger RNA. The YTH domain protein family, acting as "readers" of m6A modifications, affects RNA splicing, stability, and immunogenicity, thereby playing essential roles in immune regulation and antitumor immunity. Despite their significance, the impact of the YTH domain protein family on tumor initiation and progression, as well as their involvement in tumor immune regulation and therapy, remains underexplored and lacks comprehensive review. CONCLUSION This review introduces the molecular characteristics of the YTH domain protein family and their physiological and pathological roles in biological behavior, emphasizing their mechanisms in regulating immune responses and antitumor immunity. Additionally, the review discusses the roles of the YTH domain protein family in immune-related diseases and tumor resistance, highlighting that abnormal expression or dysfunction of YTH proteins is closely linked to tumor resistance. KEY POINTS This review provides an in-depth understanding of the YTH domain protein family in immune regulation and antitumor immunity, suggesting new strategies and directions for immunotherapy of related diseases. These insights not only deepen our comprehension of m6A modifications and YTH protein functions but also pave the way for future research and clinical applications.
Collapse
Affiliation(s)
- Fenghe Li
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Chong Zeng
- Department of Respiratory and Critical Care MedicineThe Seventh Affiliated Hospital, Hengyang Medical School, University of South ChinaChangshaHunanChina
| | - Jie Liu
- Department of PathologyThe Affiliated Changsha Central Hospital, Hengyang Medical School, University of South ChinaChangshaHunanChina
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute, School of Basic Medical Science, Central South UniversityChangshaHunanChina
| | - Xiaorui Yuan
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Li Yuan
- Department of Nuclear MedicineThe Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaomeng Xia
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Huang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center of Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Research Center of Carcinogenesis and Targeted TherapyXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
16
|
Wu N, Sun Y, Xue D, He X. FTO promotes the progression of bladder cancer via demethylating m 6A modifications in PTPN6 mRNA. Heliyon 2024; 10:e34031. [PMID: 39100467 PMCID: PMC11295866 DOI: 10.1016/j.heliyon.2024.e34031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Bladder cancer (BC), a highly prevalent malignancy of the urinary system, necessitates further investigation into its progression mechanisms. N6-methyladenosine (m6A) RNA methylation, a prevalent modification in cellular RNA, has been implicated in the tumorigenesis and metastasis of various cancers. In this study, the upregulation of FTO in human BC samples and its association with poor prognosis were demonstrated using immunohistochemistry (IHC) on tissue sections collected from BC patients. The functional role of FTO in promoting the proliferation and metastasis abilities of BC cells was determined using a combination of in vitro and in vivo assays. In vitro, we conducted cell proliferation assays, such as the Cell Counting Kit-8 (CCK-8) assay, and metastasis assays, including the wound healing assay and transwell invasion assay. In vivo, we employed xenograft models to assess tumor growth and metastasis. Furthermore, our investigation into potential FTO targets in BC cells revealed that FTO modifies PTPN6 mRNA, leading to increased stability and expression of PTPN6, thereby enhancing proliferation and metastasis abilities. In conclusion, our findings indicate that FTO serves as an oncogenic factor in BC, suggesting its potential utility as a diagnostic or prognostic biomarker for bladder cancer.
Collapse
Affiliation(s)
- Naping Wu
- Department of Breast Surgery, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, PR China
| | - Yangyang Sun
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, PR China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, PR China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, PR China
| |
Collapse
|
17
|
Motawi TK, Shaker OG, Amr G, Senousy MA. RNA methylation machinery and m 6A target genes as circulating biomarkers of ulcerative colitis and Crohn's disease: Correlation with disease activity, location, and inflammatory cytokines. Clin Chim Acta 2024; 561:119831. [PMID: 38925436 DOI: 10.1016/j.cca.2024.119831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Accurate diagnosis of ulcerative colitis (UC) and Crohn's disease (CD), the main subtypes of inflammatory bowel disease (IBD), has been challenging due to the constraints of the current techniques. N6-methyl adenosine (m6A) regulators have evolved as key players in IBD pathogenesis; however, their relation to its clinical setting is largely unexplored. This study investigated the potential of selected RNA methylation machinery and m6A target genes as serum biomarkers of UC and CD, their predictive and discriminating capabilities, and their correlations with laboratory data, interleukin (IL)-6, interferon-γ, disease activity scores, and pathological features. Fifty UC and 45 CD patients, along with 30 healthy volunteers were enlisted. The mRNA expression levels of the m6A writers methyltransferase-like 3 (METTL3) and Wilms-tumor associated protein (WTAP), and the reader YTH domain family, member 1 (YTHDF1), along with the m6A candidate genes sex determining region Y-box 2 (SOX2), hexokinase 2 (HK2), and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) were upregulated in UC patients, whereas only METTL3, HK2, and UBE2L3 were upregulated in CD patients versus controls. Serum WTAP (AUC = 0.94, 95 %CI = 0.874-1.006) and HK2 (AUC = 0.911, 95 %CI = 0.843-0.980) expression levels showed excellent diagnostic accuracy for UC, METTL3 showed excellent diagnostic accuracy for CD (AUC = 0.91, 95 %CI = 0.828-0.992), meanwhile, WTAP showed excellent discriminative power between the two diseases (AUC = 0.91, 95 %CI = 0.849-0.979). Multivariate logistic analysis unveiled the association of METTL3 and UBE2L3 expression with the risk of CD and UC diagnosis, respectively, controlled by age and sex as confounders. Remarkable correlations were recorded between the gene expression of studied m6A regulators and targets in both diseases. Among UC patients, serum METTL3 and WTAP were correlated with UC extent/type, while WTAP was correlated with IL-6. Among CD patients, serum METTL3 and HK2 were correlated with CD activity index (CDAI) and CD location. In conclusion, m6A regulators and target genes are distinctly expressed in UC and CD clinical samples, correlate with disease activity and extent/location, and could serve as a novel approach to empower the diagnosis and stratification of IBD subtypes.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ghada Amr
- General Administration of Blood Banks, Ministry of Health and Population, Cairo, Egypt
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| |
Collapse
|
18
|
Yang Y, Lu Y, Wang Y, Wen X, Qi C, Piao W, Jin H. Current progress in strategies to profile transcriptomic m 6A modifications. Front Cell Dev Biol 2024; 12:1392159. [PMID: 39055651 PMCID: PMC11269109 DOI: 10.3389/fcell.2024.1392159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Various methods have been developed so far for detecting N 6-methyladenosine (m6A). The total m6A level or the m6A status at individual positions on mRNA can be detected and quantified through some sequencing-independent biochemical methods, such as LC/MS, SCARLET, SELECT, and m6A-ELISA. However, the m6A-detection techniques relying on high-throughput sequencing have more effectively advanced the understanding about biological significance of m6A-containing mRNA and m6A pathway at a transcriptomic level over the past decade. Various SGS-based (Second Generation Sequencing-based) methods with different detection principles have been widely employed for this purpose. These principles include m6A-enrichment using antibodies, discrimination of m6A from unmodified A-base by nucleases, a fusion protein strategy relying on RNA-editing enzymes, and marking m6A with chemical/biochemical reactions. Recently, TGS-based (Third Generation Sequencing-based) methods have brought a new trend by direct m6A-detection. This review first gives a brief introduction of current knowledge about m6A biogenesis and function, and then comprehensively describes m6A-profiling strategies including their principles, procedures, and features. This will guide users to pick appropriate methods according to research goals, give insights for developing novel techniques in varying areas, and continue to expand our boundary of knowledge on m6A.
Collapse
Affiliation(s)
- Yuening Yang
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanming Lu
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Wang
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xianghui Wen
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Changhai Qi
- Department of Pathology, Aerospace Center Hospital, Beijing, China
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, China
| | - Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, China
| |
Collapse
|
19
|
Meng Y, Shu Z, Wang X, Hong L, Wang B, Jiang J, He K, Cao Q, Shi F, Wang H, Gong L, Diao H. Hepatitis B Virus-Mediated m6A Demethylation Increases Hepatocellular Carcinoma Stemness and Immune Escape. Mol Cancer Res 2024; 22:642-655. [PMID: 38546386 PMCID: PMC11217737 DOI: 10.1158/1541-7786.mcr-23-0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 03/26/2024] [Indexed: 07/03/2024]
Abstract
Hepatitis B viral (HBV) persistent infection plays a significant role in hepatocellular carcinoma (HCC) tumorigenesis. Many studies have revealed the pivotal roles of N6-methyladenosine (m6A) in multiple cancers, while the regulatory mechanism in stemness maintenance of HBV persistent infection-related HCC remains elusive. Here, we demonstrated that the level of m6A modification was downregulated by HBV in HBV-positive HCC, through enhanced stability of ALKBH5 mRNA. More specifically, we also identified that ALKBH5 mRNA was functionally required for the stemness maintenance and self-renewal in the HBV-positive HCC, but dispensable in HBV-negative HCC. Mechanistically, ALKBH5 demethylated the m6A modification in the 3' untranslated region of the oncogenic gene SNAI2 to prevent the recognition of YTHDF2 therewith stabilize SNAI2 transcripts, contributing to cancer stem cell traits in HBV-positive HCC. Moreover, the expression of SNAI2 reversed the suppression of stemness properties by knocking down ALKBH5. In addition, ALKBH5/SNAI2 axis accelerates tumor immune evasion through activated ligand of immune checkpoint CD155. Our study unveiled that the ALKBH5 induces m6A demethylation of the SNAI2 as a key regulator in HBV-related HCC, and identifies the function of ALKBH5/SNAI2/YTHDF2 axis in promoting the stem-like cells phenotype and immune escape during HBV infection. IMPLICATIONS HBV promotes HCC stemness maintenance through elevate m6A modification of SNAI2 in an ALKBH5-YTHDF2-dependent manner and increases the expression of the ligand of immune checkpoint CD155.
Collapse
Affiliation(s)
- Yuting Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Zheyue Shu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, P.R. China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Baohua Wang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Kangxin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Qingyi Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Hai Wang
- Department of Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
20
|
Zhou X, Yang X, Huang S, Lin G, Lei K, Wang Q, Lin W, Li H, Qi X, Seriwatanachai D, Yang S, Shao B, Yuan Q. Inhibition of METTL3 Alleviates NLRP3 Inflammasome Activation via Increasing Ubiquitination of NEK7. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308786. [PMID: 38696610 PMCID: PMC11234428 DOI: 10.1002/advs.202308786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/06/2024] [Indexed: 05/04/2024]
Abstract
N6-methyladenosine (m6A) modification, installed by METTL3-METTL14 complex, is abundant and critical in eukaryotic mRNA. However, its role in oral mucosal immunity remains ambiguous. Periodontitis is a special but prevalent infectious disease characterized as hyperinflammation of oral mucosa and bone resorption. Here, it is reported that genetic deletion of Mettl3 alleviates periodontal destruction via suppressing NLRP3 inflammasome activation. Mechanistically, the stability of TNFAIP3 (also known as A20) transcript is significantly attenuated upon m6A modification. When silencing METTL3, accumulated TNFAIP3 functioning as a ubiquitin-editing enzyme facilitates the ubiquitination of NEK7 [NIMA (never in mitosis gene a)-related kinase 7], and subsequently impairs NLRP3 inflammasome assembly. Furtherly, Coptisine chloride, a natural small-molecule, is discovered as a novel METTL3 inhibitor and performs therapeutic effect on periodontitis. The study unveils a previously unknown pathogenic mechanism of METTL3-mediated m6A modifications in periodontitis and indicates METTL3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Xinyi Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Jiao Tong UniversityShanghai200011China
| | - Xiaoyu Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Shenzhen Huang
- Henan Eye InstituteHenan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual ScienceHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhou450003China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Kexin Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Qian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Hanwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xingying Qi
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of oral implantologyStomatological Hospital and Dental SchoolTongji UniversityShanghai200072China
| | | | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
21
|
Li S, Deng X, Pathak D, Basavaraj R, Sun L, Cheng Y, Li JR, Burke M, Britz GW, Cheng C, Gao Y, Weng YL. Deficiency of m 6 A RNA methylation promotes ZBP1-mediated cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601251. [PMID: 38979320 PMCID: PMC11230363 DOI: 10.1101/2024.06.29.601251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
m 6 A RNA methylation suppresses the immunostimulatory potential of endogenous RNA. Deficiency of m 6 A provokes inflammatory responses and cell death, but the underlying mechanisms remain elusive. Here we showed that the noncoding RNA 7SK gains immunostimulatory potential upon m 6 A depletion and subsequently activates the RIG-I/MAVS axis to spark interferon (IFN) signaling cascades. Concomitant excess of IFN and m 6 A deficiency synergistically facilitate the formation of RNA G-quadruplexes (rG4) to promote ZBP1-mediated necroptotic cell death. Collectively, our findings delineate a hitherto uncharacterized mechanism that links m 6 A dysregulation with ZBP1 activity in triggering inflammatory cell death.
Collapse
|
22
|
Wang D, Booth JL, Wu W, Kiger N, Lettow M, Bates A, Pan C, Metcalf J, Schroeder SJ. Nanopore Direct RNA Sequencing Reveals Virus-Induced Changes in the Transcriptional Landscape in Human Bronchial Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600852. [PMID: 38979243 PMCID: PMC11230378 DOI: 10.1101/2024.06.26.600852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Direct RNA nanopore sequencing reveals changes in gene expression, polyadenylation, splicing, m6A methylation, and pseudouridylation in response to influenza virus exposure in primary human bronchial epithelial cells. This study focuses on the epitranscriptomic profile of genes in the host immune response. In addition to polyadenylated noncoding RNA, we purified and sequenced nonpolyadenylated noncoding RNA and observed changes in expression, N6-methyl-adenosine (m6A), and pseudouridylation (Ψ) in these novel RNA. Two recently discovered lincRNA with roles in immune response, Chaserr and LEADR , became highly methylated in response to influenza exposure. Several H/ACA type snoRNAs that guide pseudouridylation are decreased in expression in response to influenza, and there is a corresponding decrease in the pseudouridylation of two novel lncRNA. Thus, novel epitranscriptomic changes revealed by direct RNA sequencing with nanopore technology provides unique insights into the host epitranscriptomic changes in epithelial gene networks that respond to influenza virus infection.
Collapse
|
23
|
Liu X, Chen W, Li K, Sheng J. RNA N6-methyladenosine methylation in influenza A virus infection. Front Microbiol 2024; 15:1401997. [PMID: 38957616 PMCID: PMC11217485 DOI: 10.3389/fmicb.2024.1401997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Influenza A virus (IAV) is a negative-sense single-stranded RNA virus that causes acute lung injury and acute respiratory distress syndrome, posing a serious threat to both animal and human health. N6-methyladenosine (m6A), a prevalent and abundant post-transcriptional methylation of RNA in eukaryotes, plays a crucial regulatory role in IAV infection by altering viral RNA and cellular transcripts to affect viral infection and the host immune response. This review focuses on the molecular mechanisms underlying m6A modification and its regulatory function in the context of IAV infection and the host immune response. This will provide a better understanding of virus-host interactions and offer insights into potential anti-IAV strategies.
Collapse
Affiliation(s)
- Xueer Liu
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
24
|
Finkel Y, Nachshon A, Aharon E, Arazi T, Simonovsky E, Dobešová M, Saud Z, Gluck A, Fisher T, Stanton RJ, Schwartz M, Stern-Ginossar N. A virally encoded high-resolution screen of cytomegalovirus dependencies. Nature 2024; 630:712-719. [PMID: 38839957 DOI: 10.1038/s41586-024-07503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Genetic screens have transformed our ability to interrogate cellular factor requirements for viral infections1,2, but most current approaches are limited in their sensitivity, biased towards early stages of infection and provide only simplistic phenotypic information that is often based on survival of infected cells2-4. Here, by engineering human cytomegalovirus to express single guide RNA libraries directly from the viral genome, we developed virus-encoded CRISPR-based direct readout screening (VECOS), a sensitive, versatile, viral-centric approach that enables profiling of different stages of viral infection in a pooled format. Using this approach, we identified hundreds of host dependency and restriction factors and quantified their direct effects on viral genome replication, viral particle secretion and infectiousness of secreted particles, providing a multi-dimensional perspective on virus-host interactions. These high-resolution measurements reveal that perturbations altering late stages in the life cycle of human cytomegalovirus (HCMV) mostly regulate viral particle quality rather than quantity, establishing correct virion assembly as a critical stage that is heavily reliant on virus-host interactions. Overall, VECOS facilitates systematic high-resolution dissection of the role of human proteins during the infection cycle, providing a roadmap for in-depth study of host-herpesvirus interactions.
Collapse
Affiliation(s)
- Yaara Finkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Einav Aharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Arazi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Simonovsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Martina Dobešová
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Zack Saud
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Avi Gluck
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Fisher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard J Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
25
|
Pinello N, Song R, Lee Q, Calonne E, Duan KL, Wong E, Tieng J, Mehravar M, Rong B, Lan F, Roediger B, Ma CJ, Yuan BF, Rasko JEJ, Larance M, Ye D, Fuks F, Wong JJL. Dynamic changes in RNA m 6A and 5 hmC influence gene expression programs during macrophage differentiation and polarisation. Cell Mol Life Sci 2024; 81:229. [PMID: 38780787 PMCID: PMC11116364 DOI: 10.1007/s00018-024-05261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
RNA modifications are essential for the establishment of cellular identity. Although increasing evidence indicates that RNA modifications regulate the innate immune response, their role in monocyte-to-macrophage differentiation and polarisation is unclear. While m6A has been widely studied, other RNA modifications, including 5 hmC, remain poorly characterised. We profiled m6A and 5 hmC epitranscriptomes, transcriptomes, translatomes and proteomes of monocytes and macrophages at rest and pro- and anti-inflammatory states. Transcriptome-wide mapping of m6A and 5 hmC reveals enrichment of m6A and/or 5 hmC on specific categories of transcripts essential for macrophage differentiation. Our analyses indicate that m6A and 5 hmC modifications are present in transcripts with critical functions in pro- and anti-inflammatory macrophages. Notably, we also discover the co-occurrence of m6A and 5 hmC on alternatively-spliced isoforms and/or opposing ends of the untranslated regions (UTR) of mRNAs with key roles in macrophage biology. In specific examples, RNA 5 hmC controls the decay of transcripts independently of m6A. This study provides (i) a comprehensive dataset to interrogate the role of RNA modifications in a plastic system (ii) a resource for exploring different layers of gene expression regulation in the context of human monocyte-to-macrophage differentiation and polarisation, (iii) new insights into RNA modifications as central regulators of effector cells in innate immunity.
Collapse
Affiliation(s)
- Natalia Pinello
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Renhua Song
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Quintin Lee
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kun-Long Duan
- The Molecular and Cell Biology Lab, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Emilie Wong
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Jessica Tieng
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Majid Mehravar
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Bowen Rong
- Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ben Roediger
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Skin Inflammation Group, Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
- Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Cheng-Jie Ma
- School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Bi-Feng Yuan
- School of Public Health, Wuhan University, Wuhan, 430071, China
| | - John E J Rasko
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, NSW, Australia
| | - Mark Larance
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Sydney, 2006, Australia
| | - Dan Ye
- The Molecular and Cell Biology Lab, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Justin J-L Wong
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia.
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
26
|
Yu H, Liu J, Bu X, Ma Z, Yao Y, Li J, Zhang T, Song W, Xiao X, Sun Y, Xiong W, Shi J, Dai P, Xiang B, Duan H, Yan X, Wu F, Zhang WC, Lin D, Hu H, Zhang H, Slack FJ, He HH, Freeman GJ, Wei W, Zhang J. Targeting METTL3 reprograms the tumor microenvironment to improve cancer immunotherapy. Cell Chem Biol 2024; 31:776-791.e7. [PMID: 37751743 PMCID: PMC10954589 DOI: 10.1016/j.chembiol.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/02/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
The tumor microenvironment (TME) is a heterogeneous ecosystem containing cancer cells, immune cells, stromal cells, cytokines, and chemokines which together govern tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), a core catalytic subunit for RNA N6-methyladenosine (m6A) modification, plays a crucial role in regulating various physiological and pathological processes. Whether and how METTL3 regulates the TME and anti-tumor immunity in non-small-cell lung cancer (NSCLC) remain poorly understood. Here, we report that METTL3 elevates expression of pro-tumorigenic chemokines including CXCL1, CXCL5, and CCL20, and destabilizes PD-L1 mRNA in an m6A-dependent manner, thereby shaping a non-inflamed TME. Thus, inhibiting METTL3 reprograms a more inflamed TME that renders anti-PD-1 therapy more effective in several murine lung tumor models. Clinically, NSCLC patients who exhibit low-METTL3 expression have a better prognosis when receiving anti-PD-1 therapy. Collectively, our study highlights targeting METTL3 as a promising strategy to improve immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Haisheng Yu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing 100853, China
| | - Yingmeng Yao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jinfeng Li
- Institute of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing 100853, China
| | - Tiantian Zhang
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Wenjing Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiangling Xiao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yishuang Sun
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenjun Xiong
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Panpan Dai
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Bolin Xiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Fei Wu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R.China
| | - Wen Cai Zhang
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida. Orlando, FL 32827, USA
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Haojian Zhang
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Housheng Hansen He
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
27
|
Shi Y, Li K, Yuan Y, Wang C, Yang Z, Zuo D, Niu Y, Qiu J, Li B, Yuan Y, He W. Comprehensive analysis of m6A modification in immune infiltration, metabolism and drug resistance in hepatocellular carcinoma. Cancer Cell Int 2024; 24:138. [PMID: 38627760 PMCID: PMC11022358 DOI: 10.1186/s12935-024-03307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
N6-methyladenosine (m6A) is important in regulating mRNA stability, splicing, and translation, and it also contributes to tumor development. However, there is still limited understanding of the comprehensive effects of m6A modification patterns on the tumor immune microenvironment, metabolism, and drug resistance in hepatocellular carcinoma (HCC). In this study, we utilized unsupervised clustering based on the expression of 23 m6A regulators to identify m6A clusters. We identified differential m6A modification patterns and characterized m6A-gene-cluster A, which exhibited poorer survival rates, a higher abundance of Treg cells, and increased expression of TGFβ in the tumor microenvironment (TME). Additionally, m6A-gene-cluster A demonstrated higher levels of glycolysis activity, cholesterol metabolism, and fatty acid biosynthesis. We also found that the m6A score was associated with prognosis and drug resistance. Patients with a low m6A score experienced worse prognoses, which were linked to an abundance of Treg cells, upregulation of TGFβ, and increased metabolic activity. HCC patients with a higher m6A score showed improved prognosis following sorafenib treatment and immunotherapy. In conclusion, we reveals the association between m6A modification patterns and the tumor immune microenvironment, metabolism, and drug resistance in HCC. Furthermore, the m6A score holds potential as a predictive factor for the efficacy of targeted therapy and immunotherapy in HCC.
Collapse
Affiliation(s)
- Yunxing Shi
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat- sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichuan Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road E, 510060, Guangzhou, P.R. China
| | - Chenwei Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road E, 510060, Guangzhou, P.R. China
| | - Zhiwen Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road E, 510060, Guangzhou, P.R. China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road E, 510060, Guangzhou, P.R. China
| | - Yi Niu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road E, 510060, Guangzhou, P.R. China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road E, 510060, Guangzhou, P.R. China
| | - Binkui Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road E, 510060, Guangzhou, P.R. China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road E, 510060, Guangzhou, P.R. China
| | - Wei He
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road E, 510060, Guangzhou, P.R. China.
| |
Collapse
|
28
|
Horner SM, Thompson MG. Challenges to mapping and defining m 6A function in viral RNA. RNA (NEW YORK, N.Y.) 2024; 30:482-490. [PMID: 38531643 PMCID: PMC11019751 DOI: 10.1261/rna.079959.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Viral RNA molecules contain multiple layers of regulatory information. This includes features beyond the primary sequence, such as RNA structures and RNA modifications, including N6-methyladenosine (m6A). Many recent studies have identified the presence and location of m6A in viral RNA and have found diverse regulatory roles for this modification during viral infection. However, to date, viral m6A mapping strategies have limitations that prevent a complete understanding of the function of m6A on individual viral RNA molecules. While m6A sites have been profiled on bulk RNA from many viruses, the resulting m6A maps of viral RNAs described to date present a composite picture of m6A across viral RNA molecules in the infected cell. Thus, for most viruses, it is unknown if unique viral m6A profiles exist throughout infection, nor if they regulate specific viral life cycle stages. Here, we describe several challenges to defining the function of m6A in viral RNA molecules and provide a framework for future studies to help in the understanding of how m6A regulates viral infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Matthew G Thompson
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
29
|
Chen Z, Shang Y, Zhang X, Duan W, Li J, Zhu L, Ma L, Xiang X, Jia J, Ji X, Gong S. METTL3 mediates SOX5 m6A methylation in bronchial epithelial cells to attenuate Th2 cell differentiation in T2 asthma. Heliyon 2024; 10:e28884. [PMID: 38601672 PMCID: PMC11004579 DOI: 10.1016/j.heliyon.2024.e28884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Objective Asthma, a chronic inflammatory disease in which type 2 T helper cells (Th2) play a causative role in the development of T2 asthma. N6-methyladenosine (m6A) modification, an mRNA modification, and methyltransferase-like 3 (METTL3) is involved in the development of T2 asthma by inhibiting Th2 cell differentiation. Sex determining region Y-box protein 5 (SOX5) is involved in regulating T cell differentiation, but its role in T2 asthma was unclear. The objective of this study was to explore the role of METTL3 and SOX5 in T2 asthma and whether there is an interaction between the two. Materials and methods Adults diagnosed with T2 asthma (n = 14) underwent clinical information collection and pulmonary function tests. In vivo and in vitro T2 asthma models were established using female C57BL/6 mice and human bronchial epithelial cells (HBE). The expressions of METTL3 and SOX5 were detected by Western blot and qRT-PCR and Western blot. Th2 cell differentiation was determined by flow cytometry and IL-4 level was detected by ELISA. m6A methylation level was determined by m6A quantitative assay. The relationship between METTL3 expression and clinical parameters was determined by Spearman rank correlation analysis. The function of METTL3 and SOX5 genes in asthma was investigated in vitro and in vivo. The RNA immunoprecipitation assay detected the specific interaction between METTL3 and SOX5. Results Patients with T2 asthma displayed lower METTL3 levels compared to healthy controls. Within this group, a negative correlation was observed between METTL3 and Th2 cells, while a positive correlation was noted between METTL3 and clinical parameters as well as Th1 cells. In both in vitro and in vivo models representing T2 asthma, METTL3 levels decreased significantly, while SOX5 levels showed the opposite trend. Overexpression of METTL3 gene in HBE cells significantly inhibited Th2 cell differentiation and increased m6A methylation activity. From a mechanism perspective, low METTL3 negatively regulates SOX5 expression through m6A modification dependence, while high SOX5 expression is positively associated with T2 asthma severity. Cell transfection experiments confirmed that METTL3 regulates Th2 cell differentiation and IL-4 release through SOX5. Conclusions Overall, our results indicate that METTL3 alleviates Th2 cell differentiation in T2 asthma by modulating the m6A methylation activity of SOX5 in bronchial epithelial cells. This mechanism could potentially serve as a target for the prevention and management of T2 asthma.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yulin Shang
- Ophthalmology and Otorhinolaryngology, Zigui County Traditional Chinese Medicine Hospital, 30 Pinghu Avenue, Zigui, Hubei, 443600, China
| | - Xiufeng Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, 48 Pak Shui Tong Road, Haikou, Hainan, 570000, China
| | - Wentao Duan
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital, 61 West Jiefang Road, Changsha, Hunan, 410005, China
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital, 61 West Jiefang Road, Changsha, Hunan, 410005, China
| | - Liming Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital, 61 West Jiefang Road, Changsha, Hunan, 410005, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, 15 Le Qun Road, Guilin, Guangxi, 541001, China
| | - Xudong Xiang
- Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Jingsi Jia
- Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Xiaoying Ji
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, Guizhou, 550004, China
| | - Subo Gong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| |
Collapse
|
30
|
Xia Y, Chen K, Yang Q, Chen Z, Jin L, Zhang L, Yu X, Wang L, Xie C, Zhao Y, Shen Y, Tong J. Methylation in cornea and corneal diseases: a systematic review. Cell Death Discov 2024; 10:169. [PMID: 38589350 PMCID: PMC11002037 DOI: 10.1038/s41420-024-01935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Corneal diseases are among the primary causes of blindness and vision loss worldwide. However, the pathogenesis of corneal diseases remains elusive, and diagnostic and therapeutic tools are limited. Thus, identifying new targets for the diagnosis and treatment of corneal diseases has gained great interest. Methylation, a type of epigenetic modification, modulates various cellular processes at both nucleic acid and protein levels. Growing evidence shows that methylation is a key regulator in the pathogenesis of corneal diseases, including inflammation, fibrosis, and neovascularization, making it an attractive potential therapeutic target. In this review, we discuss the major alterations of methylation and demethylation at the DNA, RNA, and protein levels in corneal diseases and how these dynamics contribute to the pathogenesis of corneal diseases. Also, we provide insights into identifying potential biomarkers of methylation that may improve the diagnosis and treatment of corneal diseases.
Collapse
Affiliation(s)
- Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Le Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Xin Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Liyin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
31
|
Levintov L, Vashisth H. Adenine Methylation Enhances the Conformational Flexibility of an RNA Hairpin Tetraloop. J Phys Chem B 2024; 128:3157-3166. [PMID: 38535997 PMCID: PMC11000223 DOI: 10.1021/acs.jpcb.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The N6-methyladenosine modification is one of the most abundant post-transcriptional modifications in ribonucleic acid (RNA) molecules. Using molecular dynamics simulations and alchemical free-energy calculations, we studied the structural and energetic implications of incorporating this modification in an adenine mononucleotide and an RNA hairpin structure. At the mononucleotide level, we found that the syn configuration is more favorable than the anti configuration by 2.05 ± 0.15 kcal/mol. The unfavorable effect of methylation was due to the steric overlap between the methyl group and a nitrogen atom in the purine ring. We then probed the effect of methylation in an RNA hairpin structure containing an AUCG tetraloop, which is recognized by a "reader" protein (YTHDC1) to promote transcriptional silencing of long noncoding RNAs. While methylation had no significant conformational effect on the hairpin stem, the methylated tetraloop showed enhanced conformational flexibility compared to the unmethylated tetraloop. The increased flexibility was associated with the outward flipping of two bases (A6 and U7) which formed stacking interactions with each other and with the C8 and G9 bases in the tetraloop, leading to a conformation similar to that in the RNA/reader protein complex. Therefore, methylation-induced conformational flexibility likely facilitates RNA recognition by the reader protein.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering
and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Harish Vashisth
- Department of Chemical Engineering
and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
32
|
Liu J, Chen L, Guo X, Zhao B, Jiang J. Emerging role of N6-methyladenosine RNA modification in regulation of SARS-CoV-2 infection and virus-host interactions. Biomed Pharmacother 2024; 173:116231. [PMID: 38484561 DOI: 10.1016/j.biopha.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 03/27/2024] Open
Abstract
Since December 2019, the infection caused by Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) has posed an enormous threat to human health security worldwide. Constant mutation of viral genome and varying therapeutic responses of patients infected with this virus prompted efforts to uncover more novel regulators in the pathogenesis. The involvement of N6-methyladenosine, a modified form of RNA, plays a crucial role in viral replication, viral pathogenicity, and intricate signaling pathways connected with immune responses. This review discusses research advances revealing the regulation of the life cycle of SARS-CoV-2 and antiviral responses of host cells by RNA m6A modification, highlights the biological functions of N6-methyladenosine components in SARS-CoV-2 infection and virus-host interactions, and outlines current challenges and future directions for exploring the potential clinical value of m6A modification in COVID-19.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Lingli Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiongmin Guo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha 410008, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China.
| | - Juan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha 410008, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China.
| |
Collapse
|
33
|
Olazagoitia‐Garmendia A, Rojas‐Márquez H, Sebastian‐delaCruz M, Agirre‐Lizaso A, Ochoa A, Mendoza‐Gomez LM, Perugorria MJ, Bujanda L, Madrigal AH, Santin I, Castellanos‐Rubio A. m 6A Methylated Long Noncoding RNA LOC339803 Regulates Intestinal Inflammatory Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307928. [PMID: 38273714 PMCID: PMC10987157 DOI: 10.1002/advs.202307928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Indexed: 01/27/2024]
Abstract
Cytokine mediated sustained inflammation increases the risk to develop different complex chronic inflammatory diseases, but the implicated mechanisms remain unclear. Increasing evidence shows that long noncoding RNAs (lncRNAs) play key roles in the pathogenesis of inflammatory disorders, while inflammation associated variants are described to affect their function or essential RNA modifications as N6-methyladenosine (m6A) methylation, increasing predisposition to inflammatory diseases. Here, the functional implication of the intestinal inflammation associated lncRNA LOC339803 in the production of cytokines by intestinal epithelial cells is described. Allele-specific m6A methylation is found to affect YTHDC1 mediated protein binding affinity. LOC339803-YTHDC1 interaction dictates chromatin localization of LOC339803 ultimately inducing the expression of NFκB mediated proinflammatory cytokines and contributing to the development of intestinal inflammation. These findings are confirmed using human intestinal biopsy samples from different intestinal inflammatory conditions and controls. Additionally, it is demonstrated that LOC339803 targeting can be a useful strategy for the amelioration of intestinal inflammation in vitro and ex vivo. Overall, the results support the importance of the methylated LOC339803 lncRNA as a mediator of intestinal inflammation, explaining genetic susceptibility and presenting this lncRNA as a potential novel therapeutic target for the treatment of inflammatory intestinal disorders.
Collapse
Affiliation(s)
- Ane Olazagoitia‐Garmendia
- Department of Biochemistry and Molecular BiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
- Biobizkaia Health Research InstituteBarakaldo48903Spain
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
| | - Henar Rojas‐Márquez
- Biobizkaia Health Research InstituteBarakaldo48903Spain
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
| | - Maialen Sebastian‐delaCruz
- Biobizkaia Health Research InstituteBarakaldo48903Spain
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
| | - Aloña Agirre‐Lizaso
- Department of Liver and Gastrointestinal DiseasesBiogipuzkoa Health Research InstituteDonostia University HospitalDonostia‐San Sebastian20014Spain
| | - Anne Ochoa
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
| | - Luis Manuel Mendoza‐Gomez
- Department of Biochemistry and Molecular BiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
- Biobizkaia Health Research InstituteBarakaldo48903Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal DiseasesBiogipuzkoa Health Research InstituteDonostia University HospitalDonostia‐San Sebastian20014Spain
- Department of MedicineFaculty of Medicine and NursingUniversity of the Basque CountryUPV/EHUDonostia‐San Sebastián20014Spain
- CIBERehdInstituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal DiseasesBiogipuzkoa Health Research InstituteDonostia University HospitalDonostia‐San Sebastian20014Spain
- Department of MedicineFaculty of Medicine and NursingUniversity of the Basque CountryUPV/EHUDonostia‐San Sebastián20014Spain
- CIBERehdInstituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Alain Huerta Madrigal
- Biobizkaia Health Research InstituteBarakaldo48903Spain
- Department of MedicineMedicine FacultyUniversity of the Basque Country UPV/EHULeioa48940Spain
- Gastroenterology DepartmentHospital Universitario de GaldakaoGaldakao48960Spain
| | - Izortze Santin
- Department of Biochemistry and Molecular BiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
- Biobizkaia Health Research InstituteBarakaldo48903Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEMInstituto de Salud Carlos IIIMadrid28029Spain
| | - Ainara Castellanos‐Rubio
- Biobizkaia Health Research InstituteBarakaldo48903Spain
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEMInstituto de Salud Carlos IIIMadrid28029Spain
- IkerbasqueBasque Foundation for ScienceBilbao48011Spain
| |
Collapse
|
34
|
He D, Yang X, Liu L, Shen D, Liu Q, Liu M, Zhang X, Cui L. Dysregulated N 6-methyladenosine modification in peripheral immune cells contributes to the pathogenesis of amyotrophic lateral sclerosis. Front Med 2024; 18:285-302. [PMID: 38491210 DOI: 10.1007/s11684-023-1035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/15/2023] [Indexed: 03/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurogenerative disorder with uncertain origins. Emerging evidence implicates N6-methyladenosine (m6A) modification in ALS pathogenesis. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and liquid chromatography-mass spectrometry were utilized for m6A profiling in peripheral immune cells and serum proteome analysis, respectively, in patients with ALS (n = 16) and controls (n = 6). The single-cell transcriptomic dataset (GSE174332) of primary motor cortex was further analyzed to illuminate the biological implications of differentially methylated genes and cell communication changes. Analysis of peripheral immune cells revealed extensive RNA hypermethylation, highlighting candidate genes with differential m6A modification and expression, including C-X3-C motif chemokine receptor 1 (CX3CR1). In RAW264.7 macrophages, disrupted CX3CR1 signaling affected chemotaxis, potentially influencing immune cell migration in ALS. Serum proteome analysis demonstrated the role of dysregulated immune cell migration in ALS. Cell type-specific expression variations of these genes in the central nervous system (CNS), particularly microglia, were observed. Intercellular communication between neurons and glial cells was selectively altered in ALS CNS. This integrated approach underscores m6A dysregulation in immune cells as a potential ALS contributor.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Liyang Liu
- Medical Doctor Program, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100730, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100730, China.
- Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
35
|
Berggren KA, Schwartz RE, Kleiner RE, Ploss A. The impact of epitranscriptomic modifications on liver disease. Trends Endocrinol Metab 2024; 35:331-346. [PMID: 38212234 DOI: 10.1016/j.tem.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
RNA modifications have emerged as important mechanisms of gene regulation. Developmental, metabolic, and cell cycle regulatory processes are all affected by epitranscriptomic modifications, which control gene expression in a dynamic manner. The hepatic tissue is highly metabolically active and has an impressive ability to regenerate after injury. Cell proliferation, differentiation, and metabolism, which are all essential to the liver response to injury and regeneration, are regulated via RNA modification. Two such modifications, N6-methyladenosine (m6A)and 5-methylcytosine (m5C), have been identified as prognostic disease markers and potential therapeutic targets for liver diseases. Here, we describe progress in understanding the role of RNA modifications in liver biology and disease and discuss specific areas where unexpected results could lead to improved future understanding.
Collapse
Affiliation(s)
- Keith A Berggren
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
36
|
Yoshinaga M, Takeuchi O. Regulation of inflammatory diseases via the control of mRNA decay. Inflamm Regen 2024; 44:14. [PMID: 38491500 PMCID: PMC10941436 DOI: 10.1186/s41232-024-00326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammation orchestrates a finely balanced process crucial for microorganism elimination and tissue injury protection. A multitude of immune and non-immune cells, alongside various proinflammatory cytokines and chemokines, collectively regulate this response. Central to this regulation is post-transcriptional control, governing gene expression at the mRNA level. RNA-binding proteins such as tristetraprolin, Roquin, and the Regnase family, along with RNA modifications, intricately dictate the mRNA decay of pivotal mediators and regulators in the inflammatory response. Dysregulated activity of these factors has been implicated in numerous human inflammatory diseases, underscoring the significance of post-transcriptional regulation. The increasing focus on targeting these mechanisms presents a promising therapeutic strategy for inflammatory and autoimmune diseases. This review offers an extensive overview of post-transcriptional regulation mechanisms during inflammatory responses, delving into recent advancements, their implications in human diseases, and the strides made in therapeutic exploitation.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
37
|
Busarello E, Biancon G, Lauria F, Ibnat Z, Ramirez C, Tomè G, Aass KR, VanOudenhove J, Standal T, Viero G, Halene S, Tebaldi T. Interpreting single-cell messages in normal and aberrant hematopoiesis with the Cell Marker Accordion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584053. [PMID: 38559181 PMCID: PMC10979856 DOI: 10.1101/2024.03.08.584053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Single-cell technologies offer a unique opportunity to explore cellular heterogeneity in hematopoiesis, reveal malignant hematopoietic cells with clinically significant features and measure gene signatures linked to pathological pathways. However, reliable identification of cell types is a crucial bottleneck in single-cell analysis. Available databases contain dissimilar nomenclature and non-concurrent marker sets, leading to inconsistent annotations and poor interpretability. Furthermore, current tools focus mostly on physiological cell types, lacking extensive applicability in disease. We developed the Cell Marker Accordion, a user-friendly platform for the automatic annotation and biological interpretation of single-cell populations based on consistency weighted markers. We validated our approach on peripheral blood and bone marrow single-cell datasets, using surface markers and expert-based annotation as the ground truth. In all cases, we significantly improved the accuracy in identifying cell types with respect to any single source database. Moreover, the Cell Marker Accordion can identify disease-critical cells and pathological processes, extracting potential biomarkers in a wide variety of contexts in human and murine single-cell datasets. It characterizes leukemia stem cell subtypes, including therapy-resistant cells in acute myeloid leukemia patients; it identifies malignant plasma cells in multiple myeloma samples; it dissects cell type alterations in splicing factor-mutant cells from myelodysplastic syndrome patients; it discovers activation of innate immunity pathways in bone marrow from mice treated with METTL3 inhibitors. The breadth of these applications elevates the Cell Marker Accordion as a flexible, faithful and standardized tool to annotate and interpret hematopoietic populations in single-cell datasets focused on the study of hematopoietic development and disease.
Collapse
Affiliation(s)
- Emma Busarello
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Italy
| | - Zuhairia Ibnat
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Christian Ramirez
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gabriele Tomè
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Institute of Biophysics, CNR Unit at Trento, Italy
| | - Kristin R Aass
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jennifer VanOudenhove
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Therese Standal
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Toma Tebaldi
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
38
|
Ge L, Rui Y, Wang C, Wu Y, Wang H, Wang J. The RNA m 6A reader IGF2BP3 regulates NFAT1/IRF1 axis-mediated anti-tumor activity in gastric cancer. Cell Death Dis 2024; 15:192. [PMID: 38448411 PMCID: PMC10917814 DOI: 10.1038/s41419-024-06566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
N6-methyladenosine (m6A) and its associated reader protein insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) are involved in tumor initiation and progression via regulating RNA metabolism. This study aims to investigate the biological function and clinical significance of IGF2BP3 in gastric cancer (GC). The clinical significance of IGF2BP3 was evaluated using tumor related databases and clinical tissues. The biological role and molecular mechanism of IGF2BP3 in GC progression were investigated by multi-omics analysis including Ribosome sequence (Ribo-seq), RNA sequence (RNA-seq) and m6A sequence (m6A-seq) combined with gain- and loss- of function experiments. IGF2BP3 expression is significantly elevated in GC tissues and associated with poor prognosis of GC patients. Knockdown of IGF2BP3 significantly weakens the migration and clonogenic ability, promotes the apoptosis, inhibits translation, and suppresses in vitro growth and progression of GC cells. Mechanistically, IGF2BP3 regulates the mRNA stability and translation of the nuclear factor of activated T cells 1(NFAT1) in a m6A dependent manner. Then NFAT1 induced by IGF2BP3 acts as a transcription factor (TF) to negatively regulates the promoter activities of interferon regulatory factor 1 (IRF1) to inhibit its expression. Inhibition of IGF2BP3-induced expression of IRF1 activates interferon (IFN) signaling pathway and then exerts its anti-tumor effect. Elevated IGF2BP3 promotes in vivo and in vitro GC progression via regulation of NFAT1/IRF1 pathways. Targeted inhibition of IGF2BP3 might be a potential therapeutic approach for GC treatment.
Collapse
Affiliation(s)
- Lichen Ge
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yalan Rui
- Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yingmin Wu
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550009, China
| | - Hongsheng Wang
- Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Junjun Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
39
|
De Jesus DF, Zhang Z, Brown NK, Li X, Xiao L, Hu J, Gaffrey MJ, Fogarty G, Kahraman S, Wei J, Basile G, Rana TM, Mathews C, Powers AC, Parent AV, Atkinson MA, Dhe-Paganon S, Eizirik DL, Qian WJ, He C, Kulkarni RN. Redox regulation of m 6A methyltransferase METTL3 in β-cells controls the innate immune response in type 1 diabetes. Nat Cell Biol 2024; 26:421-437. [PMID: 38409327 PMCID: PMC11042681 DOI: 10.1038/s41556-024-01368-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Type 1 diabetes (T1D) is characterized by the destruction of pancreatic β-cells. Several observations have renewed the interest in β-cell RNA sensors and editors. Here, we report that N 6-methyladenosine (m6A) is an adaptive β-cell safeguard mechanism that controls the amplitude and duration of the antiviral innate immune response at T1D onset. m6A writer methyltransferase 3 (METTL3) levels increase drastically in β-cells at T1D onset but rapidly decline with disease progression. m6A sequencing revealed the m6A hyper methylation of several key innate immune mediators, including OAS1, OAS2, OAS3 and ADAR1 in human islets and EndoC-βH1 cells at T1D onset. METTL3 silencing enhanced 2'-5'-oligoadenylate synthetase levels by increasing its mRNA stability. Consistently, in vivo gene therapy to prolong Mettl3 overexpression specifically in β-cells delayed diabetes progression in the non-obese diabetic mouse model of T1 D. Mechanistically, the accumulation of reactive oxygen species blocked upregulation of METTL3 in response to cytokines, while physiological levels of nitric oxide enhanced METTL3 levels and activity. Furthermore, we report that the cysteines in position C276 and C326 in the zinc finger domains of the METTL3 protein are sensitive to S-nitrosylation and are important to the METTL3-mediated regulation of oligoadenylate synthase mRNA stability in human β-cells. Collectively, we report that m6A regulates the innate immune response at the β-cell level during the onset of T1D in humans.
Collapse
Affiliation(s)
- Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Zijie Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Natalie K Brown
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Xiaolu Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ling Xiao
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jiang Hu
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Garrett Fogarty
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Sevim Kahraman
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Department of Chemistry and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Giorgio Basile
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Tariq M Rana
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Clayton Mathews
- Department of Pathology, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Alvin C Powers
- Department of Medicine, and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Audrey V Parent
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mark A Atkinson
- Department of Pathology, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Sirano Dhe-Paganon
- Department of Biological Chemistry, and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Krishnamurthy B, Thomas HE. METTL3 restrains autoimmunity in β-cells. Nat Cell Biol 2024; 26:321-322. [PMID: 38409326 DOI: 10.1038/s41556-024-01352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Affiliation(s)
- Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Melbourne, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Melbourne, Victoria, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Melbourne, Victoria, Australia.
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Melbourne, Victoria, Australia.
| |
Collapse
|
41
|
Jin J, Liu M, Yu F, Sun MA, Wu Z. METTL3 enhances E. coli F18 resistance by targeting IKBKG/NF-κB signaling via an m 6A-YTHDF1-dependent manner in IPEC-J2 cells. Int J Biol Macromol 2024; 262:130101. [PMID: 38346619 DOI: 10.1016/j.ijbiomac.2024.130101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Post-weaning diarrhea caused by enterotoxigenic E. coli F18 introduces enormous losses to the porcine industry. N6-methyladenosine (m6A) is a ubiquitous epitranscriptomic biomarker that modulates host cell resistance to pathogen infection, however, its significance in E. coli F18-treated IPEC-J2 cells remains unexplored. Herein, we revealed that m6A and associated modulators strongly controlled E. coli F18 susceptibility. The data indicated an enhancement of METTL3 contents in E. coli F18-treated IPEC-J2 cells. METTL3 is known to be a major modulator of E. coli F18 adhesion within IPEC-J2 cells. As expected, METTL3 deficiency was observed to reduce m6A content at the IKBKG 5'-UTR, leading to critical suppression of YTHDF1-dependent IKBKG translation. Therefore, the activation of the NF-κB axis was observed, which enhanced IPEC-J2 resistance to E. coli F18 infection. Taken together, these findings uncover a potential mechanism underlying the m6A-mediated control of E. coli F18 susceptibility. This information may contribute to the establishment of new approaches for combating bacteria-induced diarrhea in piglets.
Collapse
Affiliation(s)
- Jian Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mengyuan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Fuying Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ming-An Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhengchang Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
42
|
Chen J, Song HX, Hu JH, Bai JS, Li XH, Sun RC, Zhao BQ, Li MZ, Zhou B. Classical swine fever virus non-structural protein 5B hijacks host METTL14-mediated m6A modification to counteract host antiviral immune response. PLoS Pathog 2024; 20:e1012130. [PMID: 38551978 PMCID: PMC11006178 DOI: 10.1371/journal.ppat.1012130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 03/17/2024] [Indexed: 04/11/2024] Open
Abstract
Classical Swine Fever (CSF), caused by the Classical Swine Fever Virus (CSFV), inflicts significant economic losses on the global pig industry. A key factor in the challenge of eradicating this virus is its ability to evade the host's innate immune response, leading to persistent infections. In our study, we elucidate the molecular mechanism through which CSFV exploits m6A modifications to circumvent host immune surveillance, thus facilitating its proliferation. We initially discovered that m6A modifications were elevated both in vivo and in vitro upon CSFV infection, particularly noting an increase in the expression of the methyltransferase METTL14. CSFV non-structural protein 5B was found to hijack HRD1, the E3 ubiquitin ligase for METTL14, preventing METTL14 degradation. MeRIP-seq analysis further revealed that METTL14 specifically targeted and methylated TLRs, notably TLR4. METTL14-mediated regulation of TLR4 degradation, facilitated by YTHDF2, led to the accelerated mRNA decay of TLR4. Consequently, TLR4-mediated NF-κB signaling, a crucial component of the innate immune response, is suppressed by CSFV. Collectively, these data effectively highlight the viral evasion tactics, shedding light on potential antiviral strategies targeting METTL14 to curb CSFV infection.
Collapse
Affiliation(s)
- Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hui-xin Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jia-huan Hu
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Ji-shan Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao-han Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rui-cong Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bing-qian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mei-zhen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Zahedipour F, Zahedipour F, Zamani P, Jaafari MR, Sahebkar A. Harnessing CRISPR technology for viral therapeutics and vaccines: from preclinical studies to clinical applications. Virus Res 2024; 341:199314. [PMID: 38211734 PMCID: PMC10825633 DOI: 10.1016/j.virusres.2024.199314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The CRISPR/Cas system, identified as a type of bacterial adaptive immune system, have attracted significant attention due to its remarkable ability to precisely detect and eliminate foreign genetic material and nucleic acids. Expanding upon these inherent capabilities, recent investigations have unveiled the potential of reprogrammed CRISPR/Cas 9, 12, and 13 systems for treating viral infections associated with human diseases, specifically targeting DNA and RNA viruses, respectively. Of particular interest is the RNA virus responsible for the recent global outbreak of coronavirus disease 2019 (COVID-19), which presents a substantial public health risk, coupled with limited efficacy of current prophylactic and therapeutic techniques. In this regard, the utilization of CRISPR/Cas technology offers a promising gene editing approach to overcome the limitations of conventional methods in managing viral infections. This comprehensive review provides an overview of the latest CRISPR/Cas-based therapeutic and vaccine strategies employed to combat human viral infections. Additionally, we discuss significant challenges and offer insights into the future prospects of this cutting-edge gene editing technology.
Collapse
Affiliation(s)
- Farzaneh Zahedipour
- Microbiology Department, Medical Sciences Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Fatemeh Zahedipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Pinello N, Song R, Lee Q, Calonne E, Larance M, Fuks F, Wong JJL. A multiomics dataset for the study of RNA modifications in human macrophage differentiation and polarisation. Sci Data 2024; 11:252. [PMID: 38418823 PMCID: PMC10902381 DOI: 10.1038/s41597-024-03076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
RNA modifications have emerged as central regulators of gene expression programs. Amongst RNA modifications are N6-methyladenosine (m6A) and RNA 5-hydroxymethylcytosine (5hmC). While m6A is established as a versatile regulator of RNA metabolism, the functions of RNA 5hmC are unclear. Despite some evidence linking RNA modifications to immunity, their implications in gene expression control in macrophage development and functions remain unclear. Here we present a multi-omics dataset capturing different layers of the gene expression programs driving macrophage differentiation and polarisation. We obtained mRNA-Seq, m6A-IP-Seq, 5hmC-IP-Seq, Polyribo-Seq and LC-MS/MS data from monocytes and resting-, pro- and anti-inflammatory-like macrophages. We present technical validation showing high quality and correlation between samples for all datasets, and evidence of biological consistency of modelled macrophages at the transcriptomic, epitranscriptomic, translational and proteomic levels. This multi-omics dataset provides a resource for the study of RNA m6A and 5hmC in the context of macrophage biology and spans the gene expression process from transcripts to proteins.
Collapse
Affiliation(s)
- Natalia Pinello
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
| | - Quintin Lee
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Camperdown, 2050, New South Wales, Australia
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia.
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.
| |
Collapse
|
45
|
Yang Y, Jiang X, Chen J, Liu L, Liu G, Sun K, Liu W, Zhu X, Guan Q. The m 6A reader YTHDC2 maintains visual function and retinal photoreceptor survival through modulating translation of PPEF2 and PDE6B. J Genet Genomics 2024; 51:208-221. [PMID: 38157933 DOI: 10.1016/j.jgg.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Inherited retinal dystrophies (IRDs) are major causes of visual impairment and irreversible blindness worldwide, while the precise molecular and genetic mechanisms are still elusive. N6-methyladenosine (m6A) modification is the most prevalent internal modification in eukaryotic mRNA. YTH domain containing 2 (YTHDC2), an m6A reader protein, has recently been identified as a key player in germline development and human cancer. However, its contribution to retinal function remains unknown. Here, we explore the role of YTHDC2 in the visual function of retinal rod photoreceptors by generating rod-specific Ythdc2 knockout mice. Results show that Ythdc2 deficiency in rods causes diminished scotopic ERG responses and progressive retinal degeneration. Multi-omics analysis further identifies Ppef2 and Pde6b as the potential targets of YTHDC2 in the retina. Specifically, via its YTH domain, YTHDC2 recognizes and binds m6A-modified Ppef2 mRNA at the coding sequence and Pde6b mRNA at the 5'-UTR, resulting in enhanced translation efficiency without affecting mRNA levels. Compromised translation efficiency of Ppef2 and Pde6b after YTHDC2 depletion ultimately leads to decreased protein levels in the retina, impaired retinal function, and progressive rod death. Collectively, our finding highlights the importance of YTHDC2 in visual function and photoreceptor survival, which provides an unreported elucidation of IRD pathogenesis via epitranscriptomics.
Collapse
Affiliation(s)
- Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Junyao Chen
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lu Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Guo Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China; Qinghai Key Laboratory of Qinghai Tibet Plateau Biological Resources, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China; Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Qiuyue Guan
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
46
|
He D, Xu Y, Liu M, Cui L. The Inflammatory Puzzle: Piecing together the Links between Neuroinflammation and Amyotrophic Lateral Sclerosis. Aging Dis 2024; 15:96-114. [PMID: 37307819 PMCID: PMC10796096 DOI: 10.14336/ad.2023.0519] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has a complex genetic basis. Through advancements in genetic screening, researchers have identified more than 40 mutant genes associated with ALS, some of which impact immune function. Neuroinflammation, with abnormal activation of immune cells and excessive production of inflammatory cytokines in the central nervous system, significantly contributes to the pathophysiology of ALS. In this review, we examine recent evidence on the involvement of ALS-associated mutant genes in immune dysregulation, with a specific focus on the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and N6-methyladenosine (m6A)-mediated immune regulation in the context of neurodegeneration. We also discuss the perturbation of immune cell homeostasis in both the central nervous system and peripheral tissues in ALS. Furthermore, we explore the advancements made in the emerging genetic and cell-based therapies for ALS. This review underscores the complex relationship between ALS and neuroinflammation, highlighting the potential to identify modifiable factors for therapeutic intervention. A deeper understanding of the connection between neuroinflammation and the risk of ALS is crucial for advancing effective treatments for this debilitating disorder.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yan Xu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
47
|
Peng C, Ye Z, Ju Y, Huang X, Zhan C, Wei K, Zhang Z. Mechanism of action and treatment of type I interferon in hepatocellular carcinoma. Clin Transl Oncol 2024; 26:326-337. [PMID: 37402970 DOI: 10.1007/s12094-023-03266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
Hepatocellular carcinoma (HCC) caused by HBV, HCV infection, and other factors is one of the most common malignancies in the world. Although, percutaneous treatments such as surgery, ethanol injection, radiofrequency ablation, and transcatheter treatments such as arterial chemoembolization are useful for local tumor control, they are not sufficient to improve the prognosis of patients with HCC. External interferon agents that induce interferon-related genes or type I interferon in combination with other drugs can reduce the recurrence rate and improve survival in HCC patients after surgery. Therefore, in this review, we focus on recent advances in the mechanism of action of type I interferons, emerging therapies, and potential therapeutic strategies for the treatment of HCC using IFNs.
Collapse
Affiliation(s)
- Chunxiu Peng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhijian Ye
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying Ju
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuxin Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chenjie Zhan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ke Wei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
48
|
Su W, Che L, Liao W, Huang H. The RNA m 6A writer METTL3 in tumor microenvironment: emerging roles and therapeutic implications. Front Immunol 2024; 15:1335774. [PMID: 38322265 PMCID: PMC10845340 DOI: 10.3389/fimmu.2024.1335774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
The tumor microenvironment (TME) is a heterogeneous ecosystem comprising cancer cells, immune cells, stromal cells, and various non-cellular components, all of which play critical roles in controlling tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), the core component of N 6-methyladenosine (m6A) writer, is frequently associated with abnormalities in the m6A epitranscriptome in different cancer types, impacting both cancer cells and the surrounding TME. While the impact of METTL3 on cancer cells has been extensively reviewed, its roles in TME and anti-cancer immunity have not been comprehensively summarized. This review aims to systematically summarize the functions of METTL3 in TME, particularly its effects on tumor-infiltrating immune cells. We also elaborate on the underlying m6A-dependent mechanism. Additionally, we discuss ongoing endeavors towards developing METTL3 inhibitors, as well as the potential of targeting METTL3 to bolster the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Weiqi Su
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Che
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
49
|
Ying X, Huang C, Li T, Li T, Gao M, Wang F, Cao J, Liu J. An RNA Methylation-Sensitive AIEgen-Aptamer Reporting System for Quantitatively Evaluating m 6A Methylase and Demethylase Activities. ACS Chem Biol 2024; 19:162-172. [PMID: 38105499 DOI: 10.1021/acschembio.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
N6-Methyladenosine (m6A) chemical modification determines the fate of the mammalian cellular mRNA to modulate crucial physiological and pathological processes. Dysregulations of m6A methylase and demethylase have been linked to cancer diseases. Therefore, evaluations of enzyme mutants' activities and related inhibitors for discovery of targeted therapeutic strategies are very necessary. Here, we report an RNA methylation-sensitive fluorescent aptamer reporting assay to measure the catalytic activities of m6A enzymes under various conditions. The rationale is that when an RNA aptamer, named A-Pepper, is methylated at a specific adenosine position to generate m6A-Pepper, the latter displays stronger fluorescence than the former upon binding the ligand, which is an aggregation-induced emission-active luminogen. The fluorescence signal enhancement is linearly proportional to the RNA methylation extent, which is equivalent to the methylase activity. On the contrary, the m6A demethylase activity is measured through calculating the fluorescence signal decrease caused by the switching from m6A-Pepper to A-Pepper. The assay has been successfully applied to quantitatively evaluate the mutation and inhibitor effects on the activities of m6A methylases METTL3/METTL14 and demethylase FTO, and the obtained results are well-consistent with those quantified by the expensive and time-consuming golden standard LC-MS/MS. Our work provides a simple tool capable of detecting m6A enzymes' activities and screening their inhibitors in a rapid, quantitative, cost-effective, and high-throughput manner.
Collapse
Affiliation(s)
- Xiner Ying
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Chenyang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ting Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Minsong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fengqin Wang
- College of Animal Sciences, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| |
Collapse
|
50
|
Yao M, Cheng Z, Li X, Li Y, Ye W, Zhang H, Liu H, Zhang L, Lei Y, Zhang F, Lv X. N6-methyladenosine modification positively regulate Japanese encephalitis virus replication. Virol J 2024; 21:23. [PMID: 38243270 PMCID: PMC10799421 DOI: 10.1186/s12985-023-02275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
N6-methyladenosine (m6A) is present in diverse viral RNA and plays important regulatory roles in virus replication and host antiviral innate immunity. However, the role of m6A in regulating JEV replication has not been investigated. Here, we show that the JEV genome contains m6A modification upon infection of mouse neuroblast cells (neuro2a). JEV infection results in a decrease in the expression of m6A writer METTL3 in mouse brain tissue. METTL3 knockdown by siRNA leads to a substantial decrease in JEV replication and the production of progeny viruses at 48 hpi. Mechanically, JEV triggered a considerable increase in the innate immune response of METTL3 knockdown neuro2a cells compared to the control cells. Our study has revealed the distinctive m6A signatures of both the virus and host in neuro2a cells infected with JEV, illustrating the positive role of m6A modification in JEV infection. Our study further enhances understanding of the role of m6A modification in Flaviviridae viruses.
Collapse
Affiliation(s)
- Min Yao
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhirong Cheng
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
- College of Life Science, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Xueyun Li
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
- College of Basic Medicine, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yuexiang Li
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Wei Ye
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - He Liu
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China.
| | - Xin Lv
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|