1
|
Mazzarini M, Cherone J, Nguyen T, Martelli F, Varricchio L, Funnell APW, Papayannopoulou T, Migliaccio AR. The glucocorticoid receptor elicited proliferative response in human erythropoiesis is BCL11A-dependent. Stem Cells 2024; 42:1006-1022. [PMID: 39110040 DOI: 10.1093/stmcls/sxae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/16/2024] [Indexed: 11/08/2024]
Abstract
Prior evidence indicates that the erythroid cellular response to glucocorticoids (GC) has developmental specificity, namely, that developmentally more advanced cells that are undergoing or have undergone fetal to adult globin switching are more responsive to GC-induced expansion. To investigate the molecular underpinnings of this, we focused on the major developmental globin regulator BCL11A. We compared: (1) levels of expression and nuclear content of BCL11A in adult erythroid cells upon GC stimulation; (2) response to GC of CD34+ cells from patients with BCL11A microdeletions and reduced BCL11A expression, and; (3) response to GC of 2 cellular models (HUDEP-2 and adult CD34+ cells) before and after reduction of BCL11A expression by shRNA. We observed that: (1) GC-expanded erythroid cells from a large cohort of blood donors displayed amplified expression and nuclear accumulation of BCL11A; (2) CD34 + cells from BCL11A microdeletion patients generated fewer erythroid cells when cultured with GC compared to their parents, while the erythroid expansion of the patients was similar to that of their parents in cultures without GC, and; (3) adult CD34+ cells and HUDEP-2 cells with shRNA-depleted expression of BCL11A exhibit reduced expansion in response to GC. In addition, RNA-seq profiling of shRNA-BCL11A CD34+ cells cultured with and without GC was similar (very few differentially expressed genes), while GC-specific responses (differential expression of GILZ and of numerous additional genes) were observed only in control cells with unperturbed BCL11A expression. These data indicate that BCL11A is an important participant in certain aspects of the stress pathway sustained by GC.
Collapse
Affiliation(s)
- Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, 40126 Bologna, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Jennifer Cherone
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Truong Nguyen
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lilian Varricchio
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | | | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98185, United States
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
2
|
Ni Y, You G, Gong Y, Su X, Du Y, Wang X, Ding X, Fu Q, Zhang M, Cheng T, Lan Y, Liu B, Liu C. Human yolk sac-derived innate lymphoid-biased multipotent progenitors emerge prior to hematopoietic stem cell formation. Dev Cell 2024; 59:2626-2642.e6. [PMID: 38996461 DOI: 10.1016/j.devcel.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
Hematopoietic stem cell (HSC)-independent lymphopoiesis has been elucidated in murine embryos. However, our understanding regarding human embryonic counterparts remains limited. Here, we demonstrated the presence of human yolk sac-derived lymphoid-biased progenitors (YSLPs) expressing CD34, IL7R, LTB, and IRF8 at Carnegie stage 10, much earlier than the first HSC emergence. The number and lymphopoietic potential of these progenitors were both significantly higher in the yolk sac than the embryo proper at this early stage. Importantly, single-cell/bulk culture and CITE-seq have elucidated the tendency of YSLP to differentiate into innate lymphoid cells and dendritic cells. Notably, lymphoid progenitors in fetal liver before and after HSC seeding displayed distinct transcriptional features, with the former closely resembling those of YSLPs. Overall, our data identified the origin, potential, and migratory dynamics of innate lymphoid-biased multipotent progenitors in human yolk sac before HSC emergence, providing insights for understanding the stepwise establishment of innate immune system in humans.
Collapse
Affiliation(s)
- Yanli Ni
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Guoju You
- School of Medicine, Tsinghua University, Beijing 100080, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Xiaoyu Su
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Yuan Du
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650031, China
| | - Xiaoshuang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xiaochen Ding
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Qingfeng Fu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Man Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Tao Cheng
- Department of Biochemistry and Molecular Biology, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Yu Lan
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650031, China; Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Chen Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
3
|
Xu H, Li Y, Gao Y. The role of immune cells settled in the bone marrow on adult hematopoietic stem cells. Cell Mol Life Sci 2024; 81:420. [PMID: 39367881 PMCID: PMC11456083 DOI: 10.1007/s00018-024-05445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Certain immune cells, including neutrophils, macrophages, dendritic cells, B cells, Breg cells, CD4+ T cells, CD8+ T cells, and Treg cells, establish enduring residency within the bone marrow. Their distinctive interactions with hematopoiesis and the bone marrow microenvironment are becoming increasingly recognized alongside their multifaceted immune functions. These cells play a dual role in shaping hematopoiesis. They directly influence the quiescence, self-renewal, and multi-lineage differentiation of hematopoietic stem and progenitor cells through either direct cell-to-cell interactions or the secretion of various factors known for their immunological functions. Additionally, they actively engage with the cellular constituents of the bone marrow niche, particularly mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts, to promote their survival and contribute to tissue repair, thereby fostering a supportive environment for hematopoietic stem and progenitor cells. Importantly, these bone marrow immune cells function synergistically, both locally and functionally, rather than in isolation. In summary, immune cells residing in the bone marrow are pivotal components of a sophisticated network of regulating hematopoiesis.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yinghui Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
4
|
Wang J, Liang Y, Xu C, Gao J, Tong J, Shi L. The heterogeneity of erythroid cells: insight at the single-cell transcriptome level. Cell Tissue Res 2024; 397:179-192. [PMID: 38953986 DOI: 10.1007/s00441-024-03903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Erythroid cells, the most prevalent cell type in blood, are one of the earliest products and permeate through the entire process of hematopoietic development in the human body, the oxygen-transporting function of which is crucial for maintaining overall health and life support. Previous investigations into erythrocyte differentiation and development have primarily focused on population-level analyses, lacking the single-cell perspective essential for comprehending the intricate pathways of erythroid maturation, differentiation, and the encompassing cellular heterogeneity. The continuous optimization of single-cell transcriptome sequencing technology, or single-cell RNA sequencing (scRNA-seq), provides a powerful tool for life sciences research, which has a particular superiority in the identification of unprecedented cell subgroups, the analyzing of cellular heterogeneity, and the transcriptomic characteristics of individual cells. Over the past decade, remarkable strides have been taken in the realm of single-cell RNA sequencing technology, profoundly enhancing our understanding of erythroid cells. In this review, we systematically summarize the recent developments in single-cell transcriptome sequencing technology and emphasize their substantial impact on the study of erythroid cells, highlighting their contributions, including the exploration of functional heterogeneity within erythroid populations, the identification of novel erythrocyte subgroups, the tracking of different erythroid lineages, and the unveiling of mechanisms governing erythroid fate decisions. These findings not only invigorate erythroid cell research but also offer new perspectives on the management of diseases related to erythroid cells.
Collapse
Affiliation(s)
- Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yipeng Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China.
| |
Collapse
|
5
|
Wang B, Shi D, Yang S, Lian Y, Li H, Cao M, He Y, Zhang L, Qiu C, Liu T, Wen W, Ma Y, Shi L, Cheng T, Shi L, Yuan W, Chu Y, Shi J. Mitochondrial tRNA pseudouridylation governs erythropoiesis. Blood 2024; 144:657-671. [PMID: 38635773 DOI: 10.1182/blood.2023022004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
ABSTRACT Pseudouridine is the most prevalent RNA modification, and its aberrant function is implicated in various human diseases. However, the specific impact of pseudouridylation on hematopoiesis remains poorly understood. Here, we investigated the role of transfer RNA (tRNA) pseudouridylation in erythropoiesis and its association with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA) pathogenesis. By using patient-specific induced pluripotent stem cells (iPSCs) carrying a genetic pseudouridine synthase 1 (PUS1) mutation and a corresponding mutant mouse model, we demonstrated impaired erythropoiesis in MLASA-iPSCs and anemia in the MLASA mouse model. Both MLASA-iPSCs and mouse erythroblasts exhibited compromised mitochondrial function and impaired protein synthesis. Mechanistically, we revealed that PUS1 deficiency resulted in reduced mitochondrial tRNA levels because of pseudouridylation loss, leading to aberrant mitochondrial translation. Screening of mitochondrial supplements aimed at enhancing respiration or heme synthesis showed limited effect in promoting erythroid differentiation. Interestingly, the mammalian target of rapamycin (mTOR) inhibitor rapamycin facilitated erythroid differentiation in MLASA-iPSCs by suppressing mTOR signaling and protein synthesis, and consistent results were observed in the MLASA mouse model. Importantly, rapamycin treatment partially ameliorated anemia phenotypes in a patient with MLASA. Our findings provide novel insights into the crucial role of mitochondrial tRNA pseudouridylation in governing erythropoiesis and present potential therapeutic strategies for patients with anemia facing challenges related to protein translation.
Collapse
Affiliation(s)
- Bichen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Deyang Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuang Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yu Lian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Regenerative Medicine Clinic and Red Blood Cell Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Haoyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mutian Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yifei He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lele Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Regenerative Medicine Clinic and Red Blood Cell Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chen Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tong Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Shi
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Regenerative Medicine Clinic and Red Blood Cell Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
6
|
Palis J. Erythropoiesis in the mammalian embryo. Exp Hematol 2024; 136:104283. [PMID: 39048071 DOI: 10.1016/j.exphem.2024.104283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Red blood cells (RBCs) comprise a critical component of the cardiovascular network, which constitutes the first functional organ system of the developing mammalian embryo. Examination of circulating blood cells in mammalian embryos revealed two distinct types of erythroid cells: large, nucleated "primitive" erythroblasts followed by smaller, enucleated "definitive" erythrocytes. This review describes the current understanding of primitive and definitive erythropoiesis gleaned from studies of mouse and human embryos and induced pluripotent stem cells (iPSCs). Primitive erythropoiesis in the mouse embryo comprises a transient wave of committed primitive erythroid progenitors (primitive erythroid colony-forming cells, EryP-CFC) in the early yolk sac that generates a robust cohort of precursors that mature in the bloodstream and enucleate. In contrast, definitive erythropoiesis has two distinct developmental origins. The first comprises a transient wave of definitive erythroid progenitors (burst-forming units erythroid, BFU-E) that emerge in the yolk sac and seed the fetal liver where they terminally mature to provide the first definitive RBCs. The second comprises hematopoietic stem cell (HSC)-derived BFU-E that terminally mature at sites colonized by HSCs particularly the fetal liver and subsequently the bone marrow. Primitive and definitive erythropoiesis are derived from endothelial identity precursors with distinct developmental origins. Although they share prototypical transcriptional regulation, primitive and definitive erythropoiesis are also characterized by distinct lineage-specific factors. The exquisitely timed, sequential production of primitive and definitive erythroid cells is necessary for the survival and growth of the mammalian embryo.
Collapse
Affiliation(s)
- James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
7
|
Liu Q, Lin Z, Yue M, Wu J, Li L, Huang D, Fang Y, Zhang X, Hao T. Identification and validation of ferroptosis related markers in erythrocyte differentiation of umbilical cord blood-derived CD34 + cell by bioinformatic analysis. Front Genet 2024; 15:1365232. [PMID: 39139819 PMCID: PMC11319168 DOI: 10.3389/fgene.2024.1365232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Ferroptosis has been observed to play an important role during erythrocyte differentiation (ED). However, the biological gene markers and ferroptosis mechanisms in ED remain unknown. We downloaded the datasets of ED in human umbilical cord blood-derived CD34+ cells from the Gene Expression Omnibus database. Using median differentiation time, the sample was categorized into long and short groups. The differentially expressed ferroptosis-related genes (DE-FRGs) were screened using differential expression analysis. The enrichment analyses and a protein-protein interaction (PPI) network were conducted. To predict the ED stage, a logistic regression model was constructed using the least absolute shrinkage and selection operator (LASSO). Overall, 22 DE-FRGs were identified. Ferroptosis-related pathways were enriched using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. Gene Set Enrichment Analysis and Gene Set Variation Analysis revealed the primary involvement of DE-FRGs in JAK-STAT, MAPK, PI3K-AKT-mTORC1, WNT, and NOTCH signaling pathways. Ten-hub DE-FRGs were obtained using PPI analysis. Furthermore, we constructed mRNA-microRNA (miRNA) and mRNA-transcription factor networks. Immune cell infiltration levels differed significantly during ED. LASSO regression analysis established a signature using six DE-FRGs (ATF3, CDH2, CHAC1, DDR2, DPP4, and GDF15) related to the ED stage. Bioinformatic analyses identified ferroptosis-associated genes during ED, which were further validated. Overall, we identified ferroptosis-related genes to predict their correlations in ED. Exploring the underlying mechanisms of ferroptosis may help us better understand pathophysiological changes in ED and provide new evidence for clinical transformation.
Collapse
Affiliation(s)
- Qian Liu
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ze Lin
- Shantou University Medical College, Shantou, Guangdong, China
| | - Minghui Yue
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jianbo Wu
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lei Li
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Daqi Huang
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yipeng Fang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Zhang
- Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tao Hao
- Department of Colorectal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
8
|
Gao C, Zhang H, Wang Y, Wang S, Guo X, Han Y, Zhao H, An X. Global Transcriptomic and Characteristics Comparisons between Mouse Fetal Liver and Bone Marrow Definitive Erythropoiesis. Cells 2024; 13:1149. [PMID: 38995000 PMCID: PMC11240549 DOI: 10.3390/cells13131149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Erythropoiesis occurs first in the yolk sac as a transit "primitive" form, then is gradually replaced by the "definitive" form in the fetal liver (FL) during fetal development and in the bone marrow (BM) postnatally. While it is well known that differences exist between primitive and definitive erythropoiesis, the similarities and differences between FL and BM definitive erythropoiesis have not been studied. Here we performed comprehensive comparisons of erythroid progenitors and precursors at all maturational stages sorted from E16.5 FL and adult BM. We found that FL cells at all maturational stages were larger than their BM counterparts. We further found that FL BFU-E cells divided at a faster rate and underwent more cell divisions than BM BFU-E. Transcriptome comparison revealed that genes with increased expression in FL BFU-Es were enriched in cell division. Interestingly, the expression levels of glucocorticoid receptor Nr3c1, Myc and Myc downstream target Ccna2 were significantly higher in FL BFU-Es, indicating the role of the Nr3c1-Myc-Ccna2 axis in the enhanced proliferation/cell division of FL BFU-E cells. At the CFU-E stage, the expression of genes associated with hemoglobin biosynthesis were much higher in FL CFU-Es, indicating more hemoglobin production. During terminal erythropoiesis, overall temporal patterns in gene expression were conserved between the FL and BM. While biological processes related to translation, the tricarboxylic acid cycle and hypoxia response were upregulated in FL erythroblasts, those related to antiviral signal pathway were upregulated in BM erythroblasts. Our findings uncovered previously unrecognized differences between FL and BM definitive erythropoiesis and provide novel insights into erythropoiesis.
Collapse
Affiliation(s)
- Chengjie Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Huan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaomei Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shihui Wang
- Institute of Hematology, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Yongshuai Han
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| |
Collapse
|
9
|
Yin M, Zhang Y, Li X, Li X. Unveiling the impact of maternal gestational diabetes mellitus on cord blood CD71+ erythroid cell transcriptome. Pediatr Res 2024; 96:309-312. [PMID: 38519796 DOI: 10.1038/s41390-024-03139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/25/2024]
Abstract
IMPACT This study reveals the effects of maternal gestational diabetes mellitus (GDM) on the transcriptome of CD71+ erythroid cells (CECs) in cord blood. It highlights the role of CECs in immunosuppressive function and identifies potential mechanisms linking GDM to adverse outcomes in offspring. This understanding might lead to improved strategies for managing and preventing adverse outcomes in infants born to mothers with GDM.
Collapse
Affiliation(s)
- Min Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinyu Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
10
|
Wang E, Liu S, Zhang X, Peng Q, Yu H, Gao L, Xie A, Ma D, Zhao G, Cheng L. An Optimized Human Erythroblast Differentiation System Reveals Cholesterol-Dependency of Robust Production of Cultured Red Blood Cells Ex Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303471. [PMID: 38481061 PMCID: PMC11165465 DOI: 10.1002/advs.202303471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/01/2023] [Indexed: 06/12/2024]
Abstract
The generation of cultured red blood cells (cRBCs) ex vivo represents a potentially unlimited source for RBC transfusion and other cell therapies. Human cRBCs can be generated from the terminal differentiation of proliferating erythroblasts derived from hematopoietic stem/progenitor cells or erythroid precursors in peripheral blood mononuclear cells. Efficient differentiation and maturation into cRBCs highly depend on replenishing human plasma, which exhibits variable potency across donors or batches and complicates the consistent cRBC production required for clinical translation. Hence, the role of human plasma in erythroblast terminal maturation is investigated and uncovered that 1) a newly developed cell culture basal medium mimicking the metabolic profile of human plasma enhances cell growth and increases cRBC yield upon erythroblast terminal differentiation and 2) LDL-carried cholesterol, as a substitute for human plasma, is sufficient to support erythroid survival and terminal differentiation ex vivo. Consequently, a chemically-defined optimized medium (COM) is developed, enabling robust generation of cRBCs from erythroblasts of multiple origins, with improved enucleation efficiency and higher reticulocyte yield, without the need for supplementing human plasma or serum. In addition, the results reveal the crucial role of lipid metabolism during human terminal erythropoiesis.
Collapse
Affiliation(s)
- Enyu Wang
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Senquan Liu
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Xinye Zhang
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Qingyou Peng
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Huijuan Yu
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Lei Gao
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - An Xie
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Ding Ma
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Gang Zhao
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Linzhao Cheng
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Division of HematologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
11
|
Rossmann MP, Palis J. Developmental regulation of primitive erythropoiesis. Curr Opin Hematol 2024; 31:71-81. [PMID: 38415349 DOI: 10.1097/moh.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW In this review, we present an overview of recent studies of primitive erythropoiesis, focusing on advances in deciphering its embryonic origin, defining species-specific differences in its developmental regulation, and better understanding the molecular and metabolic pathways involved in terminal differentiation. RECENT FINDINGS Single-cell transcriptomics combined with state-of-the-art lineage tracing approaches in unperturbed murine embryos have yielded new insights concerning the origin of the first (primitive) erythroid cells that arise from mesoderm-derived progenitors. Moreover, studies examining primitive erythropoiesis in rare early human embryo samples reveal an overall conservation of primitive erythroid ontogeny in mammals, albeit with some interesting differences such as localization of erythropoietin (EPO) production in the early embryo. Mechanistically, the repertoire of transcription factors that critically regulate primitive erythropoiesis has been expanded to include regulators of transcription elongation, as well as epigenetic modifiers such as the histone methyltransferase DOT1L. For the latter, noncanonical roles aside from enzymatic activity are being uncovered. Lastly, detailed surveys of the metabolic and proteomic landscape of primitive erythroid precursors reveal the activation of key metabolic pathways such as pentose phosphate pathway that are paralleled by a striking loss of mRNA translation machinery. SUMMARY The ability to interrogate single cells in vivo continues to yield new insights into the birth of the first essential organ system of the developing embryo. A comparison of the regulation of primitive and definitive erythropoiesis, as well as the interplay of the different layers of regulation - transcriptional, epigenetic, and metabolic - will be critical in achieving the goal of faithfully generating erythroid cells in vitro for therapeutic purposes.
Collapse
Affiliation(s)
- Marlies P Rossmann
- Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
12
|
Bozorgmehr N, Syed H, Mashhouri S, Walker J, Elahi S. Transcriptomic profiling of peripheral blood cells in HPV-associated carcinoma patients receiving combined valproic acid and avelumab. Mol Oncol 2024; 18:1209-1230. [PMID: 37681284 PMCID: PMC11077001 DOI: 10.1002/1878-0261.13519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023] Open
Abstract
Human papillomavirus (HPV)-associated cancer continues to evade the immune system by promoting a suppressive tumor microenvironment. Therefore, immunotherapy appears to be a promising approach for targeting HPV-associated tumors. We hypothesized that valproic acid (VA) as an epigenetic agent combined with avelumab may enhance the antitumor immunity in HPV-associated solid tumors. We performed bulk RNA-sequencing (RNA-Seq) on total peripheral blood mononuclear cells (PBMCs) of seven nonresponders (NRs) and four responders (Rs). A total of 39 samples (e.g., pretreatment, post-VA, postavelumab, and endpoint) were analyzed. Also, we quantified plasma analytes and performed flow cytometry. We observed a differential pattern in immune response following treatment with VA and/or avelumab in NRs vs. Rs. A significant upregulation of transcripts associated with NETosis [the formation of neutrophil extracellular traps (NETs)] and neutrophil degranulation pathways was linked to the presence of a myeloid-derived suppressor cell signature in NRs. We noted the elevation of IL-8/IL-18 cytokines and a distinct transcriptome signature at the baseline and endpoint in NRs. By using the receiver operator characteristics, we identified a cutoff value for the plasma IL-8/IL-18 to discriminate NRs from Rs. We found differential therapeutic effects for VA and avelumab in NRs vs. Rs. Thus, our results imply that measuring the plasma IL-8/IL-18 and bulk RNA-Seq of PBMCs may serve as valuable biomarkers to predict immunotherapy outcomes.
Collapse
Affiliation(s)
- Najmeh Bozorgmehr
- Division of Foundational Sciences, School of DentistryUniversity of AlbertaEdmontonABCanada
| | - Hussain Syed
- Division of Foundational Sciences, School of DentistryUniversity of AlbertaEdmontonABCanada
| | - Siavash Mashhouri
- Division of Foundational Sciences, School of DentistryUniversity of AlbertaEdmontonABCanada
| | - John Walker
- Department of Medical OncologyUniversity of AlbertaEdmontonABCanada
| | - Shokrollah Elahi
- Division of Foundational Sciences, School of DentistryUniversity of AlbertaEdmontonABCanada
- Department of Medical OncologyUniversity of AlbertaEdmontonABCanada
- Faculty of Medicine and DentistryLi Ka Shing Institute of VirologyUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
13
|
Wang NN, Yu SF, Dang P, Su R, Li H, Ma HL, Liu M, Zhang DL. The neuroimmune pathway of high-altitude adaptation: influence of erythrocytes on attention networks through inflammation and the autonomic nervous system. Front Neurosci 2024; 18:1373136. [PMID: 38638694 PMCID: PMC11024340 DOI: 10.3389/fnins.2024.1373136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Many studies have shown that the functional adaptation of immigrants to high-altitude is closely related to oxygen transport, inflammatory response and autonomic nervous system. However, it remains unclear how human attention changes in response to hypoxia-induced neurophysiological activity during high-altitude exposure. Methods In the present study, we analyzed the relationship between hypoxic-induced neurophysiological responses and attention networks in 116 immigrants (3,680 m) using an attention network test to simultaneously record electroencephalogram and electrocardiogram in combination with specific routine blood markers. Results Our analysis revealed that red blood cells exert an indirect influence on the three attention networks, mediated through inflammatory processes and heart rate variability. Discussion The present study provides experimental evidence for the role of a neuroimmune pathway in determining human attention performance at high- altitude. Our findings have implications for understanding the complex interactions between physiological and neurocognitive processes in immigrants adapting to hypoxic environments.
Collapse
Affiliation(s)
- Nian-Nian Wang
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- Key Laboratory of Brain, Cognition, and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Si-Fang Yu
- Key Laboratory of Brain, Cognition, and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Peng Dang
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Rui Su
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Hao Li
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Hai-Lin Ma
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Ming Liu
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- Key Laboratory of Brain, Cognition, and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - De-Long Zhang
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- Key Laboratory of Brain, Cognition, and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Educational Sciences, Kashi University, Kashi, China
| |
Collapse
|
14
|
Li JJ, Liu J, Li YE, Chen LV, Cheng H, Li Y, Cheng T, Wang QF, Zhou BO. Differentiation route determines the functional outputs of adult megakaryopoiesis. Immunity 2024; 57:478-494.e6. [PMID: 38447571 DOI: 10.1016/j.immuni.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024]
Abstract
Emerging evidence has revealed a direct differentiation route from hematopoietic stem cells to megakaryocytes (direct route), in addition to the classical differentiation route through a series of restricted hematopoietic progenitors (stepwise route). This raises the question of the importance of two alternative routes for megakaryopoiesis. Here, we developed fate-mapping systems to distinguish the two routes, comparing their quantitative and functional outputs. We found that megakaryocytes were produced through the two routes with comparable kinetics and quantity under homeostasis. Single-cell RNA sequencing of the fate-mapped megakaryocytes revealed that the direct and stepwise routes contributed to the niche-supporting and immune megakaryocytes, respectively, but contributed to the platelet-producing megakaryocytes together. Megakaryocytes derived from the two routes displayed different activities and were differentially regulated by chemotherapy and inflammation. Our work links differentiation route to the heterogeneity of megakaryocytes. Alternative differentiation routes result in variable combinations of functionally distinct megakaryocyte subpopulations poised for different physiological demands.
Collapse
Affiliation(s)
- Jing-Jing Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingkun Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqian Evelyn Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Veronica Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Yueying Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bo O Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Mazzarini M, Cherone J, Nguyen T, Martelli F, Varricchio L, Funnell APW, Papayannopoulou T, Migliaccio AR. The glucocorticoid receptor elicited proliferative response in human erythropoiesis is BCL11A-dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.577972. [PMID: 38370646 PMCID: PMC10871295 DOI: 10.1101/2024.02.05.577972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Prior evidence indicates that the erythroid cellular response to glucocorticoids (GC) has developmental specificity, namely, that developmentally more advanced cells that are undergoing or have undergone fetal to adult globin switching are more responsive to GC-induced expansion. To investigate the molecular underpinnings of this, we focused on the major developmental globin regulator BCL11A. We compared: a) levels of expression and nuclear content of BCL11A in adult erythroid cells upon GC stimulation; b) response to GC of CD34+ cells from patients with BCL11A microdeletions and reduced BCL11A expression, and; c) response to GC of two cellular models (HUDEP-2 and adult CD34+ cells) before and after reduction of BCL11A expression by shRNA. We observed that: a) GC-expanded erythroid cells from a large cohort of blood donors displayed amplified expression and nuclear accumulation of BCL11A; b) CD34+ cells from BCL11A microdeletion patients generated fewer erythroid cells when cultured with GC compared to their parents, while the erythroid expansion of the patients was similar to that of their parents in cultures without GC, and; c) adult CD34+ cells and HUDEP-2 cells with shRNA-depleted expression of BCL11A exhibit reduced expansion in response to GC. In addition, RNA-seq profiling of shRNA-BCL11A CD34+ cells cultured with and without GC was similar (very few differentially expressed genes), while GC-specific responses (differential expression of GILZ and of numerous additional genes) were observed only in controls cells with unperturbed BCL11A expression. These data indicate that BCL11A is an important participant of certain aspects of the stress pathway sustained by GC.
Collapse
|
16
|
Wen Y, Zhao J, Zhang R, Liu F, Chen X, Wu D, Wang M, Liu C, Su P, Meng P, Zhang Y, Gao X, Wang L, Wang H, Zhou J. Identification and characterization of human hematopoietic mesoderm. SCIENCE CHINA. LIFE SCIENCES 2024; 67:320-331. [PMID: 37870675 DOI: 10.1007/s11427-022-2374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 10/24/2023]
Abstract
The embryonic mesoderm comprises heterogeneous cell subpopulations with distinct lineage biases. It is unclear whether a bias for the human hematopoietic lineage emerges at this early developmental stage. In this study, we integrated single-cell transcriptomic analyses of human mesoderm cells from embryonic stem cells and embryos, enabling us to identify and define the molecular features of human hematopoietic mesoderm (HM) cells biased towards hematopoietic lineages. We discovered that BMP4 plays an essential role in HM specification and can serve as a marker for HM cells. Mechanistically, BMP4 acts as a downstream target of HDAC1, which modulates the expression of BMP4 by deacetylating its enhancer. Inhibition of HDAC significantly enhances HM specification and promotes subsequent hematopoietic cell differentiation. In conclusion, our study identifies human HM cells and describes new mechanisms for human hematopoietic development.
Collapse
Affiliation(s)
- Yuqi Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Jingjing Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Runqing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Fan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Xiaoyuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Dan Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Mengge Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Cuicui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Panpan Meng
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xin Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China.
| |
Collapse
|
17
|
Sun C, Ruan Z, Zhang Y, Guo R, Li H, Wang T, Gao T, Tang Y, Song N, Hao S, Huang X, Li S, Ning F, Su Y, Lu Q, Wang Q, Cao X, Li Z, Chang T. High indirect bilirubin levels as an independent predictor of postoperative myasthenic crisis: a single-center, retrospective study. Front Neurol 2024; 14:1336823. [PMID: 38283685 PMCID: PMC10811789 DOI: 10.3389/fneur.2023.1336823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Background Thymectomy is an efficient and standard treatment strategy for patients with myasthenia gravis (MG), postoperative myasthenic crisis (POMC) is the major complication related to thymectomy and has a strongly life-threatening effect. As a biomarker, whether the bilirubin level is a risk factor for MG progression remains unclear. This study aimed to investigate the association between the preoperative bilirubin level and postoperative myasthenic crisis (POMC). Methods We analyzed 375 patients with MG who underwent thymectomy at Tangdu Hospital between January 2012 and September 2021. The primary outcome measurement was POMC. The association between POMC and bilirubin level was analyzed by restricted cubic spline (RCS). Indirect bilirubin (IBIL) was divided into two subgroups based on the normal upper limit of IBIL, 14 μmol/L. Results Compared with non-POMC group, IBIL levels were significantly higher in patients with POMC. Elevated IBIL levels were closely associated with an increased risk of POMC (p for trend = 0.002). There was a dose-response curve relationship between IBIL levels and POMC incidence (p for non-linearity = 0.93). However, DBIL levels showed a U-shaped association with POMC incidence. High IBIL level (≥14 μmol/L) was an independent predictive factor for POMC [odds ratio = 3.47, 95% confidence interval (CI): 1.56-7.8, p = 0.002]. The addition of high IBIL levels improved the prediction model performance (net reclassification index = 0.186, 95% CI: 0.039-0.334; integrated discrimination improvement = 0.0345, 95% CI: 0.005-0.065). Conclusion High preoperative IBIL levels, especially those exceeding the normal upper limit, could independently predict the incidence of POMC.
Collapse
Affiliation(s)
- Chao Sun
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Ruan
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rongjing Guo
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tantan Wang
- School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Ting Gao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yonglan Tang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Na Song
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sijia Hao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxi Huang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuang Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fan Ning
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yue Su
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qingqing Wang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiangqi Cao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Shang B, Bian Z, Luo C, Lv F, Wu J, Lv S, Wei Q. Exploring the dynamics of perioperative symptom networks in colorectal cancer patients: a cross-lagged panel network analysis. Support Care Cancer 2023; 32:62. [PMID: 38150034 DOI: 10.1007/s00520-023-08288-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Colorectal cancer incidence is on the rise, necessitating precise symptom management. However, causal relationships among symptoms have been challenging to establish due to reliance on cross-sectional data. Cross-lagged panel network (CLPN) analysis offers a solution, leveraging longitudinal data for insight. OBJECTIVE We employed CLPN analysis to construct symptom networks in colorectal cancer patients at three perioperative time points, aiming to identify predictive relationships and intervention opportunities. METHODS We evaluated the prevalence and severity of symptoms throughout the perioperative period, encompassing T1 the first day of admission, T2 2-3 days postoperatively, and T3 discharge, utilizing the M. D. Anderson Symptom Inventory Gastrointestinal Cancer Module (MDASI-GI). To identify crucial nodes in the network and explore predictive and interactive effects among symptoms, CLPNs were constructed from longitudinal data in R. RESULTS The analysis revealed a stable network, with disturbed sleep exhibiting the highest out-EI (outgoing expected influence) during T1. Distress had a sustained impact throughout the perioperative. Disturbed sleep at T1 predicted T2 bloating, fatigue, distress, and pain. T1 distress predicted T2 sadness severity. T2 distress primarily predicted T3 fatigue, disturbed sleep, changes in taste, and bloating. T2 shortness of breath predicted T3 changes in taste and loss of appetite. Furthermore, biochemical markers like RBC and ALB had notable influence on symptom clusters during T1→T2 and T2→T3, respectively. CONCLUSION Prioritizing disturbed sleep during T1 and addressing distress throughout the perioperative phase is recommended. Effective symptom management not only breaks the chain of symptom progression, enhancing healthcare impact, but also eases patient symptom burdens.
Collapse
Affiliation(s)
- Bin Shang
- School of Medicine, Jiangsu University, No. 301 Xuefu Road, Jingkou District, Zhenjiang City, Jiangsu Province, China
| | - Zekun Bian
- School of Medicine, Jiangsu University, No. 301 Xuefu Road, Jingkou District, Zhenjiang City, Jiangsu Province, China
| | - Caifeng Luo
- School of Medicine, Jiangsu University, No. 301 Xuefu Road, Jingkou District, Zhenjiang City, Jiangsu Province, China.
| | - Fei Lv
- Department of Nursing, Jiangsu University Jingjiang College, Zhenjiang, China
| | - Jing Wu
- School of Medicine, Jiangsu University, No. 301 Xuefu Road, Jingkou District, Zhenjiang City, Jiangsu Province, China
| | - Shuhong Lv
- Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qing Wei
- Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
Han Y, Wang S, Wang Y, Huang Y, Gao C, Guo X, Chen L, Zhao H, An X. Comprehensive Characterization and Global Transcriptome Analysis of Human Fetal Liver Terminal Erythropoiesis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1117-1132. [PMID: 37657739 PMCID: PMC11082260 DOI: 10.1016/j.gpb.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/19/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
The fetal liver (FL) is the key erythropoietic organ during fetal development, but knowledge on human FL erythropoiesis is very limited. In this study, we sorted primary erythroblasts from FL cells and performed RNA sequencing (RNA-seq) analyses. We found that temporal gene expression patterns reflected changes in function during primary human FL terminal erythropoiesis. Notably, the expression of genes enriched in proteolysis and autophagy was up-regulated in orthochromatic erythroblasts (OrthoEs), suggesting the involvement of these pathways in enucleation. We also performed RNA-seq of in vitro cultured erythroblasts derived from FL CD34+ cells. Comparison of transcriptomes between the primary and cultured erythroblasts revealed significant differences, indicating impacts of the culture system on gene expression. Notably, the expression of lipid metabolism-related genes was increased in cultured erythroblasts. We further immortalized erythroid cell lines from FL and cord blood (CB) CD34+ cells (FL-iEry and CB-iEry, respectively). FL-iEry and CB-iEry were immortalized at the proerythroblast stage and can be induced to differentiate into OrthoEs, but their enucleation ability was very low. Comparison of the transcriptomes between OrthoEs with and without enucleation capability revealed the down-regulation of pathways involved in chromatin organization and mitophagy in OrthoEs without enucleation capacity, indicating that defects in chromatin organization and mitophagy contribute to the inability of OrthoEs to enucleate. Additionally, the expression of HBE1, HBZ, and HBG2 was up-regulated in FL-iEry compared with CB-iEry, and such up-regulation was accompanied by down-regulated expression of BCL11A and up-regulated expression of LIN28B and IGF2BP1. Our study provides new insights into human FL erythropoiesis and rich resources for future studies.
Collapse
Affiliation(s)
- Yongshuai Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Shihui Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA; Institute of Hematology, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yaomei Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA; Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yumin Huang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA; Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
| | - Chengjie Gao
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
20
|
Fu Y, Li Z, Lin W, Yao J, Jiang X, Shu Q, Mao X, Tu J, Liang X, Li L. Extramedullary hematopoiesis contributes to enhanced erythropoiesis during pregnancy via TGF-β signaling. Front Immunol 2023; 14:1295717. [PMID: 38045690 PMCID: PMC10693449 DOI: 10.3389/fimmu.2023.1295717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Red blood cells are the predominant cellular component in human body, and their numbers increase significantly during pregnancy due to heightened erythropoiesis. CD71+ erythroid cells (CECs) are immature red blood cells, encompassing erythroblasts and reticulocytes, constitute a rare cell population primarily found in the bone marrow, although they are physiologically enriched in the neonatal mouse spleen and human cord blood. Presently, the mechanisms underlying the CECs expansion during pregnancy remain largely unexplored. Additionally, the mechanisms and roles associated with extramedullary hematopoiesis (EMH) of erythroid cells during pregnancy have yet to be fully elucidated. In this study, our objective was to examine the underlying mechanisms of erythroid-biased hematopoiesis during pregnancy. Our findings revealed heightened erythropoiesis and elevated CECs in both human and mouse pregnancies. The increased presence of transforming growth factor (TGF)-β during pregnancy facilitated the differentiation of CD34+ hematopoietic stem and progenitor cells (HSPCs) into CECs, without impacting HSPCs proliferation, ultimately leading to enhanced erythropoiesis. The observed increase in CECs during pregnancy was primarily attributed to EMH occurring in the spleen. During mouse pregnancy, splenic stromal cells were found to have a significant impact on splenic erythropoiesis through the activation of TGF-β signaling. Conversely, splenic macrophages were observed to contribute to extramedullary erythropoiesis in a TGF-β-independent manner. Our results suggest that splenic stromal cells play a crucial role in promoting extramedullary erythropoiesis and the production of CECs during pregnancy, primarily through TGF-β-dependent mechanisms.
Collapse
Affiliation(s)
- Yao Fu
- Department of Obstetrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
- Post-doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhengjuan Li
- South China University of Technology School of Medicine, Guangzhou, China
| | - Wen Lin
- South China University of Technology School of Medicine, Guangzhou, China
| | - Jingxin Yao
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiang Jiang
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qun Shu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyuan Mao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaoqin Tu
- Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinyuan Liang
- Department of Obstetrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
- Post-doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Li
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Shevchenko JA, Nazarov KV, Alshevskaya AA, Sennikov SV. Erythroid Cells as Full Participants in the Tumor Microenvironment. Int J Mol Sci 2023; 24:15141. [PMID: 37894821 PMCID: PMC10606658 DOI: 10.3390/ijms242015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The tumor microenvironment is an important factor that can determine the success or failure of antitumor therapy. Cells of hematopoietic origin are one of the most important mediators of the tumor-host interaction and, depending on the cell type and functional state, exert pro- or antitumor effects in the tumor microenvironment or in adjacent tissues. Erythroid cells can be full members of the tumor microenvironment and exhibit immunoregulatory properties. Tumor growth is accompanied by the need to obtain growth factors and oxygen, which stimulates the appearance of the foci of extramedullary erythropoiesis. Tumor cells create conditions to maintain the long-term proliferation and viability of erythroid cells. In turn, tumor erythroid cells have a number of mechanisms to suppress the antitumor immune response. This review considers current data on the existence of erythroid cells in the tumor microenvironment, formation of angiogenic clusters, and creation of optimal conditions for tumor growth. Despite being the most important life-support function of the body, erythroid cells support tumor growth and do not work against it. The study of various signaling mechanisms linking tumor growth with the mobilization of erythroid cells and the phenotypic and functional differences between erythroid cells of different origin allows us to identify potential targets for immunotherapy.
Collapse
Affiliation(s)
- Julia A. Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (J.A.S.); (K.V.N.)
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution, Ministry of Health of the Russian Federation, Higher Education I.M. Sechenov First Moscow State Medical University, Sechenov University, 119048 Moscow, Russia;
| | - Kirill V. Nazarov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (J.A.S.); (K.V.N.)
| | - Alina A. Alshevskaya
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution, Ministry of Health of the Russian Federation, Higher Education I.M. Sechenov First Moscow State Medical University, Sechenov University, 119048 Moscow, Russia;
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (J.A.S.); (K.V.N.)
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution, Ministry of Health of the Russian Federation, Higher Education I.M. Sechenov First Moscow State Medical University, Sechenov University, 119048 Moscow, Russia;
| |
Collapse
|
22
|
Zheng H, Chen Y, Luo Q, Zhang J, Huang M, Xu Y, Huo D, Shan W, Tie R, Zhang M, Qian P, Huang H. Generating hematopoietic cells from human pluripotent stem cells: approaches, progress and challenges. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:31. [PMID: 37656237 PMCID: PMC10474004 DOI: 10.1186/s13619-023-00175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the production of blood cells for clinical application. In two decades, almost all types of blood cells can be successfully generated from hPSCs through various differentiated strategies. Meanwhile, with a deeper understanding of hematopoiesis, higher efficiency of generating progenitors and precursors of blood cells from hPSCs is achieved. However, how to generate large-scale mature functional cells from hPSCs for clinical use is still difficult. In this review, we summarized recent approaches that generated both hematopoietic stem cells and mature lineage cells from hPSCs, and remarked their efficiency and mechanisms in producing mature functional cells. We also discussed the major challenges in hPSC-derived products of blood cells and provided some potential solutions. Our review summarized efficient, simple, and defined methodologies for developing good manufacturing practice standards for hPSC-derived blood cells, which will facilitate the translation of these products into the clinic.
Collapse
Affiliation(s)
- Haiqiong Zheng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yijin Chen
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Jie Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Mengmeng Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Dawei Huo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Meng Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| |
Collapse
|
23
|
Fang Y, Qian J, Xu L, Wei W, Bu W, Zhang S, Lv Y, Li L, Zhao C, Gao X, Gu Y, Wang L, Chen Z, Wang X, Zhang R, Xu Y, Yang Y, Lu J, Yan Z, Wang M, Tang L, Yuan N, Wang J. Short-term intensive fasting enhances the immune function of red blood cells in humans. Immun Ageing 2023; 20:44. [PMID: 37649035 PMCID: PMC10469874 DOI: 10.1186/s12979-023-00359-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/25/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Fasting is known to influence the immune functions of leukocytes primarily by regulating their mobilization and redistribution between the bone marrow and the peripheral tissues or circulation, in particular via relocalization of leukocytes back in the bone marrow. However, how the immune system responds to the increased risk of invasion by infectious pathogens with fewer leukocytes in the peripheral blood during fasting intervention remains an open question. RESULTS We used proteomic, biochemical and flow cytometric tools to evaluate the impact of short-term intensive fasting (STIF), known as beego, on red blood cells by profiling the cells from the STIF subjects before and after 6 days of fasting and 6 days of gradual refeeding. We found that STIF, by triggering the activation of the complement system via the complement receptor on the membrane of red blood cells, boosts fairly sustainable function of red blood cells in immune responses in close relation to various pathogens, including viruses, bacteria and parasites, particularly with the pronounced capacity to defend against SARS-CoV-2, without compromising their oxygen delivery capacity and viability. CONCLUSION STIF fosters the immune function of red blood cells and therefore, it may be considered as a nonmedical intervention option for the stronger capacity of red blood cells to combat infectious diseases.
Collapse
Affiliation(s)
- Yixuan Fang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Jiawei Qian
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Li Xu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Wen Wei
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Wenwen Bu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Suping Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Yaqi Lv
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Lei Li
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Chen Zhao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Xueqin Gao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Yue Gu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
| | - Li Wang
- Department of Community Nursing, Soochow University, Suzhou, China
| | - Zixing Chen
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Xiao Wang
- The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Ruizhi Zhang
- The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Youjia Xu
- The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Yanjun Yang
- The Ninth Affiliated Suzhou Hospital of Soochow University, Soochow, China
| | - Jie Lu
- The Ninth Affiliated Suzhou Hospital of Soochow University, Soochow, China
| | - Zhanjun Yan
- The Ninth Affiliated Suzhou Hospital of Soochow University, Soochow, China
| | | | | | - Na Yuan
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China.
| | - Jianrong Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Soochow, China.
| |
Collapse
|
24
|
Yang Z, Wang Z, Wu L, Wang Y, Xu Z, Liu Y, Wang F, Yu D. B lymphocytes transdifferentiate into immunosuppressive erythroblast-like cells. Front Immunol 2023; 14:1202943. [PMID: 37545522 PMCID: PMC10401433 DOI: 10.3389/fimmu.2023.1202943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Recent studies have demonstrated that a particular group of nucleated cells that exhibit erythroid markers (TER119 in mice and CD235a in humans) possess the ability to suppress the immune system and promote tumor growth. These cells are known as CD45+ erythroid progenitor cells (EPCs). According to our study, it appears that a subset of these CD45+ EPCs originate from B lymphocytes. Under conditions of hypoxia, mouse B lymphoma cells are capable of converting to erythroblast-like cells, which display phenotypes of CD45+TER119+ cells, including immunosuppressive effects on CD8 T cells. Furthermore, non-neoplastic B cells have similar differentiation abilities and exert the same immunosuppressive effect under anemia or tumor conditions in mice. Similar B cells exist in neonatal mice, which provides an explanation for the potential origin of immunosuppressive erythroid cells in newborns. Additionally, CD19+CD235a+ double-positive cells can be identified in the peripheral blood of patients with chronic lymphocytic leukemia. These findings indicate that some CD45+ EPCs are transdifferentiated from a selective population of CD19+ B lymphocytes in response to environmental stresses, highlighting the plasticity of B lymphocytes. We anticipate a potential therapeutic implication, in that targeting a specific set of B cells instead of erythroid cells should be expected to restore adaptive immunity and delay cancer progression.
Collapse
Affiliation(s)
- Zhe Yang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Zheng Wang
- Pathology Department, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lei Wu
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Ying Wang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Zhihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ying Liu
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Fangfang Wang
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- Department of Hematology, Yangzhou University Clinical Medical College, Yangzhou, China
| | - Duonan Yu
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| |
Collapse
|
25
|
Cheng X, Wang H, Wang Z, Zhu B, Long H. Tumor-associated myeloid cells in cancer immunotherapy. J Hematol Oncol 2023; 16:71. [PMID: 37415162 PMCID: PMC10324139 DOI: 10.1186/s13045-023-01473-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor-associated myeloid cells (TAMCs) are among the most important immune cell populations in the tumor microenvironment, and play a significant role on the efficacy of immune checkpoint blockade. Understanding the origin of TAMCs was found to be the essential to determining their functional heterogeneity and, developing cancer immunotherapy strategies. While myeloid-biased differentiation in the bone marrow has been traditionally considered as the primary source of TAMCs, the abnormal differentiation of splenic hematopoietic stem and progenitor cells, erythroid progenitor cells, and B precursor cells in the spleen, as well as embryo-derived TAMCs, have been depicted as important origins of TAMCs. This review article provides an overview of the literature with a focus on the recent research progress evaluating the heterogeneity of TAMCs origins. Moreover, this review summarizes the major therapeutic strategies targeting TAMCs with heterogeneous sources, shedding light on their implications for cancer antitumor immunotherapies.
Collapse
Affiliation(s)
- Xinyu Cheng
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Huilan Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Zhongyu Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China.
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
26
|
Shevchenko JA, Perik-Zavodskii RY, Nazarov KV, Denisova VV, Perik-Zavodskaya OY, Philippova YG, Alsalloum A, Sennikov SV. Immunoregulatory properties of erythroid nucleated cells induced from CD34+ progenitors from bone marrow. PLoS One 2023; 18:e0287793. [PMID: 37390055 PMCID: PMC10313023 DOI: 10.1371/journal.pone.0287793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
CD 71+ erythroid nucleated cells have pronounced immunoregulatory properties in normal and pathological conditions. Many populations of cells with immunoregulatory properties are considered candidates for cellular immunotherapy for various pathologies. This study characterized the immunoregulatory properties of CD71+ erythroid cells derived from CD34-positive bone marrow cells under the influence of growth factors that stimulate differentiation into erythroid cells. CD34-negative bone marrow cells were used to isolate CD71+ erythroid nuclear cells. The resulting cells were used to assess the phenotype, determine the mRNA spectrum of the genes responsible for the main pathways and processes of the immune response, and obtain culture supernatants for the analysis of immunoregulatory factors. It was found that CD71+ erythroid cells derived from CD34+ cells carry the main markers of erythroid cells, but differ markedly from natural bone marrow CD71+ erythroid cells. The main differences are in the presence of the CD45+ subpopulation, distribution of terminal differentiation stages, transcriptional profile, secretion of certain cytokines, and immunosuppressive activity. The properties of induced CD71+ erythroid cells are closer to the cells of extramedullary erythropoiesis foci than to natural bone marrow CD71+ erythroid cells. Thus, when cultivating CD71+ erythroid cells for clinical experimental studies, it is necessary to take into account their pronounced immunoregulatory activity.
Collapse
Affiliation(s)
- Julia A. Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Roman Yu Perik-Zavodskii
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Kirill V. Nazarov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Vera V. Denisova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Olga Yu. Perik-Zavodskaya
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Yulia G. Philippova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Alaa Alsalloum
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| |
Collapse
|
27
|
Ren Y, Yan C, Yang H. Erythrocytes: Member of the Immune System that Should Not Be Ignored. Crit Rev Oncol Hematol 2023; 187:104039. [PMID: 37236411 DOI: 10.1016/j.critrevonc.2023.104039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
Erythrocytes are the most abundant type of cells in the blood and have a relatively simple structure when mature; they have a long life-span in the circulatory system. The primary function of erythrocytes is as oxygen carriers; however, they also play an important role in the immune system. Erythrocytes recognize and adhere to antigens and promote phagocytosis. The abnormal morphology and function of erythrocytes are also involved in the pathological processes of some diseases. Owing to the large number and immune properties of erythrocytes, their immune functions should not be ignored. Currently, research on immunity is focused on immune cells other than erythrocytes. However, research on the immune function of erythrocytes and the development of erythrocyte-mediated applications is of great significance. Therefore, we aimed to review the relevant literature and summarize the immune functions of erythrocytes.
Collapse
Affiliation(s)
- Yijun Ren
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Chengkai Yan
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| |
Collapse
|
28
|
Bozorgmehr N, Okoye I, Mashhouri S, Lu J, Koleva P, Walker J, Elahi S. CD71 + erythroid cells suppress T-cell effector functions and predict immunotherapy outcomes in patients with virus-associated solid tumors. J Immunother Cancer 2023; 11:jitc-2022-006595. [PMID: 37236637 DOI: 10.1136/jitc-2022-006595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer. However, only a portion of patients respond to such treatments. Therefore, it remains a prevailing clinical need to identify factors associated with acquired resistance or lack of response to ICIs. We hypothesized that the immunosuppressive CD71+ erythroid cells (CECs) within the tumor and/or distant 'out-of-field' may impair antitumor response. METHODS We studied 38 patients with cancer through a phase II clinical trial investigating the effects of oral valproate combined with avelumab (anti-programmed death-ligand 1 (PD-L1)) in virus-associated solid tumors (VASTs). We quantified the frequency/functionality of CECs in blood and biopsies of patients. Also, we established an animal model of melanoma (B16-F10) to investigate the possible effects of erythropoietin (EPO) treatment on anti-PD-L1 therapy. RESULTS We found a substantial expansion of CECs in the blood of patients with VAST compared with healthy controls. We noted that the frequency of CECs in circulation was significantly higher at the baseline and throughout the study in non-responders versus responders to PD-L1 therapy. Moreover, we observed that CECs in a dose-dependent manner suppress effector functions of autologous T cells in vitro. The subpopulation of CD45+CECs appears to have a more robust immunosuppressive property compared with their CD45- counterparts. This was illustrated by a stronger expression of reactive oxygen species, PD-L1/PD-L2, and V-domain Ig suppressor of T-cell activation in this subpopulation. Lastly, we found a higher frequency of CECs in the blood circulation at the later cancer stage and their abundance was associated with anemia, and a poor response to immunotherapy. Finally, we report the expansion of CECs in the spleen and tumor microenvironment of mice with melanoma. We found that although CECs in tumor-bearing mice secret artemin, this was not the case for VAST-derived CECs in humans. Notably, our results imply that EPO, a frequently used drug for anemia treatment in patients with cancer, may promote the generation of CECs and subsequently abrogates the therapeutic effects of ICIs (eg, anti-PD-L1). CONCLUSIONS Our results demonstrate that anemia by the expansion of CECs may enhance cancer progression. Notably, measuring the frequency of CECs may serve as a valuable biomarker to predict immunotherapy outcomes.
Collapse
Affiliation(s)
- Najmeh Bozorgmehr
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Isobel Okoye
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Siavash Mashhouri
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Lu
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Petya Koleva
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - John Walker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Xie X, Su M, Ren K, Ma X, Lv Z, Li Z, Mei Y, Ji P. Clonal hematopoiesis and bone marrow inflammation. Transl Res 2023; 255:159-170. [PMID: 36347490 DOI: 10.1016/j.trsl.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Clonal hematopoiesis (CH) occurs in hematopoietic stem cells with increased risks of progressing to hematologic malignancies. CH mutations are predominantly found in aged populations and correlate with an increased incidence of cardiovascular and other diseases. Increased lines of evidence demonstrate that CH mutations are closely related to the inflammatory bone marrow microenvironment. In this review, we summarize the recent advances in this topic starting from the discovery of CH and its mutations. We focus on the most commonly mutated and well-studied genes in CH and their contributions to the innate immune responses and inflammatory signaling, especially in the hematopoietic cells of bone marrow. We also aimed to discuss the interrelationship between inflammatory bone marrow microenvironment and CH mutations. Finally, we provide our perspectives on the challenges in the field and possible future directions to help understand the pathophysiology of CH.
Collapse
Affiliation(s)
- Xinshu Xie
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Meng Su
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Xuezhen Ma
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhiyi Lv
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhaofeng Li
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yang Mei
- School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China.
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.
| |
Collapse
|
30
|
Wang X. China's top 10 achievements in hematology in 2022. BLOOD SCIENCE 2023; 5:75-76. [PMID: 37228775 PMCID: PMC10205334 DOI: 10.1097/bs9.0000000000000156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
|
31
|
Hou S, Liu C, Yao Y, Bai Z, Gong Y, Wang C, He J, You G, Zhang G, Liu B, Lan Y. Hematopoietic Stem Cell Development in Mammalian Embryos. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:1-16. [PMID: 38228955 DOI: 10.1007/978-981-99-7471-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are situated at the top of the adult hematopoietic hierarchy in mammals and give rise to the majority of blood cells throughout life. Recently, with the advance of multiple single-cell technologies, researchers have unprecedentedly deciphered the cellular and molecular evolution, the lineage relationships, and the regulatory mechanisms underlying HSC emergence in mammals. In this review, we describe the precise vascular origin of HSCs in mouse and human embryos, emphasizing the conservation in the unambiguous arterial characteristics of the HSC-primed hemogenic endothelial cells (HECs). Serving as the immediate progeny of some HECs, functional pre-HSCs of mouse embryos can now be isolated at single-cell level using defined surface marker combinations. Heterogeneity regrading cell cycle status or lineage differentiation bias within HECs, pre-HSCs, or emerging HSCs in mouse embryos has been figured out. Several epigenetic regulatory mechanisms of HSC generation, including long noncoding RNA, DNA methylation modification, RNA splicing, and layered epigenetic modifications, have also been recently uncovered. In addition to that of HSCs, the cellular and molecular events underlying the development of multiple hematopoietic progenitors in human embryos/fetus have been unraveled with the use of series of single-cell technologies. Specifically, yolk sac-derived myeloid-biased progenitors have been identified as the earliest multipotent hematopoietic progenitors in human embryo, serving as an important origin of fetal liver monocyte-derived macrophages. Moreover, the development of multiple hematopoietic lineages in human embryos such as T and B lymphocytes, innate lymphoid cells, as well as myeloid cells like monocytes, macrophages, erythrocytes, and megakaryocytes has also been depicted and reviewed here.
Collapse
Affiliation(s)
- Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chen Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yingpeng Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhijie Bai
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jian He
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guoju You
- State Key Laboratory of Primate Biomedical Research, State Key Laboratory of Experimental Hematology, School of Medicine, Tsinghua University, Beijing, China
| | - Guangyu Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Plackoska V, Shaban D, Nijnik A. Hematologic dysfunction in cancer: Mechanisms, effects on antitumor immunity, and roles in disease progression. Front Immunol 2022; 13:1041010. [PMID: 36561751 PMCID: PMC9763314 DOI: 10.3389/fimmu.2022.1041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
With the major advances in cancer immunology and immunotherapy, it is critical to consider that most immune cells are short-lived and need to be continuously replenished from hematopoietic stem and progenitor cells. Hematologic abnormalities are prevalent in cancer patients, and many ground-breaking studies over the past decade provide insights into their underlying cellular and molecular mechanisms. Such studies demonstrate that the dysfunction of hematopoiesis is more than a side-effect of cancer pathology, but an important systemic feature of cancer disease. Here we review these many advances, covering the cancer-associated phenotypes of hematopoietic stem and progenitor cells, the dysfunction of myelopoiesis and erythropoiesis, the importance of extramedullary hematopoiesis in cancer disease, and the developmental origins of tumor associated macrophages. We address the roles of many secreted mediators, signaling pathways, and transcriptional and epigenetic mechanisms that mediate such hematopoietic dysfunction. Furthermore, we discuss the important contribution of the hematopoietic dysfunction to cancer immunosuppression, the possible avenues for therapeutic intervention, and highlight the unanswered questions and directions for future work. Overall, hematopoietic dysfunction is established as an active component of the cancer disease mechanisms and an important target for therapeutic intervention.
Collapse
Affiliation(s)
- Viktoria Plackoska
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Dania Shaban
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada,*Correspondence: Anastasia Nijnik,
| |
Collapse
|
33
|
Lv J, Sun H, Gong L, Wei X, He Y, Yu Z, Liu L, Yi S, Sui W, Xu Y, Deng S, An G, Yao Z, Qiu L, Hao M. Aberrant metabolic processes promote the immunosuppressive microenvironment in multiple myeloma. Front Immunol 2022; 13:1077768. [PMID: 36532059 PMCID: PMC9748558 DOI: 10.3389/fimmu.2022.1077768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Multiple myeloma (MM) is still an incurable plasma cell malignancy. The efficacy of immunotherapy on MM remains unsatisfactory, and the underlying molecular mechanisms still are not fully understood. Methods In this study, we delineated the dynamic features of immune cell in MM bone marrow (BM) along with elevated tumor cell infiltration by single-cell RNA sequencing (scRNA-seq), and investigated the underlying mechanisms on dysfunction of immune cells associated with myelomagenesis. Results We found that immune cells were activated in those patients with low infiltration of tumor cells, meanwhile suppressed with elevated infiltration of MM cells, which facilitated MM escaping from immune surveillance. Besides PD-1, abnormal expression of PIM kinases, KLRB1 and KLRC1 were involved in the defect of immune cells in MM patients. Importantly, we found aberrant metabolic processes were associated with the immunosuppressive microenvironment in MM patients. Disordered amino acid metabolism promoted the dysfunction of cytotoxicity CD8 T cells as well as lipid metabolism disorder was associated with the dysregulation of NK and DCs in MM. As metabolic checkpoints, PIM kinases would be potential effective strategies for MM immunotherapy. Discussion In summary, redressing the disordered metabolism should be the key points to get promising effects in immune-based therapies.
Collapse
Affiliation(s)
- Junqiang Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Tianjin Institutes of Health Science, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Tianjin Institutes of Health Science, Tianjin, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Tianjin Institutes of Health Science, Tianjin, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Tianjin Institutes of Health Science, Tianjin, China,*Correspondence: Mu Hao, ; Lugui Qiu,
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Tianjin Institutes of Health Science, Tianjin, China,*Correspondence: Mu Hao, ; Lugui Qiu,
| |
Collapse
|