1
|
Chen Y, Guo Y, Li S, Xu J, Zhao C, Wang J, Yang J, Ning W, Qu Y, Zhang M, Wang S, Zhang H. Tumor-derived IL-6 promotes chordoma invasion by stimulating tumor-associated macrophages M2 polarization and TNFα secretion. Int Immunopharmacol 2024; 143:113315. [PMID: 39393273 DOI: 10.1016/j.intimp.2024.113315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
AIMS Chordoma is a rare and aggressive bone tumor with high-recurrence and lack of effective treatment methods. Tumor associated macrophages (TAMs) are abundant in tumor microenvironment (TME) and polarize toward M2 in chordoma. It has been observed that the high proportion of M2 cells is associated with chordoma rapid progression. However, the mechanism of TAMs polarization and promotion to tumor progression in chordoma is still unclear. The is an urgent need for further research. MATERIALS AND METHODS Flow cytometry and immunohistochemical staining was used to detect the degree of macrophages infiltration in chordoma. A co-culture model of chordoma cells and macrophages was established in vitro to investigate the effects of their interaction on cell function, cytokine secretion, and RNA transcriptome expression. KEY FINDINGS In this study, we found M2 macrophage was predominantly abundant immune cell population in chordoma, and its proportion was associated with the degree of bone destruction. We demonstrated that interleukin 6 (IL-6) derived from chordoma cells could induce TAMs polarization by activating STAT3 phosphorylation, and TAMs could enhance chordoma cells migration and invasion through TNFα/NF-κB pathway. The interaction of chordoma cells and TAMs could promote the bone destruction-related factor Cathepsin B (CTSB) and inhibitory immune checkpoints expression. We also confirmed blocking IL-6/STAT3 pathway could significantly attenuate the M2 polarization of TAMs and decrease the secretion of TNFα. SIGNIFICANCE This study illustrates the dynamics between chordoma cells and TAMs in promoting chordoma invasion and suggests that IL-6/STAT3 pathway is a potential therapeutic target to reduce TAM-induced chordoma invasion.
Collapse
Affiliation(s)
- Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shenglun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jiacheng Xu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Chao Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jun Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jingjing Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Mingshan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China.
| |
Collapse
|
2
|
Luo Y, Gadd ME, Qie Y, Otamendi-Lopez A, Sanchez-Garavito JE, Brooks MM, Ulloa Navas MJ, Hundal T, Li S, Jones VK, Lou Y, Patel T, Dronca R, Kharfan-Dabaja MA, Dong H, Quinones-Hinojosa A, Qin H. Solid cancer-directed CAR T cell therapy that attacks both tumor and immunosuppressive cells via targeting PD-L1. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200891. [PMID: 39498357 PMCID: PMC11532918 DOI: 10.1016/j.omton.2024.200891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has encountered limited success in solid tumors. The lack of dependable antigens and the immunosuppressive tumor microenvironment (TME) are major challenges. Within the TME, tumor cells along with immunosuppressive cells employ an immune-evasion mechanism that upregulates programmed death ligand 1 (PD-L1) to deactivate effector T cells; this makes PD-L1 a reliable, universal target for solid tumors. We developed a novel PD-L1 CAR (MC9999) using our humanized anti-PD-L1 monoclonal antibody, designed to simultaneously target tumor and immunosuppressive cells. The antigen-specific antitumor effects of MC9999 CAR T cells were observed consistently across four solid tumor models: breast cancer, lung cancer, melanoma, and glioblastoma multiforme (GBM). Notably, intravenous administration of MC9999 CAR T cells eradicated intracranially established LN229 GBM tumors, suggesting penetration of the blood-brain barrier. The proof-of-concept data demonstrate the cytolytic effect of MC9999 CAR T cells against immunosuppressive cells, including microglia HMC3 cells and M2 macrophages. Furthermore, MC9999 CAR T cells elicited cytotoxicity against primary tumor-associated macrophages within GBM tumors. The concept of targeting both tumor and immunosuppressive cells with MC9999 was further validated using CAR T cells derived from cancer patients. These findings establish MC9999 as a foundation for the development of effective CAR T cell therapies against solid tumors.
Collapse
Affiliation(s)
- Yan Luo
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Martha E. Gadd
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
| | - Yaqing Qie
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Mieu M. Brooks
- The Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA
| | | | - Tanya Hundal
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
| | - Shuhua Li
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yanyan Lou
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Tushar Patel
- Hepatology & Liver Transplantation, Mayo Clinic, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Roxana Dronca
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Mohamed A. Kharfan-Dabaja
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
- Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, FL, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Alfredo Quinones-Hinojosa
- The Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Hong Qin
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
3
|
Yu J, An N, Zhu J, Zhu B, Zhang G, Chen K, Zhou Y, Ye T, Li G. AVL-armed oncolytic vaccinia virus promotes viral replication and boosts antitumor immunity via increasing ROS levels in pancreatic cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200878. [PMID: 39431173 PMCID: PMC11488421 DOI: 10.1016/j.omton.2024.200878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Pancreatic malignant neoplasm is an extremely deadly malignancy well known for its resistance to traditional therapeutic approaches. Enhanced treatments are imperative for individuals diagnosed with pancreatic cancer (PC). Recent investigations have shed light on the wide-ranging anticancer properties of genetic therapy facilitated by oncolytic vaccinia virus. To illuminate the precise impacts of Aphrocallistes vastus lectin-armed oncolytic vaccinia virus (oncoVV-AVL) on PC, AsPC-1 and PANC-1 cells underwent treatment with oncoVV-AVL. Our findings revealed that oncoVV-AVL possesses the capacity to heighten oncolytic effects on PC cells and incite the production of diverse cytokines like tumor necrosis factor-α, interleukin-6 (IL-6), IL-8, and interferon-I (IFN-I), without triggering antiviral responses. Additionally, oncoVV-AVL can significantly elevate the levels of ROS in PC cells, initiating an oxidative stress response that promotes viral replication, apoptosis, and autophagy. Moreover, in xenograft tumor models, oncoVV-AVL notably restrained PC growth, enhanced IFN-γ levels in the bloodstream, and reprogrammed macrophages. Our investigation indicates that oncoVV-AVL boosts the efficacy of antitumor actions against PC tumors by orchestrating reactive oxygen species-triggered viral replication, fostering M1 polarization, and reshaping the tumor microenvironment to transform cold PC tumors into hot ones. These findings imply that oncoVV-AVL could present a novel therapeutic approach for treating PC tumors.
Collapse
Affiliation(s)
- Jianlei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Nan An
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jili Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Borong Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guohui Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Guo F, Gao Y, Zhou P, Wang H, Ma Z, Wang X, Wang X, Feng X, Wang Y, Han Z. Single-cell analysis reveals that TCF7L2 facilitates the progression of ccRCC via tumor-associated macrophages. Cell Signal 2024; 124:111453. [PMID: 39366533 DOI: 10.1016/j.cellsig.2024.111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/06/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) play an important role in the recurrence and progression of clear cell renal cell carcinoma (ccRCC). However, the specified mechanism has not been elucidated. METHODS Single-cell and transcriptome analysis were applied to characterize the heterogeneity of TAMs. SCENIC would infer regulators of different subsets of TAMs. The CellChat algorithm was used to infer macrophage-tumor interaction networks, whereas pseudo-time traces were used to parse cell evolution and dynamics. RESULTS In this study, single-cell transcriptomic data of ccRCC were analyzed. Notably, the macrophages were clustered to select the cluster with a tendency toward M2-type TAM, which has an impact on the occurrence and metastasis of ccRCC. This macrophage cluster was defined as "TAM2". And this study revealed that TCF7L2 as a potential transcription factor regulating TAM2 transcriptional heterogeneity and differentiation. Pseudotime traces showed TCF7L2 trajectories during TAM2 cell cluster development. In addition, the results of cell interaction showed that TAM2 had the highest number and strength of interactions with cancer cells and endothelial cells. In vitro experiments, this study found that TCF7L2 was highly expressed in TAMs and promoted the polarization of macrophages to M2-type macrophages. And then overexpression of TCF7L2 in macrophages markedly promoted ccRCC invasion and proliferation. CONCLUSION TCF7L2 could play a key role in the progression of ccRCC via enhancing TAMs recruitment and M2-type polarization.
Collapse
Affiliation(s)
- Fengran Guo
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yilong Gao
- Department of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Pengfei Zhou
- Zhengding Country People's Hospital, Zhengding, China
| | - Hu Wang
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Department of Urology, First Hospital of Jiaxing, Jiaxing 314033, China
| | - Ziyang Ma
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xiaowei Wang
- Department of Urology, The First Hospital of Hebei Medical University, Shijiazhuang 050023, China
| | - Xin Wang
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xiaojuan Feng
- Department of Pathology, Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang 050017, China
| | - Yaxuan Wang
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Zhenwei Han
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
5
|
Zhang Y, Chen S, You L, He Z, Xu P, Huang W. LINC00161 upregulated by M2-like tumor-associated macrophages promotes hepatocellular carcinoma progression by methylating HACE1 promoters. Cytotechnology 2024; 76:777-793. [PMID: 39435425 PMCID: PMC11490593 DOI: 10.1007/s10616-024-00653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/10/2024] [Indexed: 10/23/2024] Open
Abstract
M2-like tumor-associated macrophages (M2-TAM) played an essential part in hepatocellular carcinoma (HCC) progression. Long intergenic noncoding RNA 00161 (LINC00161), is a long non-coding RNA, that was related to HCC development. However, the relationship between LINC00161 and TAM remains indistinct. HCC cells were cocultured with an M2-like conditioned medium (M2-CM). cell counting kit-8 (CCK-8), plate cloning, cell scratch, and transwell assay evaluated cell biological activities of HCC cells. The interactions among molecules were analyzed by chromatin immunoprecipitation (CHIP), dual-luciferase reporter, and RNA immunoprecipitation (RIP). The methylation status of HECT domain and ankyrin repeat-containing, E3 ubiquitin protein ligase 1 (HACE1) was evaluated using methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). The xenograft model was established in vivo using subcutaneous nude mice. Histological analyses were performed using hematoxylin-eosin (HE) staining. The expression of molecules was determined using immunohistochemistry (IHC), western blot and quantitative real-time PCR (qPCR). LINC00161 expression was promoted in HCC. LINC00161 knockdown significantly reduced HCC cell proliferation, migration, and invasion. Additionally, M2-TAM stimulated LINC00161 transcription and expression in HCC cells by secreting hepatocyte growth factor (HGF) to activate the Met/NFκB pathway. LINC00161 suppressed HACE1 expression, and knockdown of LINC00161 decreased the methylation on the HACE1 promoter. Meanwhile, a binding relationship between the enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) and HACE1 was observed. LINC00161 overexpression increased the binding of EZH2 on the HACE1 promoter region. Furthermore, LINC00161 knockdown suppressed tumor growth in vivo and induced HACE1 expression by inhibiting its methylation. LINC00161, induced by M2-TAM, played a pivotal role in contributing to HCC development by recruiting EZH2 to promote the methylation of HACE1. This underscores the significant involvement of LINC00161 in mediating the progression of HCC.
Collapse
Affiliation(s)
- Yujunya Zhang
- Third Clinical Medical College of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011 Xinjiang Uygur China
| | - Shuying Chen
- Third Clinical Medical College of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011 Xinjiang Uygur China
| | - Lina You
- Traditional Chinese Medicine Oncology Department, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011 Xinjiang Uygur China
| | - Zhanao He
- Interventional Diagnosis and Treatment Department, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xinshi District, Urumqi, 830011 Xinjiang Uygur China
| | - Peidong Xu
- Interventional Diagnosis and Treatment Department, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xinshi District, Urumqi, 830011 Xinjiang Uygur China
| | - Wukui Huang
- Interventional Diagnosis and Treatment Department, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xinshi District, Urumqi, 830011 Xinjiang Uygur China
| |
Collapse
|
6
|
Fan CY, Zheng JS, Hong LL, Ling ZQ. Macrophage crosstalk and therapies: Between tumor cells and immune cells. Int Immunopharmacol 2024; 141:113037. [PMID: 39213868 DOI: 10.1016/j.intimp.2024.113037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In the tumor microenvironment, macrophages exhibit different phenotypes and functions in response to various signals, playing a crucial role in the initiation and progression of tumors. Several studies have indicated that intervention in the functions of different phenotypes of tumor-associated macrophages causes significant changes in the crosstalk between tumor cells and immune-related cells, such as T, NK, and B cells, markedly altering the course of tumor development. However, only a few specific therapeutic strategies targeting macrophages are yet available. This article comprehensively reviews the molecular biology mechanisms through which tumor-associated macrophages mediate the crosstalk between tumor cells and immune-related cells. Also, various treatment methods currently used in clinical practice and those in the clinical trial phase have been summarized, and the novel strategies for targeting tumor-associated macrophages have been categorized accordingly.
Collapse
Affiliation(s)
- Cheng-Yuan Fan
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China
| | - Jing-Sen Zheng
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Lian-Lian Hong
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
7
|
Ye J, Lin Y, Liao Z, Gao X, Lu C, Lu L, Huang J, Huang X, Huang S, Yu H, Bai T, Chen J, Wang X, Xie M, Luo M, Zhang J, Wu F, Wu G, Ma L, Xiang B, Li L, Li Y, Luo X, Liang R. Single cell-spatial transcriptomics and bulk multi-omics analysis of heterogeneity and ecosystems in hepatocellular carcinoma. NPJ Precis Oncol 2024; 8:262. [PMID: 39548284 DOI: 10.1038/s41698-024-00752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
This study profiled global single cell-spatial-bulk transcriptome landscapes of hepatocellular carcinoma (HCC) ecosystem from six HCC cases and a non-carcinoma liver control donor. We discovered that intratumoral heterogeneity mainly derived from HCC cells diversity and pervaded the genome-transcriptome-proteome-metabolome network. HCC cells are the core driving force of taming tumor-associated macrophages (TAMs) with pro-tumorigenic phenotypes for favor its dominant growth. Remarkably, M1-types TAMs had been characterized by disturbance of metabolism, poor antigen-presentation and immune-killing abilities. Besides, we found simultaneous cirrhotic and HCC lesions in an individual patient shared common origin and displayed parallel clone evolution via driving disparate immune reprograms for better environmental adaptation. Moreover, endothelial cells exhibited phenotypically conserved but executed differential functions in a space-dependent manner. Further, the spatiotemporal traits of rapid recurrence niche genes were identified and validated by immunohistochemistry. Our data unravels the great significance of HCC cells in shaping vibrant tumor ecosystems corresponding to clinical scenarios.
Collapse
Affiliation(s)
- Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Lin
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhiling Liao
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xing Gao
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Cheng Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lu Lu
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Julu Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shilin Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tao Bai
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mingzhi Xie
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Luo
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinyan Zhang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guobin Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liang Ma
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqiang Li
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoling Luo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China.
| | - Rong Liang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China.
| |
Collapse
|
8
|
Zhou M, Wu J, Shao Y, Zhang J, Zheng R, Shi Q, Wang J, Liu B. Short-chain fatty acids reverses gut microbiota dysbiosis-promoted progression of glioblastoma by up-regulating M1 polarization in the tumor microenvironment. Int Immunopharmacol 2024; 141:112881. [PMID: 39159556 DOI: 10.1016/j.intimp.2024.112881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024]
Abstract
Glioblastoma (GBM), known as the most malignant and common primary brain tumor of the central nervous system, has finite therapeutic options and a poor prognosis. Studies have shown that host intestinal microorganisms play a role in the immune regulation of parenteral tumors in a number of different ways, either directly or indirectly. However, the potential impact of gut microbiota on tumor microenvironment, particularly glioma immunological milieu, has not been clarified exactly. In this study, by using an orthotopic GBM model, we found gut microbiota dysbiosis caused by antibiotic cocktail treatment boosted the tumor process in vivo. An obvious change that followed gut microbiota dysbiosis was the enhanced percentage of M2-like macrophages in the TME, in parallel with a decrease in the levels of gut microbial metabolite, short-chain fatty acids (SCFAs) in the blood and tumor tissues. Oral supplementation with SCFAs can increase the proportion of M1-like macrophages in the TME, which improves the outcomes of glioma. In terms of mechanism, SCFAs-activated glycolysis in the tumor-associated macrophages may be responsible for the elevated M1 polarization in the TME. This study will enable us to better comprehend the "gut-brain" axis and be meaningful for the development of TAM-targeting immunotherapeutic strategies for GBM patients.
Collapse
Affiliation(s)
- Mengnan Zhou
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China; Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianqi Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Shao
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jiameng Zhang
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Rui Zheng
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Qi Shi
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jia Wang
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Beixing Liu
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
9
|
Hiraga T. Immune microenvironment of cancer bone metastasis. Bone 2024; 191:117328. [PMID: 39549899 DOI: 10.1016/j.bone.2024.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Bone is a common and frequent site of metastasis in cancer patients, leading to a significant reduction in quality of life and increased mortality. Bone marrow, the primary site of hematopoiesis, also serves as both a primary and secondary lymphoid organ. It harbors and supports a diverse array of immune cells, thereby creating a distinct immune microenvironment. These immune cells engage in a range of activities, including anti-tumor, pro-tumor, or a combination of both, which influence the development and progression of bone metastases. Rapid advances in cancer immunotherapy have underscored its potential to eradicate bone metastases. However, clinical outcomes have not yet met expectations. To improve the efficacy of immunotherapy, it is crucial to gain a comprehensive and in-depth understanding of the immune microenvironment within bone metastases. This review provides an overview of the current understanding of the role of different immune cells, their anti-tumor and pro-tumor activities, and their overall contribution to bone metastasis.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan.
| |
Collapse
|
10
|
Siekhaus DE, Stanley-Ahmed JA. Discovering mechanisms of macrophage tissue infiltration with Drosophila. Curr Opin Immunol 2024; 91:102502. [PMID: 39536472 DOI: 10.1016/j.coi.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Much is known about the importance of macrophages for regulating diverse aspects of organismal physiology, alongside their essential roles in inflammation. Relatively unexplored are the processes influencing macrophages' and monocytes' ability to invade into the tissues where they carry out these functions. Drosophila plasmatocytes, also called hemocytes, show similarities to vertebrate macrophages in their function and their molecular specification; they have recently been shown to also infiltrate into tissues during development and inflammation. Extravasation across vasculature, into tumors, the brain, and adipose tissue have all been observed. We discuss the striking parallels in some of these systems to vertebrate immune responses, including a requirement for tumor necrosis factor. Finally, we highlight the new pathways regulating infiltration found in the fly that remain as yet unexamined in a vertebrate context.
Collapse
Affiliation(s)
- Daria E Siekhaus
- Department of Molecular, Cellular and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095 USA.
| | - Jasmine A Stanley-Ahmed
- Department of Molecular, Cellular and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095 USA; Centre for Mechanobiochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
11
|
Tang N, Deng W, Wu Y, Deng Z, Wu X, Xiong J, Zhao Q. Single-Cell Spatial-Temporal Analysis of ZNF451 in Mediating Drug Resistance and CD8 + T Cell Dysfunction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0530. [PMID: 39534688 PMCID: PMC11555180 DOI: 10.34133/research.0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Cisplatin is widely used to treat osteosarcoma, but recurrent cases often develop resistance, allowing the disease to progress and complicating clinical management. This study aimed to elucidate the immune microenvironment of osteosarcoma, providing insights into the mechanisms of recurrence and identifying potential therapeutic strategies. By analyzing multiple single-cell and bulk RNA-sequencing datasets, we discovered that the SUMOylation-related gene ZNF451 promotes osteosarcoma recurrence and alters its immune microenvironment. ZNF451 was found to importantly enhance the growth, migration, and invasion of resistant cells while also reducing their sensitivity to cisplatin and lowering their apoptosis rate. Moreover, our data indicated that ZNF451 plays a crucial role in bone resorption and epithelial-mesenchymal transition. ZNF451 also regulates CD8+ T cell function, leading to their exhaustion and transition to the CD8T.EXH state. Additionally, β-cryptoxanthin has been identified as a potential therapeutic agent that inhibits osteosarcoma progression by targeting ZNF451. In summary, these findings highlight the critical role of ZNF451 in promoting osteosarcoma progression and underscore its potential as a therapeutic target and biomarker for osteosarcoma.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopaedics, Third Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Department of Orthopaedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Woding Deng
- Xiangya School of Medicine,
Central South University, Changsha, Hunan, China
| | - Yupeng Wu
- Department of Spine Surgery,
First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zhixuan Deng
- Institute of Cell Biology, Hengyang Medical School,
University of South China, Hengyang, Hunan, China
| | - Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jianbin Xiong
- Department of Orthopaedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Qiangqiang Zhao
- Department of Hematology,
Liuzhou People’s Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
- Department of Hematology,
The Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| |
Collapse
|
12
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024:10.1038/s41423-024-01232-z. [PMID: 39516356 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
13
|
Yan H, Wang Z, Teng D, Chen X, Zhu Z, Chen H, Wang W, Wei Z, Wu Z, Chai Q, Zhang F, Wang Y, Shu K, Li S, Shi G, Zhu M, Piao HL, Shen X, Bu P. Hexokinase 2 senses fructose in tumor-associated macrophages to promote colorectal cancer growth. Cell Metab 2024; 36:2449-2467.e6. [PMID: 39471815 DOI: 10.1016/j.cmet.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/14/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Fructose is associated with colorectal cancer tumorigenesis and metastasis through ketohexokinase-mediated metabolism in the colorectal epithelium, yet its role in the tumor immune microenvironment remains largely unknown. Here, we show that a modest amount of fructose, without affecting obesity and associated complications, promotes colorectal cancer tumorigenesis and growth by suppressing the polarization of M1-like macrophages. Fructose inhibits M1-like macrophage polarization independently of fructose-mediated metabolism. Instead, it serves as a signal molecule to promote the interaction between hexokinase 2 and inositol 1,4,5-trisphophate receptor type 3, the predominant Ca2+ channel on the endoplasmic reticulum. The interaction reduces Ca2+ levels in cytosol and mitochondria, thereby suppressing the activation of mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 1 (STAT1) as well as NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. Consequently, this impedes M1-like macrophage polarization. Our study highlights the critical role of fructose as a signaling molecule that impairs the polarization of M1-like macrophages for tumor growth.
Collapse
Affiliation(s)
- Huiwen Yan
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Da Teng
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China
| | - Xiaodong Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zijing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ziyuan Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenzhen Wu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Chai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaile Shu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaotang Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guizhi Shi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhao Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xian Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Roos J, Manolikakes G, Schlomann U, Klinke A, Schopfer FJ, Neumann CA, Maier TJ. Nitro-fatty acids: promising agents for the development of new cancer therapeutics. Trends Pharmacol Sci 2024; 45:1061-1080. [PMID: 39490362 DOI: 10.1016/j.tips.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
Nitro-fatty acids (NO2-FAs) are endogenous pleiotropic lipid mediators regarded as promising drug candidates for treating inflammatory and fibrotic diseases. Over the past two decades, the anti-inflammatory and cytoprotective actions of NO2-FAs and several molecular targets have been identified. More recently, preclinical studies have demonstrated their potential as prospective cancer therapeutics with favorable safety and tumor-selective profiles. In this review, we describe the mechanisms of action, with a focus on NO2-FA antineoplastic and chemosensitizing effects. We also address the potential therapeutic applications of endogenous and structurally modified NO2-FAs species in cancer treatment.
Collapse
Affiliation(s)
- Jessica Roos
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, 63225, Hesse, Germany.
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, Kaiserslautern, 67663, Rhineland-Palatinate, Germany
| | - Uwe Schlomann
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M) University of Pittsburgh, Pittsburgh, PA, USA
| | - Carola A Neumann
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women's Research Institute, Pittsburgh, PA, USA
| | - Thorsten J Maier
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, 63225, Hesse, Germany
| |
Collapse
|
15
|
Sun J, Wang H, Zhang R, Sun X, Wu Z, Wang J, Wang Y. IGF2BP3/CTCF Axis-Dependent NT5DC2 Promotes M2 Macrophage Polarization to Enhance the Malignant Progression of Lung Squamous Cell Carcinomas. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70031. [PMID: 39506204 PMCID: PMC11540834 DOI: 10.1111/crj.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is a type of lung cancer that develops in the squamous cells. It is known to be promoted by the activation of various signaling pathways and the dysregulation of key regulatory molecules. One such molecule, 5'-nucleotidase domain containing 2 (NT5DC2), has been identified as a critical regulator in various cancers including lung cancer. However, there are no data regarding its role in LUSC. METHODS The mRNA expression of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), CCCTC-binding factor (CTCF), and NT5DC2 was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR), whereas their protein expression was assessed using a western blotting assay. Cell proliferation was determined using a cell counting kit-8 (CCK-8) assay. Cell apoptosis, CD11b expression, and CD206 expression were analyzed using flow cytometry. Tube formation was assessed through a tube formation assay. Glucose consumption, lactate production, and ATP levels were measured using colorimetric methods. The effect of NT5DC2 on the malignant progression of LUSC cells was analyzed using a xenograft mouse model assay. The levels of transforming growth factor-beta 1 (TGF-β1) and interleukin-10 (IL-10) were detected using enzyme-linked immunosorbent assays. The associations among IGF2BP3, CTCF and NT5DC2 were identified using dual-luciferase reporter assay, RNA immunoprecipitation assay and m6A RNA immunoprecipitation assay. RESULTS The expression of NT5DC2 was found to be upregulated in LUSC tissues and cells when compared with normal lung tissues and normal human bronchial epithelial cells. Silencing of NT5DC2 inhibited LUSC cell proliferation, tube formation, glycolysis, M2 macrophage polarization, and tumor formation while inducing cell apoptosis. In addition, CTCF was found to transcriptionally activate NT5DC2 in LUSC cells. IGF2BP3 stabilized the mRNA expression of CTCF through m6A methylation. Further, overexpression of CTCF or NT5DC2 attenuated the effects of IGF2BP3 silencing in both NCI-520 and SK-MES-1 cells. CONCLUSION The IGF2BP3/CTCF axis-dependent NT5DC2 promotes M2 macrophage polarization, thereby enhancing the malignant progression of LUSC. This study was the first to reveal the role of NT5DC2 in LUSC and the underlying mechanism. The result suggests that targeting the IGF2BP3/CTCF/NT5DC2 axis may have clinical significance in the treatment of LUSC.
Collapse
Affiliation(s)
- Jifeng Sun
- Department of RadiotherapyTianjin Cancer Hospital Airport HospitalTianjinChina
| | - Hao Wang
- Department of Breast CancerTianjin Cancer Hospital Airport HospitalTianjinChina
| | - Ran Zhang
- Department of Thoracic OncologyTianjin Cancer Hospital Airport HospitalTianjinChina
| | - Xiaoxuan Sun
- Department of Thoracic OncologyTianjin Cancer Hospital Airport HospitalTianjinChina
| | - Zhanbo Wu
- Cancer Immunotherapy DepartmentTianjin Cancer Hospital Airport HospitalTianjinChina
| | - Jun Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Yuwen Wang
- Department of RadiotherapyTianjin Cancer Hospital Airport HospitalTianjinChina
| |
Collapse
|
16
|
Chi J, Gao Q, Liu D. Tissue-Resident Macrophages in Cancer: Friend or Foe? Cancer Med 2024; 13:e70387. [PMID: 39494816 PMCID: PMC11533131 DOI: 10.1002/cam4.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Macrophages are essential in maintaining homeostasis, combating infections, and influencing the process of various diseases, including cancer. Macrophages originate from diverse lineages: Notably, tissue-resident macrophages (TRMs) differ from hematopoietic stem cells and circulating monocyte-derived macrophages based on genetics, development, and function. Therefore, understanding the recruited and TRM populations is crucial for investigating disease processes. METHODS By searching literature databses, we summarized recent relevant studies. Research has shown that tumor-associated macrophages (TAMs) of distinct origins accumulate in tumor microenvironment (TME), with TRM-derived TAMs closely resembling gene signatures of normal TRMs. RESULTS Recent studies have revealed that TRMs play a crucial role in cancer progression. However, organ-specific effects complicate TRM investigations. Nonetheless, the precise involvement of TRMs in tumors is unclear. This review explores the multifaceted roles of TRMs in cancer, presenting insights into their origins, proliferation, the latest research methodologies, their impact across various tumor sites, their potential and strategies as therapeutic targets, interactions with other cells within the TME, and the internal heterogeneity of TRMs. CONCLUSIONS We believe that a comprehensive understanding of the multifaceted roles of TRMs will pave the way for targeted TRM therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Jianhua Chi
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Dan Liu
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
17
|
Gu X, Wang J, Guan J, Li G, Ma X, Ren Y, Wu S, Chen C, Zhu H. Predictive Prognostic Model for Hepatocellular Carcinoma Based on Seven Genes Participating in Arachidonic Acid Metabolism. Cancer Med 2024; 13:e70284. [PMID: 39540710 PMCID: PMC11561968 DOI: 10.1002/cam4.70284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The occult onset and rapid progression of hepatocellular carcinoma (HCC) lead to an unsatisfactory overall survival (OS) rate. Established prognostic predictive models based on tumor-node-metastasis staging and predictive factors do not report satisfactory predictive efficacy. Arachidonic acid plays pivotal roles in biological processes including inflammation, regeneration, immune modulation, and tumorigenesis. We, therefore, constructed a prognostic predictive model based on seven genes linked to arachidonic acid metabolism, using samples of HCC patients from databases to analyze the genomic profiles. We also assessed the predictive stability of the constructed model. METHODS Sample data of 365 patients diagnosed with HCC were extracted from The Cancer Genome Atlas (TCGA, training set) and HCCDB18, GSE14520, and GSE76427 databases (validation sets). Patient samples were clustered using ConsensusClusterPlus analysis based on the expression levels of 12 genes involved in arachidonic acid metabolism that were significantly associated with HCC prognosis. Differentially expressed genes (DEGs) within different clusters were distinguished and compared using WebGestaltR. Immunohistochemistry (IHC) analysis was performed using a human HCC tissue microarray (TMA). Tumor immune microenvironment assessment was performed using ESTIMATE, ssGSEA, and TIDE. RESULTS Samples of patients with HCC were classified into three clusters, with significant differences in OS. Cluster 2 showed the best prognosis, whereas cluster 1 presented the worst. The three clusters showed significant differences in immune infiltration. We then performed Cox and LASSO regression analyses, which revealed CYP2C9, G6PD, CDC20, SPP1, PON1, TRNP1, and ADH4 as prognosis-related hub genes, making it a simplified prognostic model. TMA analysis for the seven target genes showed similar results of regression analyses. The high-risk group showed a significantly worse prognosis and reduced immunotherapy efficacy. Our model showed stable prognostic predictive efficacy. CONCLUSIONS This seven-gene-based model showed stable outcomes in predicting HCC prognosis as well as responses to immunotherapy.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guojun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of HepatologyThe Second Hospital of Yinzhou of NingboNingboChina
| | - Xiao Ma
- Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
18
|
Xu W, Yang Y, Yu Y, Wu L, Ma D, Li R, Yang L, Sun H. A multidimensional analysis of the impact of obesity on immune checkpoint inhibitor therapy efficacy. Cancer Cell Int 2024; 24:358. [PMID: 39472922 PMCID: PMC11523605 DOI: 10.1186/s12935-024-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Obesity is a well-known risk factor for developing malignant tumors and promoting tumor cell growth and spread. However, recent studies have shown that obese cancer patients, who typically have a worse prognosis than nonobese cancer patients, show a significant improvement in survival after receiving immune checkpoint inhibitor (ICI) therapy. This phenomenon is known as the "obesity paradox". However, this phenomenon is influenced by tumor type and sex. Therefore, this study aimed to explore the impact of obesity on immunotherapy efficacy from multiple perspectives, aiming to verify this paradox and provide new scientific evidence on the effect of obesity on ICI efficacy. METHODS This retrospective study evaluated the data of patients who received ICI therapy between June 2019 and August 2023. Automatic segmentation of skeletal muscle, subcutaneous fat, and visceral fat was performed using Slice-O-Matic software, and the corresponding skeletal muscle index (SMI), subcutaneous fat index (SFI) and visceral fat index (VFI) were calculated. The neutrophil-to-lymphocyte ratio (NLR) was determined by dividing the neutrophil count by the lymphocyte count. Univariate and multivariate Cox regression analyses were used to evaluate the correlation between body mass index (BMI), body composition parameters, and the NLR with overall survival (OS) and progression-free survival (PFS) in obese patients receiving ICI therapy. RESULTS We analyzed 219 patients with a median age of 60 years (IQR 53-69 years; 155 men and 64 women). Obese patients, particularly those with visceral fat accumulation, exhibited extended OS after ICI therapy (log-rank P = 0.027). Cox multivariate analysis revealed that the NLR (HR = 1.036; 95% CI: 0.996 to 1.078; P = 0.002) was independently associated with OS. Patients with a high NLR had worse OS than those with a low NLR. CONCLUSIONS This study corroborates the veracity of the "obesity paradox" under specific conditions and identifies NLR as an independent prognostic factor, with elevated NLR indicative of a poor prognosis.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yifan Yang
- Department of Interventional Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), 106 Zhongshan Second Rd, Guangzhou, 510080, Guangdong, China
| | - Yue Yu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Lu Wu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Dong Ma
- Department of Medical Oncology, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Rongrong Li
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Shantou University Medical College, Shantou University, Shantou, 515000, Guangdong, China
| | - Lu Yang
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Hengwen Sun
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
19
|
Lu D, Wang LF, Han H, Li LL, Kong WT, Zhou Q, Zhou BY, Sun YK, Yin HH, Zhu MR, Hu XY, Lu Q, Xia HS, Wang X, Zhao CK, Zhou JH, Xu HX. Prediction of microvascular invasion in hepatocellular carcinoma with conventional ultrasound, Sonazoid-enhanced ultrasound, and biochemical indicator: a multicenter study. Insights Imaging 2024; 15:261. [PMID: 39466459 PMCID: PMC11519233 DOI: 10.1186/s13244-024-01743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/16/2024] [Indexed: 10/30/2024] Open
Abstract
PURPOSE To develop and validate a preoperative prediction model based on multimodal ultrasound and biochemical indicator for identifying microvascular invasion (MVI) in patients with a single hepatocellular carcinoma (HCC) ≤ 5 cm. METHODS From May 2022 to November 2023, a total of 318 patients with pathologically confirmed single HCC ≤ 5 cm from three institutions were enrolled. All of them underwent preoperative biochemical, conventional ultrasound (US), and contrast-enhanced ultrasound (CEUS) (Sonazoid, 0.6 mL, bolus injection) examinations. Univariate and multivariate logistic regression analyses on clinical information, biochemical indicator, and US imaging features were performed in the training set to seek independent predictors for MVI-positive. The models were constructed and evaluated using the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis in both validation and test sets. Subgroup analyses in patients with different liver background and tumor sizes were conducted to further investigate the model's performance. RESULTS Logistic regression analyses showed that obscure tumor boundary in B-mode US, intra-tumoral artery in pulsed-wave Doppler US, complete Kupffer-phase agent clearance in Sonazoid-CEUS, and biomedical indicator PIVKA-II were independently correlated with MVI-positive. The combined model comprising all predictors showed the highest AUC, which were 0.937 and 0.893 in the validation and test sets. Good calibration and prominent net benefit were achieved in both sets. No significant difference was found in subgroup analyses. CONCLUSIONS The combination of biochemical indicator, conventional US, and Sonazoid-CEUS features could help preoperative MVI prediction in patients with a single HCC ≤ 5 cm. CRITICAL RELEVANCE STATEMENT Investigation of imaging features in conventional US, Sonazoid-CEUS, and biochemical indicators showed a significant relation with MVI-positivity in patients with a single HCC ≤ 5 cm, allowing the construction of a model for preoperative prediction of MVI status to help treatment decision making. KEY POINTS MVI status is important for patients with a single HCC ≤ 5 cm. The model based on conventional US, Sonazoid-CEUS and PIVKA-II performs best for MVI prediction. The combined model has potential for preoperative prediction of MVI status.
Collapse
Affiliation(s)
- Dan Lu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Fan Wang
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hong Han
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Lin-Lin Li
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong, Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Wen-Tao Kong
- Department of Ultrasound, Nanjing DrumTower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Zhou
- Department of Ultrasound, Nanjing DrumTower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bo-Yang Zhou
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Yi-Kang Sun
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hao-Hao Yin
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Ming-Rui Zhu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Xin-Yuan Hu
- School of Medicine, Anhui University of Science and Technology, Anhui, China
| | - Qing Lu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Han-Sheng Xia
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Xi Wang
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Chong-Ke Zhao
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Hua Zhou
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong, Provincial Clinical Research Center for Cancer, Guangzhou, China.
| | - Hui-Xiong Xu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Wang X, Yang J, Yang W, Sheng H, Jia B, Cheng P, Xu S, Hong X, Jiang C, Yang Y, Wu Z, Wang J. Multiple roles of p53 in cancer development: Regulation of tumor microenvironment, m 6A modification and diverse cell death mechanisms. J Adv Res 2024:S2090-1232(24)00481-8. [PMID: 39490612 DOI: 10.1016/j.jare.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND The protein p53, encoded by the most frequently mutated gene TP53 in human cancers, has diverse functions in tumor suppression. As a best known transcription factor, p53 can regulate various fundamental cellular responses, ranging from the cell-cycle arrest, DNA repair, senescence to the programmed cell death (PCD), which includes autophagy, apoptosis, ferroptosis, cuproptosis, pyroptosis and disulfidoptosis. Accumulating evidence has indicated that the tumor microenvironment (TME), N6-methyladenosine (m6A) modification and diverse PCD are important for the progression, proliferation and metastases of cancers. AIM OF REVIEW This paper aims to systematically and comprehensively summarize the multiple roles of p53 in the development of cancers from the regulation of TME, m6A Modification and diverse PCD. KEY SCIENTIFIC CONCEPTS OF REVIEW TME, a crucial local homeostasis environment, influences every step of tumorigenesis and metastasis. m6A, the most prevalent and abundant endogenous modification in eukaryotic RNAs, plays an essential role in various biological processes, containing the progression of cancers. Additionally, PCD is an evolutionarily conserved mechanism of cell suicide and a common process in living organisms. Some forms of PCD contribute to the occurrence and development of cancer. However, the complex roles of p53 within the TME, m6A modification and diverse PCD mechanisms are still not completely understood. Presently, the function roles of p53 including the wild-type and mutant p53 in different context are summarized. Additionally, the interaction between the cancer immunity, cancer cell death and RNA m6A methylation and the p53 regulation during the development and progress of cancers were discussed. Moreover, the key molecular mechanisms by which p53 participates in the regulation of TME, m6A and diverse PCD are also explored. All the findings will facilitate the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Xiangyu Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jianhua Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Haiyang Sheng
- Global Biometrics and Data Sciences, Bristol Myers Squibb, New York City, USA
| | - Buyun Jia
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Peng Cheng
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Shanshan Xu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xinhui Hong
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chuanwei Jiang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Ziyin Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, China.
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
21
|
Meng F, Li H, Jin R, Yang A, Luo H, Li X, Wang P, Zhao Y, Chervova O, Tang K, Cheng S, Hu B, Li Y, Sheng J, Yang F, Carbone D, Chen K, Wang J. Spatial immunogenomic patterns associated with lymph node metastasis in lung adenocarcinoma. Exp Hematol Oncol 2024; 13:106. [PMID: 39468696 PMCID: PMC11514955 DOI: 10.1186/s40164-024-00574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) with lymph node (LN) metastasis is linked to poor prognosis, yet the underlying mechanisms remain largely undefined. This study aimed to elucidate the immunogenomic landscape associated with LN metastasis in LUAD. METHODS We employed broad-panel next-generation sequencing (NGS) on a cohort of 257 surgically treated LUAD patients to delineate the molecular landscape of primary tumors and identify actionable driver-gene alterations. Additionally, we used multiplex immunohistochemistry (mIHC) on a propensity score-matched cohort, which enabled us to profile the immune microenvironment of primary tumors in detail while preserving cellular metaclusters, interactions, and neighborhood functional units. By integrating data from NGS and mIHC, we successfully identified spatial immunogenomic patterns and developed a predictive model for LN metastasis, which was subsequently validated independently. RESULTS Our analysis revealed distinct immunogenomic alteration patterns associated with LN metastasis stages. Specifically, we observed increased mutation frequencies in genes such as PIK3CG and ATM in LN metastatic primary tumors. Moreover, LN positive primary tumors exhibited a higher presence of macrophage and regulatory T cell metaclusters, along with their enriched neighborhood units (p < 0.05), compared to LN negative tumors. Furthermore, we developed a novel predictive model for LN metastasis likelihood, designed to inform non-surgical treatment strategies, optimize personalized therapy plans, and potentially improve outcomes for patients who are ineligible for surgery. CONCLUSIONS This study offers a comprehensive analysis of the genetic and immune profiles in LUAD primary tumors with LN metastasis, identifying key immunogenomic patterns linked to metastatic progression. The predictive model derived from these insights marks a substantial advancement in personalized treatment, underscoring its potential to improve patient management.
Collapse
Affiliation(s)
- Fanjie Meng
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Ruoyi Jin
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Airong Yang
- Kanghui Biotechnology Co., Ltd, Shenyang, China
| | - Hao Luo
- Cancer Center, Daping Hospital Army Medical University, Chongqing, China
| | - Xiao Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yaxing Zhao
- Infinity Scope Biotechnology Co., Ltd., Hangzhou, China
| | - Olga Chervova
- University College London Cancer Institute, University College London, London, UK
| | - Kaicheng Tang
- Infinity Scope Biotechnology Co., Ltd., Hangzhou, China
| | - Sida Cheng
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Jianpeng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - David Carbone
- James Thoracic Oncology Center, Ohio State University, Columbus, USA
| | - Kezhong Chen
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China.
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
| | - Jun Wang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China.
| |
Collapse
|
22
|
Shang X, Zhang C, Lv Y, Zhang X, Guo K, Li H, Wang H. Patients with Extensive-Stage Small Cell Lung Cancer Harboring Less Than 4 Metastatic Sites May Benefit from Immune Checkpoint Inhibitor Rechallenge by Reshaping Tumor Microenvironment. Immunotargets Ther 2024; 13:571-583. [PMID: 39478941 PMCID: PMC11523948 DOI: 10.2147/itt.s483093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) has prolonged survival in patients with extensive-stage small cell lung cancer (ES-SCLC) as first-line treatment. However, whether ICI rechallenge could bring survival benefit to patients with ES-SCLC following its failure as first-line treatment remains unknown. Therefore, we aim to address the issue and identify the cohort of patients that may derive such benefit. Methods Patients with ES-SCLC from both the IMpower133 study and Shandong Cancer Hospital and Institute (shanzhong cohort) who failed first-line ICI were included. Kaplan Meier analysis was performed to compare overall survival (OS). Both univariate and multivariate Cox regression analyses were conducted to identify factors affecting survival. Tumor immune cell infiltration was evaluated by the CIBERSORT algorithm and detected by multiplex immunofluorescence (mIF). Results A total of 125 ES-SCLC patients undergoing atezolizumab and 161 patients undergoing ICI as first-line treatment were recruited from IMpower133 and shanzhong cohort. Those receiving ICI rechallenge had a longer OS than those without in IMpower133 (P = 0.08) and shanzhong cohort (P = 0.013). In IMpower133 cohort, subgroup analyses found that patients with <4 metastatic sites derived more survival benefit from atezolizumab (P = 0.008). For patients with ES-SCLC harboring <4 metastatic sites, there was significant OS difference between atezolizumab versus non-atezolizumab as retreatment (P = 0.036). Moreover, for ES-SCLC patients with <4 metastatic sites, atezolizumab improved survival compared with non-atezolizumab (hazard ratio [HR]: 0.457; 95% CI: 0.256-0.817; P = 0.008). These findings were confirmed in shanzhong cohort. Those harboring <4 metastatic sites had fewer M2 macrophage and more CD4 naïve T cells infiltration, which was further confirmed by mIF of ES-SCLC samples from shanzhong cohort. Conclusion Our study provides rationale for ICI rechallenge among ES-SCLC patients with <4 metastatic sites, suggesting beneficial outcome by reshaping TME.
Collapse
Affiliation(s)
- Xiaoling Shang
- Shandong Cancer Hospital and Institute, Shandong University, Jinan, 250117, People’s Republic of China
| | - Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, People’s Republic of China
| | - Yuanyuan Lv
- Department of Clinical Drug Research, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Xiaoxiao Zhang
- Department of Clinical Drug Research, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Kaiyue Guo
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250117, People’s Republic of China
| | - Huijuan Li
- Department of Clinical Drug Research, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| |
Collapse
|
23
|
Jiang D, Huang A, Zhu BX, Gong J, Ruan YH, Liu XC, Zheng L, Wu Y. Targeting CD93 on monocytes revitalizes antitumor immunity by enhancing the function and infiltration of CD8 + T cells. J Immunother Cancer 2024; 12:e010148. [PMID: 39448202 PMCID: PMC11499807 DOI: 10.1136/jitc-2024-010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Limited activation and infiltration of CD8+ T cells are major challenges facing T cell-based immunotherapy for most solid tumors, of which the mechanism is multilayered and not yet fully understood. METHODS Levels of CD93 expression on monocytes from paired non-tumor, peritumor and tumor tissues of human hepatocellular carcinoma (HCC) were evaluated. The underlying mechanisms mediating effects of CD93+ monocytes on the inhibition and tumor exclusion of CD8+ T cells were studied through both in vitro and in vivo experiments. RESULTS In this study, we found that monocytes in the peritumoral tissues of HCC significantly increased levels of CD93 expression, and these CD93+ monocytes collocated with CD8+ T cells, whose density was much higher in peritumor than intratumor areas. In vitro experiments showed that glycolytic switch mediated tumor-induced CD93 upregulation in monocytes via the Erk signaling pathway. CD93 on the one hand could enhance PD-L1 expression through the AKT-GSK3β axis, while on the other hand inducing monocytes to produce versican, a type of matrix component which interacted with hyaluronan and collagens to inhibit CD8+ T cell migration. Consistently, levels of CD93+ monocytes positively correlated with the density of peritumoral CD8+ T cells while negatively correlated with that of intratumoral CD8+ T cells. Targeting CD93 on monocytes not only increased the infiltration and activation of CD8+ T cells but also enhanced tumor sensitivity to anti-PD-1 treatment in mice in vivo. CONCLUSION This study identified an important mechanism contributing to the activation and limited infiltration of CD8+ T cells in solid tumors, and CD93+ monocytes might represent a plausible immunotherapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Da Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Aiqi Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bai-Xi Zhu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiangling Gong
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Hao Ruan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xing-Chen Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Wu Y, Zhai Y, Ding Z, Xie T, Zhu W, Zhang C, Lu Y, Chen Y, Ren S, Hu Y, Li X, Zhong F, Liang Y, Wang S. Single-cell transcriptomics reveals tumor microenvironment changes and prognostic gene signatures in hepatocellular carcinoma. Int Immunopharmacol 2024; 143:113317. [PMID: 39447409 DOI: 10.1016/j.intimp.2024.113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is the most common type of primary liver cancer, accounting for the majority of liver cancer cases. Hepatocellular Carcinoma not only exhibits high heterogeneity but also possesses an immune-suppressive tumor microenvironment that promotes tumor evasion, posing substantial difficulties for efficient therapy. Our aim is to utilize single-cell RNA transcriptome data to investigate the dynamic changes in the tumor microenvironment during the malignant progression of HCC, the communication among immune cells, and the marker genes associated with patient prognosis. METHODS We constructed expression matrices from open single-cell RNA transcriptome data (GSE149614) of HCC patients (representing stages I-IV), establishing single-cell RNA transcriptional atlases for different stages of HCC progression. For each stage, we conducted cell subgroup analysis to identify cell types at each stage. Horizontally, we explored the dynamic changes of the same cell type across different stages, performing trajectory analysis and prognosis analysis. Vertically, we investigated pairwise comparisons of different stages of HCC progression, probing the dynamic alterations in tumor microenvironment immune cell signaling pathways. Finally, potential drugs for the treatment of HCC were predicted based on relevant genes. FINDINGS As the HCC advances towards increased malignancy, there is a shift in the predominant composition of the tumor microenvironment, with a decline in the dominance of hepatic cells. Tumor-infiltrating immune cells migrate and accumulate within the tumor microenvironment, where T cells and myeloid cells display distinct patterns of change. Genes associated with cancer-associated fibroblasts (CAFs) and T cells are correlated with adverse patient outcomes. In the late stages of HCC, the tumor microenvironment is infiltrated by more myeloid-derived suppressor cells (MDSCs), and a prognostic model constructed based on genes related to myeloid cells can predict patient outcomes. Additionally, in the analysis of transcription factors, YY1 and MYC are found to be highly expressed. Cell communication analysis among tumor-infiltrating immune cells reveals significant differences in the main signaling pathways at different stages of HCC progression. Finally, drug sensitivity analysis based on key genes identifies Acetalax, Allopurinol, and Amonafide as potential candidates for HCC treatment.
Collapse
Affiliation(s)
- Yilin Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yangyang Zhai
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhilong Ding
- Department of Hepatobiliary Surgery, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China
| | - Tong Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - WeiJie Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Cui Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Ying Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yunli Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Shiying Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yihuai Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Xiangqian Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Fei Zhong
- Department of Laboratory Medicine, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China.
| | - Yong Liang
- Department of Laboratory Medicine, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China.
| | - Shiyan Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China.
| |
Collapse
|
25
|
Gu Y, Xu P, Wu Y, Li C, Shen J, Cheng X, Wang Y, Zhang LW, Wang Y, Gao M. Mechanotransduction-Piloted Whole-Cell Vaccines for Spatiotemporal Modulation of Postoperative Antitumor Immunity. ACS NANO 2024; 18:28675-28690. [PMID: 39395150 DOI: 10.1021/acsnano.4c06215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Whole tumor cell vaccines hold promise by presenting a broader spectrum of autologous-origin tumor antigens to combat postoperative recurrence and metastasis. However, challenges such as intractable adjuvant modification and obscure interactions with antigen-presenting cells in the postoperative microenvironment impede their translation into effective personalized immunotherapies. In this study, we propose cancer vaccines derived from manganese oxide-immobilized resected tumor cells, featuring whole tumor antigens and adjustable stiffness to modulate interactions with antigen-presenting cells in the postoperative microenvironment. These vaccines effectively stimulate dendritic cell phagocytosis and function through sequential stiffness-mediated mechanotransduction and interferon signaling. We evaluated their efficacy using an orthotopic triple-negative breast cancer mouse model and found that combining the vaccines with radiotherapy effectively inhibits postoperative tumor recurrence and metastasis. Our study underscores the potential of utilizing mechanotransduced adjuvants alongside directly inactivated whole-cell vaccines as a universal solution for preventing postoperative tumor recurrence.
Collapse
Affiliation(s)
- Yuan Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Pei Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanxian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chenze Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiahao Shen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| |
Collapse
|
26
|
Luo Y, Ou X, Liu D, Shi H, Liao J, Yu R, Song L, Zhu J. A novel exosome-like nanovesicles from Cordyceps militaris potentiate immunomodulatory and anti-tumor effect by reprogramming macrophages. Life Sci 2024; 358:123163. [PMID: 39442867 DOI: 10.1016/j.lfs.2024.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/21/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
AIMS Fungi-derived exosome-like nanovesicles (ENs) are emerging as a highly promising class of nanoparticles, particularly noted for their cost-effective production. However, their impact on immune regulation and their potential as anti-tumor agents need further exploration. Our study specifically focused on the investigation of the immunomodulatory and anti-tumor properties of ENs derived from Cordyceps militaris, an edible fungus that had achieved large-scale commercial production, referred to as CMDENs. MAIN METHODS The ENs of C. militaris were collected through ultra-high-speed centrifugation, followed by characterization of their physicochemical properties and contents. Subsequently, the biological distribution of these vesicles was investigated using in vivo fluorescence imaging experiments. Finally, the immune activation and polarization of macrophages were examined through both in vitro and in vivo experiments. KEY FINDINGS Herein, we presented the discovery of CMDENs that were rich in proteins, lipids, flavonoids and alkaloids. Immunomodulatory experiments conducted in vivo demonstrated that CMDENs exhibited protective effects against cyclophosphamide-induced immunosuppression in mice by significantly enhancing macrophage phagocytosis and peripheral blood immune cell counts. Moreover, CMDENs effectively induced the polarization of M0- and M2-like macrophages toward M1-like phenotype by activating MAPKs signaling pathway. Notably, CMDENs exhibited remarkable capabilities in inhibiting tumor growth by reprogramming tumor-associated macrophages and activating tumor-infiltrating T lymphocytes, without any observed toxicity in mice bearing tumors. SIGNIFICANCE Our research suggested that CMDENs possessed the potential to be explored as a nano-immunomodulatory agent for cancer.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China; Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xiaozheng Ou
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China
| | - De Liu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China
| | - Hui Shi
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jiapei Liao
- Department of Natural Product Chemistry, Jinan University, Guangzhou 511443, China
| | - Rongmin Yu
- Department of Natural Product Chemistry, Jinan University, Guangzhou 511443, China.
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511443, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
27
|
Liu Z, Chen Z, Zhang J, Liu J, Li B, Zhang Z, Cai M, Zhang Z. Role of tumor-derived exosomes mediated immune cell reprograming in cancer. Gene 2024; 925:148601. [PMID: 38788817 DOI: 10.1016/j.gene.2024.148601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Tumor-derived exosomes (TDEs), as topologies of tumor cells, not only carry biological information from the mother, but also act as messengers for cellular communication. It has been demonstrated that TDEs play a key role in inducing an immunosuppressive tumor microenvironment (TME). They can reprogram immune cells indirectly or directly by delivering inhibitory proteins, cytokines, RNA and other substances. They not only inhibit the maturation and function of dendritic cells (DCs) and natural killer (NK) cells, but also remodel M2 macrophages and inhibit T cell infiltration to promote immunosuppression and create a favorable ecological niche for tumor growth, invasion and metastasis. Based on the specificity of TDEs, targeting TDEs has become a new strategy to monitor tumor progression and enhance treatment efficacy. This paper reviews the intricate molecular mechanisms underlying the immunosuppressive effects induced by TDEs to establish a theoretical foundation for cancer therapy. Additionally, the challenges of TDEs as a novel approach to tumor treatment are discussed.
Collapse
Affiliation(s)
- Zening Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zichao Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jing Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Junqiu Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Baohong Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenyong Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Meichao Cai
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhen Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
28
|
Wolf M, Brochhausen C, Ramakrishnan V, Iberl S, Roth J, Seitz S, Burkhardt R, Stadler SC. Histologic Characterization of Tumor-Adjacent Mammary Adipose Tissue in Normal-Weight and Overweight/Obese Patients with Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3515. [PMID: 39456610 PMCID: PMC11506523 DOI: 10.3390/cancers16203515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Obesity is a risk factor of several types of cancer, including breast cancer. In this study, we aimed to histologically characterize the adipose tissue of the tumor microenvironment (TME) of triple-negative breast cancer (TNBC) in overweight/obese versus normal-weight patients. Methods: TNBC tissue sections from normal-weight (BMI<25) and overweight/obese patients (BMI≥25) were stained with antibodies against CD68, CD163, CD31, CD34, and vimentin. At the invasive tumor front, positive cells were counted in tumor adjacent adipose tissue (AT) and within cancer tissue (CT). Further, the size of the tumor-adjacent and distant mammary adipocytes was determined in perilipin stained sections. Expression of ANGPTL4, CD36 and FABP4, proteins involved in fatty acid metabolism, was analyzed in marginal tumor cells using an immune reactive score. Results: Overweight/obese TNBC patients had significantly larger adipocytes, higher numbers of CD163+ macrophages (BMI<25: 2.80 vs. BMI≥25: 10.45; p = 0.011) and lower numbers of CD31+ (BMI<25: 4.20 vs. BMI≥25: 2.40; p = 0.018) and CD34+ (BMI<25: 14.60 vs. BMI≥25: 5.20; p = 0.045) cells as markers of angiogenesis in the AT as well as a higher frequency of cancer-associated-fibroblast-like cells in the AT and CT (BMI<25: 7.60 vs. BMI≥25: 25.39 in total; p = 0.001). Moreover, expression of CD36 (BMI<25: 2.15 vs. BMI≥25: 2.60; p = 0.041) and ANGPTL4 (BMI<25: 6.00 vs. BMI≥25: 9.80; p = 0.026) was elevated in the TNBC cells of overweight/obese patients. Conclusions: Our data suggest BMI-related changes in the TME of overweight/obese TNBC patients, including hypertrophied adipocytes, reduced vascularization, more M2-like macrophages and CAF-like cells, and an increase in the expression of fatty acid metabolizing proteins in marginal tumor cells, all contributing to a more tumor-promoting, immunosuppressive environment.
Collapse
Affiliation(s)
- Marietta Wolf
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany (R.B.)
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Christoph Brochhausen
- Institute of Pathology, Medical Faculty Mannheim, University Heidelberg, 69120 Mannheim, Germany
- Institute of Pathology, Regensburg University, 93053 Regensburg, Germany
| | | | - Sabine Iberl
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany (R.B.)
| | - Jonas Roth
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany (R.B.)
| | - Sonja C. Stadler
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany (R.B.)
| |
Collapse
|
29
|
Xue Z, Liu J, Xing W, Mu F, Wu Y, Zhao J, Liu X, Wang D, Wang J, Li X, Wang J, Huang B. Hypoxic glioma-derived exosomal miR-25-3p promotes macrophage M2 polarization by activating the PI3K-AKT-mTOR signaling pathway. J Nanobiotechnology 2024; 22:628. [PMID: 39407269 PMCID: PMC11481566 DOI: 10.1186/s12951-024-02888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Exosomes (EXO) play crucial roles in intercellular communication and glioma microenvironment modulation. Tumor-associated macrophages are more likely to become M2-like type macrophages in the immunosuppressive microenvironment. Here, we aimed to investigate the effects and molecular mechanisms of hypoxic glioma-derived exosomes mediated M2-like macrophage polarization. METHODS Highly expressed miRNAs in exosomes derived from glioma cells cultured under hypoxia condition compared to normoxic condition were identified through microRNA sequencing. The polarization status of macrophages was determined using qRT-PCR, Western blotting, flow cytometry, and immunohistochemistry. By using RNA-seq, we aimed to identify the downstream target genes regulated by miR-25-3p in macrophages and investigate the mechanistic pathways through which it exerts its effects. The proliferation and migration capabilities of glioma cells were assessed through EdU, Transwell assays, and in vivo experiments. RESULTS We found that miR-25-3p was upregulated in the exosomes derived from hypoxic glioma cells and can be transferred to the macrophage. In macrophages, miR-25-3p downregulates the expression of PHLPP2, thereby activating the PI3K-AKT-mTOR signaling pathway, ultimately leading to macrophage M2 polarization. As part of a feedback loop, M2-polarized macrophages can, in turn, promote malignant glioma progression. CONCLUSION Our study reveals that miR-25-3p from hypoxic glioma cells is delivered to macrophages via exosomes as a mediator, promoting M2 polarization of macrophages through the miR-25-3p/PHLPP2/PI3K-AKT signaling pathway. This study suggests that targeted interventions to modulate miR-25-3p expression, transmission, or inhibition of PI3K-AKT pathway activation can disrupt the immune-suppressive microenvironment, providing a novel approach for immunotherapy in gliomas.
Collapse
Affiliation(s)
- Zhiwei Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Junzhi Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Wenchen Xing
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Feiyu Mu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Yanzhao Wu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Jiangli Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Xuchen Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China.
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China.
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China.
| |
Collapse
|
30
|
Liu K, Kong L, Cui H, Zhang L, Xin Q, Zhuang Y, Guo C, Yao Y, Tao J, Gu X, Jiang C, Wu J. Thymosin α1 reverses oncolytic adenovirus-induced M2 polarization of macrophages to improve antitumor immunity and therapeutic efficacy. Cell Rep Med 2024; 5:101751. [PMID: 39357524 PMCID: PMC11513825 DOI: 10.1016/j.xcrm.2024.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/29/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Although oncolytic adenoviruses are widely studied for their direct oncolytic activity and immunomodulatory role in cancer immunotherapy, the immunosuppressive feedback loop induced by oncolytic adenoviruses remains to be studied. Here, we demonstrate that type V adenovirus (ADV) induces the polarization of tumor-associated macrophages (TAMs) to the M2 phenotype and increases the infiltration of regulatory T cells (Tregs) in the tumor microenvironment (TME). By selectively compensating for these deficiencies, thymosin alpha 1 (Tα1) reprograms "M2-like" TAMs toward an antitumoral phenotype, thereby reprogramming the TME into a state more beneficial for antitumor immunity. Moreover, ADVTα1 is constructed by harnessing the merits of all the components for the aforementioned combinatorial therapy. Both exogenously supplied and adenovirus-produced Tα1 orchestrate TAM reprogramming and enhance the antitumor efficacy of ADV via CD8+ T cells, showing promising prospects for clinical translation. Our findings provide inspiration for improving oncolytic adenovirus combination therapy and designing oncolytic engineered adenoviruses.
Collapse
Affiliation(s)
- Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Medical School & School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Medical School & School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Huawei Cui
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Medical School & School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Louqian Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Medical School & School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan, China
| | - Yan Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Medical School & School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Ciliang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Medical School & School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Yongzhong Yao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Jinqiu Tao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan, China.
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Medical School & School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China; Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan, China.
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Medical School & School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China; Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan, China.
| |
Collapse
|
31
|
Wang C, Hou Y, Zak J, Zheng Q, McCord KA, Wu M, Zhang D, Chung S, Shi Y, Ye J, Zhao Y, Hajjar S, Wilson IA, Paulson JC, Teijaro JR, Zhou X, Sharpless KB, Macauley MS, Wu P. Reshaping the tumor microenvironment by degrading glycoimmune checkpoints Siglec-7 and -9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617879. [PMID: 39416090 PMCID: PMC11483058 DOI: 10.1101/2024.10.11.617879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cancer treatment has been rapidly transformed by the development of immune checkpoint inhibitors targeting CTLA-4 and PD-1/PD-L1. However, many patients fail to respond, especially those with an immunosuppressive tumor microenvironment (TME), suggesting the existence of additional immune checkpoints that act through orthogonal mechanisms. Sialic acid-binding immunoglobulin-like lectin (Siglec)-7 and -9 are newly designated glycoimmune checkpoints that are abundantly expressed by tumor-infiltrating myeloid cells. We discovered that T cells express only basal levels of Siglec transcripts; instead, they acquire Siglec-7 and -9 from interacting myeloid cells in the TME via trogocytosis, which impairs their activation and effector function. Mechanistically, Siglec-7 and -9 suppress T cell activity by dephosphorylating T cell receptor (TCR)-related signaling cascades. Using sulfur fluoride exchange (SuFEx) click chemistry, we developed a ligand that binds to Siglec-7 and -9 with high-affinity and exclusive specificity. Using this ligand, we constructed a Siglec-7/9 degrader that targets membrane Siglec-7 and -9 to the lysosome for degradation. Administration of this degrader induced efficient Siglec degradation in both T cells and myeloid cells in the TME. We found that Siglec-7/9 degradation has a negligible effect on macrophage phagocytosis, but significantly enhances T cell anti-tumor immunity. The degrader, particularly when combined with anti-CTLA-4, enhanced macrophage antigen presentation, reshaped the TME, and resulted in long-lasting T cell memory and excellent tumor control in multiple murine tumor models. These findings underscore the need to consider exogenous checkpoints acquired by T cells in the TME when selecting specific checkpoint blockade therapy to enhance T cell immunity.
Collapse
Affiliation(s)
- Chao Wang
- Department of Molecular and Cellular Biology, The Scripps Research Institute, California, United States
- Department of Chemistry, The Scripps Research Institute, California, United States
| | - Yingqin Hou
- Department of Molecular and Cellular Biology, The Scripps Research Institute, California, United States
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, California, United States
| | - Qinheng Zheng
- Department of Chemistry, The Scripps Research Institute, California, United States
| | | | - Mengyao Wu
- Department of Molecular and Cellular Biology, The Scripps Research Institute, California, United States
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ding Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, California, United States
| | - Shereen Chung
- Department of Molecular and Cellular Biology, The Scripps Research Institute, California, United States
| | - Yujie Shi
- Department of Molecular and Cellular Biology, The Scripps Research Institute, California, United States
| | - Jinfeng Ye
- Department of Molecular and Cellular Biology, The Scripps Research Institute, California, United States
| | - Yunlong Zhao
- Department of Immunology, Center of Excellence for Pediatric Immuno-Oncology, St. Jude Children’s Research Hospital, Tennessee, United States
| | - Stephanie Hajjar
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, and Harvard Medical School, Boston, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, California, United States
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, California, United States
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, California, United States
| | - Xu Zhou
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, and Harvard Medical School, Boston, United States
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, California, United States
| | - Matthew S. Macauley
- Department of Chemistry, University of Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Canada
| | - Peng Wu
- Department of Molecular and Cellular Biology, The Scripps Research Institute, California, United States
| |
Collapse
|
32
|
Ding S, Yi X, Gao J, Huang C, Zheng S, Wu L, Cai Z. Prognostic risk model of LIHC T-cells based on scRNA-seq and RNA-seq and the regulation of the tumor immune microenvironment. Discov Oncol 2024; 15:540. [PMID: 39388011 PMCID: PMC11467143 DOI: 10.1007/s12672-024-01424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND T-cell-related genes play a crucial role in LIHC development. However, a reliable prognostic profile based on risk models of these genes has yet to be identified. METHODS Single-cell datasets from both tumor and normal tissue samples were obtained from the GEO database. We identified T-cell marker genes and developed a genetic risk model using the TCGA-LIHC dataset, which was subsequently validated with an independent GEO dataset. We also explored the relationship between risk model predictions and immune responses. RESULTS We constructed a prognostic risk model using eight gene features identified through screening 860 T-cell marker genes via scRNA-seq and RNA-seq, which was subsequently integrated with the TCGA dataset. Its validity was independently confirmed using GEO and ICGC datasets. The TCGA dataset was stratified into high-risk and low-risk groups based on the risk model. Multivariate Cox regression analysis confirmed the risk score as an independent prognostic factor. GSEA indicated ribosomal transporter metabolism enrichment in the high-risk group and significant transcriptional activation in the low-risk group. ESTIMATE analysis showed higher ESTIMATE, immune, and stromal scores in the low-risk group, which also exhibited lower tumor purity than the high-risk group. Immunophenotyping revealed distinct patterns of immune cell infiltration and an immunosuppressive environment in the high-risk group. CONCLUSIONS This study introduces a T-cell marker-based prognostic risk model for LIHC patients. This model effectively predicted survival outcomes and immunotherapy effectiveness in LIHC patients, aligning with diverse immune responses and the distinct immunological profiles observed in the high-risk group.
Collapse
Affiliation(s)
- Shoupeng Ding
- Department of Laboratory Medicine, Gutian County Hospital, Gutian, 352200, China
| | - Xiaomei Yi
- Department of Laboratory Medicine, Ninghua County General Hospital, Ninghua, 365400, China
| | - Jinghua Gao
- Chuxiong Yi Autonomous Prefecture People's Hospital, Chuxiong, 675000, China
| | - Chunxiao Huang
- Department of Laboratory Medicine, Gutian County Hospital, Gutian, 352200, China
| | - Shouzhao Zheng
- Department of Laboratory Medicine, Gutian County Hospital, Gutian, 352200, China
| | - Lixian Wu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, No. 22, Wanhua Road, Xiaguan Town, Dali, 671000, China.
| | - Zihan Cai
- Department of Medical Laboratory, Siyang Hospital, Siyang, 237000, China.
| |
Collapse
|
33
|
Liang Y, Li J, Yuan Y, Ju H, Liao H, Li M, Liu Y, Yao Y, Yang L, Li T, Lei X. Exosomal miR-106a-5p from highly metastatic colorectal cancer cells drives liver metastasis by inducing macrophage M2 polarization in the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:281. [PMID: 39385295 PMCID: PMC11462797 DOI: 10.1186/s13046-024-03204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is a dynamic system orchestrated by intricate cell-to-cell crosstalk. Specifically, macrophages within the TME play a crucial role in driving tumor progression. Exosomes are key mediators of communication between tumor cells and the TME. However, the mechanisms underlying exosome-driven crosstalk between tumor cells and macrophages during colorectal cancer (CRC) progression remain incompletely elucidated. METHODS Single-cell RNA sequencing were analyzed using the Seurat package. Exosomes were isolated using ultracentrifugation and characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blot. miRNAs differentially expressed in exosomes were analyzed using the limma package. CD206 expression in CRC tissues, exosomes tracing, and exosomal miR-106a-5p transport were observed through immunofluorescence. Macrophage polarization was assessed via qRT-PCR, ELISA, and flow cytometry. The interactions between miR-106a-5p, hnRNPA1, and SOCS6 were evaluated using miRNA pull-down, RIP, and dual-luciferase reporter assays. Transwell assays and liver metastasis model explored the role of exosomal miR-106a-5p-induced M2 macrophages in promoting CRC liver metastasis. RESULT The proportion of M2 macrophages is increased in CRC with liver metastasis compared to those without. Highly metastatic CRC cells release exosomes enriched with miR-106a-5p, which promote macrophages M2 polarization by suppressing SOCS6 and activating JAK2/STAT3 pathway. These M2 macrophages reciprocally enhance CRC liver metastasis. hnRNPA1 regulate the transport of miR-106a-5p into exosomes. Clinically, elevated miR-106a-5p in plasma exosomes correlated with liver metastasis and poor prognosis. CONCLUSION CRC-derived exosomal miR-106a-5p plays a critical role in promoting liver metastasis and is a potential biomarker for the prevention and treatment of CRC liver metastasis.
Collapse
Affiliation(s)
- Yahang Liang
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Junyu Li
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yuli Yuan
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Houqiong Ju
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hualin Liao
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Mingming Li
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yang Liu
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yao Yao
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Taiyuan Li
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Xiong Lei
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
34
|
Nian Z, Dou Y, Shen Y, Liu J, Du X, Jiang Y, Zhou Y, Fu B, Sun R, Zheng X, Tian Z, Wei H. Interleukin-34-orchestrated tumor-associated macrophage reprogramming is required for tumor immune escape driven by p53 inactivation. Immunity 2024; 57:2344-2361.e7. [PMID: 39321806 DOI: 10.1016/j.immuni.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
As the most frequent genetic alteration in cancer, more than half of human cancers have p53 mutations that cause transcriptional inactivation. However, how p53 modulates the immune landscape to create a niche for immune escape remains elusive. We found that cancer stem cells (CSCs) established an interleukin-34 (IL-34)-orchestrated niche to promote tumorigenesis in p53-inactivated liver cancer. Mechanistically, we discovered that Il34 is a gene transcriptionally repressed by p53, and p53 loss resulted in IL-34 secretion by CSCs. IL-34 induced CD36-mediated elevations in fatty acid oxidative metabolism to drive M2-like polarization of foam-like tumor-associated macrophages (TAMs). These IL-34-orchestrated TAMs suppressed CD8+ T cell-mediated antitumor immunity to promote immune escape. Blockade of the IL-34-CD36 axis elicited antitumor immunity and synergized with anti-PD-1 immunotherapy, leading to a complete response. Our findings reveal the underlying mechanism of p53 modulation of the tumor immune microenvironment and provide a potential target for immunotherapy of cancer with p53 inactivation.
Collapse
Affiliation(s)
- Zhigang Nian
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yingchao Dou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yiqing Shen
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jintang Liu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xianghui Du
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Jiang
- Department of Anesthesiology, The first affiliated hospital of Anhui Medical University, Hefei, Anhui 230027, China
| | - Yonggang Zhou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Binqing Fu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaohu Zheng
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
35
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
36
|
Zheng H, Cheng J, Zhuang Z, Li D, Yang J, Yuan F, Fan X, Liu X. A disulfidptosis-related lncRNA signature for analyzing tumor microenvironment and clinical prognosis in hepatocellular carcinoma. Front Immunol 2024; 15:1412277. [PMID: 39434887 PMCID: PMC11491388 DOI: 10.3389/fimmu.2024.1412277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Disulfidptosis is a recently identified form of non-apoptotic programmed cell death which distinguishes itself from classical cell death pathways. However, the prognostic implications of disulfidptosis-related long non-coding RNAs (DRLs) and their underlying mechanisms in hepatocellular carcinoma (HCC) remain largely unexplored. Methods In this study, we leveraged RNA-sequencing data and clinical information of HCC patients from the TCGA database. Through expression correlation and prognostic correlation analyses, we identified a set of top-performing long non-coding RNAs. Subsequently, a 5-DRLs predictive signature was established by conducting a Lasso regression analysis. Results This signature effectively stratified patients into high- and low-risk groups, revealing notable differences in survival outcomes. Further validation through univariate and multivariate Cox regression analyses confirmed that the risk score derived from our signature independently predicted the prognosis of HCC patients. Moreover, we observed significant disparities in immune cell infiltration and tumor mutation burden (TMB) between the two risk groups, shedding light on the potential connection between immune-related mechanisms and disulfidptosis. Notably, the signature also exhibited predictive value in the context of chemotherapeutic drug sensitivity and immunotherapy efficacy for HCC patients. Finally, we performed experimental validation at both cellular and patient levels and successfully induced a disulfidptosis phenotype in HCC cells. Discussion In general, this multifaceted approach provides a comprehensive overview of DRLs profiles in HCC, culminating in the establishment of a novel risk signature that holds promise for predicting prognosis and therapy outcomes of HCC patients.
Collapse
Affiliation(s)
- Haishui Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jigan Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziyun Zhuang
- Shantou University Medical College, Shantou, China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital.Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Li M, Cui Y, Qi Q, Liu J, Li J, Huang G, Yang J, Sun J, Ma Z, Liang S, Zhang D, Jiang J, Zhu R, Liu Q, Huang R, Yan J. SPOP downregulation promotes bladder cancer progression based on cancer cell-macrophage crosstalk via STAT3/CCL2/IL-6 axis and is regulated by VEZF1. Theranostics 2024; 14:6543-6559. [PMID: 39479456 PMCID: PMC11519788 DOI: 10.7150/thno.101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Background: Cancer cells are intimately intertwined with tumor microenvironment (TME), fostering a symbiotic relationship propelling cancer progression. However, the interaction between cancer cells and tumor-associated macrophages (TAMs) in urothelial bladder cancer (UBC) remains poorly understood. Methods: UBC cell lines (5637, T24 and SW780), along with a monocytic cell line (U937) capable of differentiating into macrophage, were used in a co-culture system for cell proliferation and stemness by MTT, sphere formation assays. VEZF1/SPOP/STAT3/CCL2/ IL-6 axis was determined by luciferase reporter, ChIP, RNA-seq, co-IP, in vitro ubiquitination, RT-qPCR array and ELISA analyses. Results: We observed the frequent downregulation of SPOP, an E3 ubiquitin ligase, was positively associated with tumor progression and TAM infiltration in UBC patients and T24 xenografts. Cancer cell-TAM crosstalk promoting tumor aggressiveness was demonstrated dependent on SPOP deficiency: 1) In UBC cells, STAT3 was identified as a novel substrate of SPOP, and SPOP deficiency increased STAT3 protein stability, elevated chemokine CCL2 secretion, which induced chemotaxis and M2 polarization of macrophage; 2) In co-cultured macrophages, IL-6 secretion enhanced UBC cell proliferation and stemness. Additionally, transcription factor VEZF1 could directly activate SPOP transcription, and its overexpression suppressed the above effects in UBC cells. Conclusions: A pivotal role of SPOP in maintaining UBC stemness and remodeling immunosuppressive TME was revealed. Both the intrinsic signaling (dysregulated VEZF1/SPOP/STAT3 axis) and the extrinsic cues from TME (CCL2-IL-6 axis based on macrophages) promoted UBC progression. Targeting this crosstalk may offer a promising therapeutic strategy for UBC patients with SPOP deficiency.
Collapse
Affiliation(s)
- Meiqian Li
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Yangyan Cui
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Qi Qi
- Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Jiakuan Liu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Jiaxuan Li
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Guifang Huang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiale Yang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingya Sun
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhihui Ma
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shengjie Liang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Rujian Zhu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ruimin Huang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yan
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
38
|
Liu L, Wang R, Alifu A, Xiao Y, Liu Y, Qian C, Zhao M, Tang X, Xie Y, Shi Y, Zou Y, Xiao H, Yang K, Liu H. Hypoxia-driven M2-polarized macrophages facilitate the epithelial-mesenchymal transition of glioblastoma via extracellular vesicles. Theranostics 2024; 14:6392-6408. [PMID: 39431006 PMCID: PMC11488104 DOI: 10.7150/thno.95766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Rationale: M2-like tumor-associated macrophages (TAMs) promote the malignant progression of glioblastomas. However, the mechanisms responsible for this phenomenon remain unclear. Methods: RT-PCR, Western blot and flow cytometry were used to evaluate the polarization status of macrophages. RT-PCR, western blot or/and immunohistochemistry was used to determine the expression of circ_0003137, PTBP1, PLOD3 and epithelial-mesenchymal transition (EMT) markers. Transwell assay was used to assess migration and invasion ability of tumor cells. RNA sequencing, bioinformatic analysis and Pearson correlation coefficient was performed to explore the relation between PTBP1 and circ_003137/PLOD3. In vivo experiment was used to determine the role of sh-circ_0003137-loaded nanoplatform. Results: Hypoxia promoted the polarization of macrophages towards M2-like TAMs in an HIF1α dependent manner. Then, M2-like TAMs could transport circ_0003137 enriched extracellular vesicles (EVs) to glioblastoma cells, upregulating circ_0003137 in glioblastoma cells. The circ_0003137 overexpression promoted the EMT of glioblastoma cells in vitro and in vivo. Mechanistically, circ_0003137 physically binds to polypyrimidine tract binding protein 1 (PTBP1), enhancing the stability of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) and promoting the EMT of glioblastoma cells. Moreover, a liposome-based nanoplatform that delivers shRNAs was established and used to encapsulate sh-circ_0003137. The fluorescence microscope tracer and cell co-culture assays demonstrated that the nanoplatform encapsulated with sh-circ_0003137 was stable and could penetrate the blood-brain barrier (BBB), finally reaching the central nervous system (CNS). The intracranial in situ tumor model showed that injecting the sh-circ_0003137-loaded nanoplatform via the tail vein significantly inhibited glioblastoma progression and improved the nude mice's survival. Conclusions: Hypoxia can drive macrophage polarization towards M2-like TAMs. Polarized M2-like TAMs can transport circ_0003137 to glioblastoma cells through EVs. Then, circ_0003137 promotes the EMT of glioblastomas by targeting the PTBP1/PLOD3 axis. Hence, targeting circ_0003137 might be a novel therapeutic strategy against glioblastoma.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ran Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Aogesi Alifu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yong Xiao
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yong Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Chunfa Qian
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Mengjie Zhao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xianglong Tang
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yandong Xie
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yan Shi
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yuanjie Zou
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Kun Yang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
39
|
Zhang F, Jiang Q, Cai J, Meng F, Tang W, Liu Z, Lin X, Liu W, Zhou Y, Shen X, Xue R, Dong L, Zhang S. Activation of NOD1 on tumor-associated macrophages augments CD8 + T cell-mediated antitumor immunity in hepatocellular carcinoma. SCIENCE ADVANCES 2024; 10:eadp8266. [PMID: 39356756 PMCID: PMC11446285 DOI: 10.1126/sciadv.adp8266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
The efficacy of immunotherapy targeting the PD-1/PD-L1 pathway in hepatocellular carcinoma (HCC) is limited. NOD-like receptors (NLRs) comprise a highly evolutionarily conserved family of cytosolic bacterial sensors, yet their impact on antitumor immunity against HCC remains unclear. In this study, we uncovered that NOD1, a well-studied member of NLR family, exhibits predominant expression in tumor-associated macrophages (TAMs) and correlates positively with improved prognosis and responses to anti-PD-1 treatments in patients with HCC. Activation of NOD1 in vivo augments antitumor immunity and enhances the effectiveness of anti-PD-1 therapy. Mechanistically, NOD1 activation resulted in diminished expression of perilipin 5, thereby hindering fatty acid oxidation and inducing free fatty acid accumulation in TAMs. This metabolic alteration promoted membrane localization of the costimulatory molecule OX40L in a lipid modification-dependent manner, thereby activating CD8+ T cells. These findings unveil a previously unrecognized role for NOD1 in fortifying antitumor T cell immunity in HCC, potentially advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Qiuyu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Jialiang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Fansheng Meng
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Zhiyong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Xiahui Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Wenfeng Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Yi Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dongan Road, Shanghai, 200030, P.R. China
| |
Collapse
|
40
|
Qiu J, Ren T, Liu Q, Jiang Q, Wu T, Cheng LC, Yan W, Qu X, Han X, Hua K. Dissecting the Distinct Tumor Microenvironments of HRD and HRP Ovarian Cancer: Implications for Targeted Therapies to Overcome PARPi Resistance in HRD Tumors and Refractoriness in HRP Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309755. [PMID: 39136172 PMCID: PMC11481286 DOI: 10.1002/advs.202309755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/08/2024] [Indexed: 10/17/2024]
Abstract
High-grade serous tubo-ovarian cancer (HGSTOC) is an aggressive gynecological malignancy including homologous recombination deficient (HRD) and homologous recombination proficient (HRP) groups. Despite the therapeutic potential of poly (ADP-ribose) polymerase inhibitors (PARPis) and anti-PDCD1 antibodies, acquired resistance in HRD and suboptimal response in HRP patients necessitate more precise treatment. Herein, single-cell RNA and single-cell T-cell receptor sequencing on 5 HRD and 3 HRP tumors are performed to decipher the heterogeneous tumor immune microenvironment (TIME), along with multiplex immunohistochemistry staining and animal experiments for validation. HRD tumors are enriched with immunogenic epithelial cells, FGFR1+PDGFRβ+ myCAFs, M1 macrophages, tumor reactive CD8+/CD4+ Tregs, whereas HRP tumors are enriched with HDAC1-expressing epithelial cells, indolent CAFs, M2 macrophages, and bystander CD4+/CD8+ T cells. Significantly, customized therapies are proposed. For HRD patients, targeting FGFR1+PDGFRβ+ myCAFs via tyrosine kinase inhibitors, targeting Tregs via anti-CCR8 antibodies/TNFRSF4 stimulation, and targeting CXCL13+ exhausted T cells by blocking PDCD1/CTLA-4/LAG-3/TIGIT are proposed. For HRP patients, targeting indolent CAFs, targeting M2 macrophages via CSF-1/CSF-1R inhibitors, targeting bystander T cells via tumor vaccines, and targeting epithelial cells via HDAC inhibitors. The study provides comprehensive insights into HRD and HRP TIME and tailored therapeutic approaches, addressing the challenges of PARPi-resistant HRD and refractory HRP tumors.
Collapse
Affiliation(s)
- Junjun Qiu
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Tingting Ren
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Qinqin Liu
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Qian Jiang
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Tong Wu
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Leong Chi Cheng
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Wenqing Yan
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Xinyu Qu
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Xiao Han
- Kangxiang Bio‐tech.Ltd.2168 Chenhang RoadShangHai201114China
| | - Keqin Hua
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
| |
Collapse
|
41
|
Ebrahimabadi S, Kaufman DS. Next-generation macrophages: repolarizing CAR-macrophages against cancer. BLOOD SCIENCE 2024; 6:e00201. [PMID: 39071949 PMCID: PMC11281770 DOI: 10.1097/bs9.0000000000000201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Affiliation(s)
- Sima Ebrahimabadi
- Center for Cell-Based Therapy - CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Dan S. Kaufman
- Division of Regenerative Medicine, Department of Medicine and Sanford Stem Cell Institute, University of California - San Diego, La Jolla, CA, USA
| |
Collapse
|
42
|
Ma H, Gao L, Chang R, Zhai L, Zhao Y. Crosstalk between macrophages and immunometabolism and their potential roles in tissue repair and regeneration. Heliyon 2024; 10:e38018. [PMID: 39381218 PMCID: PMC11458987 DOI: 10.1016/j.heliyon.2024.e38018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Immune metabolism is a result of many specific metabolic reactions, such as glycolysis, the tricarboxylic acid (TCA) pathway, the pentose phosphate pathway (PPP), mitochondrial oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), fatty acid biosynthesis (FAs) and amino acid pathways, which promote cell proliferation and maintenance with structural and pathological energy to regulate cellular signaling. The metabolism of macrophages produces many metabolic intermediates that play important regulatory roles in tissue repair and regeneration. The metabolic activity of proinflammatory macrophages (M1) mainly depends on glycolysis and the TCA cycle system, but anti-inflammatory macrophages (M2) have intact functions of the TCA cycle, which enhances FAO and is dependent on OXPHOS. However, the metabolic mechanisms of macrophages in tissue repair and regeneration have not been well investigated. Thus, we review how three main metabolic mechanisms of macrophages, glucose metabolism, lipid metabolism, and amino acid metabolism, regulate tissue repair and regeneration.
Collapse
Affiliation(s)
- Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Lihong Zhai
- Institute of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China
| | - Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
43
|
Li X, Chen T, Li X, Zhang H, Li Y, Zhang S, Luo S, Zheng T. Therapeutic targets of armored chimeric antigen receptor T cells navigating the tumor microenvironment. Exp Hematol Oncol 2024; 13:96. [PMID: 39350256 PMCID: PMC11440706 DOI: 10.1186/s40164-024-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.
Collapse
Affiliation(s)
- Xianjun Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tianjun Chen
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Xuehan Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Hanyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingjing Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shuyuan Zhang
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shengnan Luo
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tongsen Zheng
- Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China.
| |
Collapse
|
44
|
Cha SM, Park JW, Lee YJ, Lee HJ, Lee H, Lee IW, Gong G, Park SH, Lee HJ, Jeong BK. SPP1+ macrophages in HR+ breast cancer are associated with tumor-infiltrating lymphocytes. NPJ Breast Cancer 2024; 10:83. [PMID: 39349495 PMCID: PMC11442831 DOI: 10.1038/s41523-024-00695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/22/2024] [Indexed: 10/02/2024] Open
Abstract
Breast cancer categorized into hormone receptor-positive (HR+), HER2-positive (HER2+), and triple-negative (TNBC) subtypes, exhibits varied outcomes based on the number of tumor-infiltrating lymphocytes (TILs). To explore the divergent roles of TIL levels across different subtypes, we employed single-cell RNA sequencing on 31 patients with breast cancer. HR+ breast cancer with high TIL levels (TIL-high) revealed increased SPP1+ macrophages, increased SPP1 expression in other monocytes/macrophages (mono/macro) subgroups, and enriched pathways associated with extracellular matrix (ECM) remodeling in mono/macro. Moreover, cell-cell interaction analyses revealed enhanced SPP1, MIF, and FN1 signaling in the interaction between SPP1+ macrophages and T-cells in TIL-high HR+ breast cancer. Spatial transcriptomics data highlighted the close proximity of SPP1+ macrophages, CD8+ T-cells, and CD4+ T-cells in TIL-high HR+ breast cancer. Our findings unveil the novel influence of SPP1+ macrophages on T-cells in TIL-high HR+ breast cancer, potentially explaining the poor prognosis and offering insights for targeted interventions.
Collapse
Grants
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- A20221175 Asan Institute for Life Sciences, Asan Medical Center
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
- NRF-2018R1D1A1B07048831 National Research Foundation of Korea (NRF)
Collapse
Affiliation(s)
- Su Min Cha
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Yoon Jae Lee
- University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung Hee Park
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
- Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Seoul, South Korea.
- NeogenTC Corp., Seoul, South Korea.
| | - Byung-Kwan Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
45
|
Xie X, Yang M, Wei X, Chu H, Zhao W, Shen N. Dual immunostimulatory CD73 antibody-polymeric cytotoxic drug complex for triple negative breast cancer therapy. Acta Biomater 2024:S1742-7061(24)00549-X. [PMID: 39341438 DOI: 10.1016/j.actbio.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Treatment of triple-negative breast cancer (TNBC) poses significant challenges due to its propensity for metastasis. A key impediment lies in the suppressive immune microenvironment, which fosters tumor progression. This study introduces an approach employing a dual immune-stimulatory CD73 antibody-polymeric cytotoxic drug complex (αCD73-PLG-MMAE). This complex is designed for targeted eradication of TNBC while modulating tumor immunity through mechanisms such as immunogenic cell death (ICD) and interference with the adenosine signaling pathway. By enhancing antitumor immune responses, this strategy offers a highly effective means of treating TNBC and mitigating metastasis. The complex is synthesized by combining αCD73 with poly(L-glutamic acid) (PLG) grafted Fc binding peptides (Fc-III-4C) and Val-Cit-PAB-monomethyl auristatin E (MMAE), exploiting the affinity between αCD73 and Fc-III-4C. αCD73 selectively targets CD73 molecules on both tumor and immune suppressive cells, thereby inhibiting the adenosine pathway. Meanwhile, Val-Cit-PAB-MMAE, activated by cathepsin B, triggers selective release of MMAE, inducing ICD in tumor cells. In a 4T1 tumor model, αCD73-PLG-MMAE significantly enhances drug accumulation in tumors by 4.13-fold compared to IgG-PLG-MMAE, leading to suppression of tumor growth and metastasis. Furthermore, it synergistically augments the antitumor effects of αPD-1, resulting in a tumor inhibition rate of 92 % as compared to 21 % with αPD-1 alone. This study thus presents a pioneering therapeutic strategy for TNBC, emphasizing the potential of targeted immunomodulation in cancer treatment. STATEMENT OF SIGNIFICANCE: Antibody-drug conjugate (ADC) therapy holds promise for treating triple-negative breast cancer (TNBC). However, the current ADC, sacituzumab govitecan, fails to overcome the crucial role of adenosine in the suppressive immune microenvironment characteristic of this "cold tumor". Here, we present a dual immune-stimulatory complex, αCD73-PLG-MMAE, which targets TNBC specifically and modulates tumor immunity through mechanisms such as immunogenic cell death (ICD) and interference with the adenosine signaling pathway. Thus, it kills tumor cells with cytotoxic drugs, comprehensively regulates immunosuppression, and restores a durable immune response. This study proposes an antibody-polymeric drug complex with immunomodulatory and immunoagonist roles, offering new insights into TNBC treatment.
Collapse
Affiliation(s)
- Xiao Xie
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, China.
| | - Xue Wei
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Hongyu Chu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Weidong Zhao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
46
|
Dou X, Feng C, Li J, Jiang E, Shang Z. Extracellular vesicle-mediated crosstalk in tumor microenvironment dominates tumor fate. Trends Cell Biol 2024:S0962-8924(24)00186-7. [PMID: 39327161 DOI: 10.1016/j.tcb.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous system containing various cells cooperating and competing with each other. Extracellular vesicles (EVs) differing in form and content are important intercellular communication mediators in the TME. Previous studies have focused on the cargoes within EVs rather than on the donors from which they originate and the recipient cells that exert their effects. Therefore, we provide here a detailed overview of the important roles of EVs in shaping tumor fate, highlighting their various mechanisms of intercellular dialog within the TME. We evaluate recent advances and also raise unresolved challenges to provide new ideas for clinical treatment strategies using EVs.
Collapse
Affiliation(s)
- Xinyu Dou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China
| | - Chunyu Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China
| | - Ji Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China
| | - Erhui Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China; Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China.
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China; Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China.
| |
Collapse
|
47
|
Liu J, Zhao H, Gao T, Huang X, Liu S, Liu M, Mu W, Liang S, Fu S, Yuan S, Yang Q, Gu P, Li N, Ma Q, Liu J, Zhang X, Zhang N, Liu Y. Glypican-3-targeted macrophages delivering drug-loaded exosomes offer efficient cytotherapy in mouse models of solid tumours. Nat Commun 2024; 15:8203. [PMID: 39313508 PMCID: PMC11420241 DOI: 10.1038/s41467-024-52500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Cytotherapy is a strategy to deliver modified cells to a diseased tissue, but targeting solid tumours remains challenging. Here we design macrophages, harbouring a surface glypican-3-targeting peptide and carrying a cargo to combat solid tumours. The anchored targeting peptide facilitates tumour cell recognition by the engineered macrophages, thus enhancing specific targeting and phagocytosis of tumour cells expressing glypican-3. These macrophages carry a cargo of the TLR7/TLR8 agonist R848 and INCB024360, a selective indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor, wrapped in C16-ceramide-fused outer membrane vesicles (OMV) of Escherichia coli origin (RILO). The OMVs facilitate internalization through caveolin-mediated endocytosis, and to maintain a suitable nanostructure, C16-ceramide induces membrane invagination and exosome generation, leading to the release of cargo-packed RILOs through exosomes. RILO-loaded macrophages exert therapeutic efficacy in mice bearing H22 hepatocellular carcinomas, which express high levels of glypican-3. Overall, we lay down the proof of principle for a cytotherapeutic strategy to target solid tumours and could complement conventional treatment.
Collapse
Affiliation(s)
- Jinhu Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Huajun Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Tong Gao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Xinyan Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Shujun Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Meichen Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Weiwei Mu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Shuang Liang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Shunli Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Shijun Yuan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Qinglin Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Panpan Gu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Nan Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Qingping Ma
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Jie Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Xinke Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Na Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China.
| | - Yongjun Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China.
| |
Collapse
|
48
|
Qin X, Liu H, Zhang Q, Che Y, Lei T, Tang F, Hu Q. RNA modifications in cancer immune therapy: regulators of immune cells and immune checkpoints. Front Immunol 2024; 15:1463847. [PMID: 39372415 PMCID: PMC11449722 DOI: 10.3389/fimmu.2024.1463847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
RNA modifications are epigenetic changes that alter the structure and function of RNA molecules, playing a crucial role in the onset, progression, and treatment of cancer. Immune checkpoint inhibitor (ICI) therapies, particularly PD-1 blockade and anti-CTLA-4 treatments, have changed the treatment landscape of virous cancers, showing great potential in the treatment of different cancer patients, but sensitivity to these therapies is limited to certain individuals. This review offers a comprehensive survey of the functions and therapeutic implications of the four principal RNA modifications, particularly highlighting the significance of m6A in the realms of immune cells in tumor and immunotherapy. This review starts by providing a foundational summary of the roles RNA modifications assume within the immune cell community, focusing on T cells, NK cells, macrophages, and dendritic cells. We then discuss how RNA modifications influence the intricate regulatory mechanisms governing immune checkpoint expression, modulation of ICI efficacy, and prediction of ICI treatment outcomes, and review drug therapies targeting genes regulated by RNA modifications. Finally, we explore the role of RNA modifications in gene editing, cancer vaccines, and adoptive T cell therapies, offering valuable insights into the use of RNA modifications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangyu Qin
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
- Wuhan University Heavy Ion Medicine Center, Wuhan, China
| | - Huali Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qixuan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuhang Che
- Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
- Wuhan University Heavy Ion Medicine Center, Wuhan, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
- Wuhan University Heavy Ion Medicine Center, Wuhan, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
- Wuhan University Heavy Ion Medicine Center, Wuhan, China
| |
Collapse
|
49
|
Liu G, Hu C, Wei J, Li Q, Zhang J, Zhang Z, Qu P, Cao Z, Wang R, Ji G, She J, Shi F. The association of appendectomy with prognosis and tumor-associated macrophages in patients with colorectal cancer. iScience 2024; 27:110578. [PMID: 39224521 PMCID: PMC11367569 DOI: 10.1016/j.isci.2024.110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
The vermiform appendix plays an important role in colorectal immunity and the homeostasis of the gut microbiome. We aimed to evaluate the prognostic value of prior appendectomy for patients with colorectal cancer (CRC). This study revealed that prior appendectomy is an independent risk factor for the prognosis of patients with CRC, based on a multicentral CRC cohort. We further demonstrated that appendectomy induced a poor prognosis of CRC through the depletion of M1 macrophage cells in AOM-induced mice, which was confirmed in age-, sex-, and location-matched patients' cohorts and orthotopic model models with the CT26 cell line. Poor responses to anti-PD-1 immunotherapy were detected in patients with CRC with appendectomy, and cetuximab is an effective treatment for patients with appendectomy-associated colorectal cancer (APD-CRC) to improve their prognosis. Our study will provide a reference for developing treatment plans for a considerable number of patients with APD-CRC, which is of great clinical significance.
Collapse
Affiliation(s)
- Gaixia Liu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chenhao Hu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiangpeng Wei
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Qixin Li
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiaqi Zhang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Penghong Qu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zeyu Cao
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruochen Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Gang Ji
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Feiyu Shi
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
50
|
He Q, Su Q, Wei C, Zhang P, Liu W, Chen J, Su X, Zhuang W. Extrachromosomal circular DNAs in prostate adenocarcinoma: global characterizations and a novel prediction model. Front Pharmacol 2024; 15:1464145. [PMID: 39355773 PMCID: PMC11442297 DOI: 10.3389/fphar.2024.1464145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/19/2024] [Indexed: 10/03/2024] Open
Abstract
Background The role of focal amplifications and extrachromosomal circular DNA (eccDNA) is still uncertain in prostate adenocarcinoma (PRAD). Here, we first mapped the global characterizations of eccDNA and then investigate the characterization of eccDNA-amplified key differentially expressed encoded genes (eKDEGs) in the progression, immune response and immunotherapy of PRAD. Methods Circular_seq was used in conjunction with the TCGA-PRAD transcriptome dataset to sequence, annotate, and filter for eccDNA-amplified differentially expressed coding genes (eDEGs) in PRAD and para-cancerous normal prostate tissues. Afterwards, risk models were created and eKDEGs linked to the PRAD prognosis were identified using Cox and Lasso regression analysis. The immune microenvironment of the risk model was quantified using a variety of immunological algorithms, which also identified its characteristics with regard to immunotherapy, immune response, and immune infiltration. Results In this research, there was no significant difference in the size, type, and chromosomal distribution of eccDNA in PRAD and para-cancerous normal prostate tissues. However, 4,290 differentially expressed eccDNAs were identified and 1,981 coding genes were amplified. Following that, 499 eDEGs were tested in conjunction with the transcriptome dataset from TCGA-PRAD. By using Cox and Lasso regression techniques, ZNF330 and PITPNM3 were identified as eKDEGs of PRAD, and a new PRAD risk model was conducted based on this. Survival analysis showed that the high-risk group of this model was associated with poor prognosis and validated in external data. Immune infiltration analysis showed that the model risks affected immune cell infiltration in PRAD, not only mediating changes in immune cell function, but also correlating with immunophenotyping. Furthermore, the high-risk group was negatively associated with anti-CTLA-4/anti-PD-1 response and mutational burden. In addition, Tumor Immune Dysfunction and Exclusion analyses showed that high-risk group was more prone to immune escape. Drug sensitivity analyses identified 10 drugs, which were instructive for PRAD treatment. Conclusion ZNF330 and PITPNM are the eKDEGs for PRAD, which can be used as potential new prognostic markers. The two-factor combined risk model can effectively assess the survival and prognosis of PRAD patients, but also can predict the different responses of immunotherapy to PRAD patients, which may provide new ideas for PRAD immunotherapy.
Collapse
Affiliation(s)
- Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chengcheng Wei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pu Zhang
- Department of Urology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihui Liu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Junyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaoping Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Nursing, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|