1
|
Yue T, Wang J, Liu F, Gong P, Li J, Zhang X, Zhang N. The effects of anti-lung cancer in nude mice by a fully human single-chain antibody against associated antigen Ts7TMR between A549 cells and Trichinella spiralis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:300-308. [PMID: 38753524 DOI: 10.1080/21691401.2024.2347377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Lung cancer is a dangerous disease that is lacking in an ideal therapy. Here, we evaluated the anti-lung cancer effect in nude mice of a fully human single-chain antibody (scFv) against the associated antigen 7 transmembrane receptor (Ts7TMR), which is also called G protein-coupled receptor, between A549 cells and Trichinella spiralis (T. spiralis). Our data showed that anti-Ts7TMR scFv could inhibit lung cancer growth in a dose-dependent manner, with a tumour inhibition rate of 59.1%. HE staining did not reveal any obvious tissue damage. Mechanistically, immunohistochemical staining revealed that the scFv down-regulated the expression of PCNA and VEGF in tumour tissues. Overall, this study found that anti-Ts7TMR scFv could inhibit A549 lung cancer growth by suppressing cell proliferation and angiogenesis, which may provide a new strategy for treating lung cancer.
Collapse
Affiliation(s)
- Taotao Yue
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jinpeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fang Liu
- First Hospital, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
2
|
Biswas J, Boussi L, Stein E, Abdel-Wahab O. Aberrant pre-mRNA processing in cancer. J Exp Med 2024; 221:e20230891. [PMID: 39316554 PMCID: PMC11448470 DOI: 10.1084/jem.20230891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulation of the flow of information from genomic DNA to RNA to protein occurs within all cancer types. In this review, we described the current state of understanding of how RNA processing is dysregulated in cancer with a focus on mutations in the RNA splicing factor machinery that are highly prevalent in hematologic malignancies. We discuss the downstream effects of these mutations highlighting both individual genes as well as common pathways that they perturb. We highlight examples of how alterations in RNA processing have been harnessed for therapeutic intent as well as to promote the selective toxicity of cancer cells.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leora Boussi
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eytan Stein
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Witek MA, Larkey NE, Bartakova A, Hupert ML, Mog S, Cronin JK, Vun J, August KJ, Soper SA. Microfluidic Affinity Selection of B-Lineage Cells from Peripheral Blood for Minimal Residual Disease Monitoring in Pediatric B-Type Acute Lymphoblastic Leukemia Patients. Int J Mol Sci 2024; 25:10619. [PMID: 39408948 PMCID: PMC11477226 DOI: 10.3390/ijms251910619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Assessment of minimal residual disease (MRD) is the most powerful predictor of outcome in B-type acute lymphoblastic leukemia (B-ALL). MRD, defined as the presence of leukemic cells in the blood or bone marrow, is used for the evaluation of therapy efficacy. We report on a microfluidic-based MRD (MF-MRD) assay that allows for frequent evaluation of blood for the presence of circulating leukemia cells (CLCs). The microfluidic chip affinity selects B-lineage cells, including CLCs using anti-CD19 antibodies poised on the wall of the microfluidic chip. Affinity-selected cells are released from the capture surface and can be subjected to immunophenotyping to enumerate the CLCs, perform fluorescence in situ hybridization (FISH), and/or molecular analysis of the CLCs' mRNA/gDNA. During longitudinal testing of 20 patients throughout induction and consolidation therapy, the MF-MRD performed 116 tests, while only 41 were completed with multiparameter flow cytometry (MFC-MRD) using a bone marrow aspirate, as standard-of-care. Overall, 57% MF-MRD tests were MRD(+) as defined by CLC numbers exceeding a threshold of 5 × 10-4%, which was determined to be the limit of quantitation. Above a threshold of 0.01%, MFC-MRD was positive in 34% of patients. The MF offered the advantage of the opportunity for efficiently processing small volumes of blood (2 mL), which is important in the care of pediatric patients, especially infants. The minimally invasive means of blood collection are of high value when treating patients whose MRD is typically tested using an invasive bone marrow biopsy. MF-MRD detection can be useful for stratification of patients into risk groups and monitoring of patient well-being after completion of treatment for early recognition of potential impending disease recurrence.
Collapse
Affiliation(s)
- Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
| | - Nicholas E. Larkey
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alena Bartakova
- Biofluidica Inc., San Diego, CA 92121, USA; (A.B.); (M.L.H.)
| | | | - Shalee Mog
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
| | - Jami K. Cronin
- Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (J.K.C.); (J.V.)
| | - Judy Vun
- Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (J.K.C.); (J.V.)
| | - Keith J. August
- Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (J.K.C.); (J.V.)
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
- Biofluidica Inc., San Diego, CA 92121, USA; (A.B.); (M.L.H.)
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
4
|
Giorgioni L, Ambrosone A, Cometa MF, Salvati AL, Nisticò R, Magrelli A. Revolutionizing CAR T-Cell Therapies: Innovations in Genetic Engineering and Manufacturing to Enhance Efficacy and Accessibility. Int J Mol Sci 2024; 25:10365. [PMID: 39408696 PMCID: PMC11476879 DOI: 10.3390/ijms251910365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved notable success in treating hematological cancers but faces significant challenges in solid-tumor treatment and overall efficacy. Key limitations include T-cell exhaustion, tumor relapse, immunosuppressive tumor microenvironments (TME), immunogenicity, and antigen heterogeneity. To address these issues, various genetic engineering strategies have been proposed. Approaches such as overexpression of transcription factors or metabolic armoring and dynamic CAR regulation are being explored to improve CAR T-cell function and safety. Other efforts to improve CAR T-cell efficacy in solid tumors include targeting novel antigens or developing alternative strategies to address antigen diversity. Despite the promising preclinical results of these solutions, challenges remain in translating CAR T-cell therapies to the clinic to enable economically viable access to these transformative medicines. The efficiency and scalability of autologous CAR T-cell therapy production are hindered by traditional, manual processes which are costly, time-consuming, and prone to variability and contamination. These high-cost, time-intensive processes have complex quality-control requirements. Recent advancements suggest that smaller, decentralized solutions such as microbioreactors and automated point-of-care systems could improve production efficiency, reduce costs, and shorten manufacturing timelines, especially when coupled with innovative manufacturing methods such as transposons and lipid nanoparticles. Future advancements may include harmonized consumables and AI-enabled technologies, which promise to streamline manufacturing, reduce costs, and enhance production quality.
Collapse
Affiliation(s)
- Lorenzo Giorgioni
- Faculty of Physiology and Pharmacology “V. Erspamer”, Sapienza Università di Roma, 00185 Rome, Italy;
| | - Alessandra Ambrosone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| | - Maria Francesca Cometa
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| | - Anna Laura Salvati
- Faculty of Pharmacy, Tor Vergata University of Rome, 00133 Rome, Italy (R.N.)
| | - Robert Nisticò
- Faculty of Pharmacy, Tor Vergata University of Rome, 00133 Rome, Italy (R.N.)
- Agenzia Italiana del Farmaco, Via del Tritone 181, 00187 Rome, Italy
| | - Armando Magrelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| |
Collapse
|
5
|
Ghemrawi R, Abuamer L, Kremesh S, Hussien G, Ahmed R, Mousa W, Khoder G, Khair M. Revolutionizing Cancer Treatment: Recent Advances in Immunotherapy. Biomedicines 2024; 12:2158. [PMID: 39335671 PMCID: PMC11429153 DOI: 10.3390/biomedicines12092158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer immunotherapy has emerged as a transformative approach in oncology, utilizing the body's immune system to specifically target and destroy malignant cells. This review explores the scope and impact of various immunotherapeutic strategies, including monoclonal antibodies, chimeric antigen receptor (CAR)-T cell therapy, checkpoint inhibitors, cytokine therapy, and therapeutic vaccines. Monoclonal antibodies, such as Rituximab and Trastuzumab, have revolutionized treatment paradigms for lymphoma and breast cancer by offering targeted interventions that reduce off-target effects. CAR-T cell therapy presents a potentially curative option for refractory hematologic malignancies, although challenges remain in effectively treating solid tumors. Checkpoint inhibitors have redefined the management of cancers like melanoma and lung cancer; however, managing immune-related adverse events and ensuring durable responses are critical areas of focus. Cytokine therapy continues to play a vital role in modulating the immune response, with advancements in cytokine engineering improving specificity and reducing systemic toxicity. Therapeutic vaccines, particularly mRNA-based vaccines, represent a frontier in personalized cancer treatment, aiming to generate robust, long-lasting immune responses against tumor-specific antigens. Despite these advancements, the field faces significant challenges, including immune resistance, tumor heterogeneity, and the immunosuppressive tumor microenvironment. Future research should address these obstacles through emerging technologies, such as next-generation antibodies, Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-based gene editing, and AI-driven drug discovery. By integrating these novel approaches, cancer immunotherapy holds the promise of offering more durable, less toxic, and highly personalized treatment options, ultimately improving patient outcomes and survival rates.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Lama Abuamer
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Ghadeer Hussien
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Rahaf Ahmed
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Walaa Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
6
|
Arunachalam AK, Grégoire C, Coutinho de Oliveira B, Melenhorst JJ. Advancing CAR T-cell therapies: Preclinical insights and clinical translation for hematological malignancies. Blood Rev 2024:101241. [PMID: 39289094 DOI: 10.1016/j.blre.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved significant success in achieving durable and potentially curative responses in patients with hematological malignancies. CARs are tailored fusion proteins that direct T cells to a specific antigen on tumor cells thereby eliciting a targeted immune response. The approval of several CD19-targeted CAR T-cell therapies has resulted in a notable surge in clinical trials involving CAR T cell therapies for hematological malignancies. Despite advancements in understanding response mechanisms, resistance patterns, and adverse events associated with CAR T-cell therapy, the translation of these insights into robust clinical efficacy has shown modest outcomes in both clinical trials and real-world scenarios. Therefore, the assessment of CAR T-cell functionality through rigorous preclinical studies plays a pivotal role in refining therapeutic strategies for clinical applications. This review provides an overview of the various in vitro and animal models used to assess the functionality of CAR T-cells. We discuss the findings from preclinical research involving approved CAR T-cell products, along with the implications derived from recent preclinical studies aiming to optimize the functionality of CAR T-cells. The review underscores the importance of robust preclinical evaluations and the need for models that accurately replicate human disease to bridge the gap between preclinical success and clinical efficacy.
Collapse
Affiliation(s)
- Arun K Arunachalam
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Céline Grégoire
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Beatriz Coutinho de Oliveira
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Jan Joseph Melenhorst
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
7
|
Becerra B, Wittibschlager S, Patel ZM, Kutschat AP, Delano J, Che E, Karjalainen A, Wu T, Starrs M, Jankowiak M, Bauer DE, Seruggia D, Pinello L. CRISPR-CLEAR: Nucleotide-Resolution Mapping of Regulatory Elements via Allelic Readout of Tiled Base Editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612085. [PMID: 39314441 PMCID: PMC11419122 DOI: 10.1101/2024.09.09.612085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
CRISPR tiling screens have advanced the identification and characterization of regulatory sequences but are limited by low resolution arising from the indirect readout of editing via guide RNA sequencing. This study introduces CRISPR-CLEAR, an end-to-end experimental assay and computational pipeline, which leverages targeted sequencing of CRISPR-introduced alleles at the endogenous target locus following dense base-editing mutagenesis. This approach enables the dissection of regulatory elements at nucleotide resolution, facilitating a direct assessment of genotype-phenotype effects.
Collapse
Affiliation(s)
- Basheer Becerra
- Bioinformatics and Integrative Genomics PhD Program, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sandra Wittibschlager
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Zain M Patel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Ana P Kutschat
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Justin Delano
- Bioinformatics and Integrative Genomics PhD Program, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Che
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Anzhelika Karjalainen
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ting Wu
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Marlena Starrs
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Daniel E Bauer
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Davide Seruggia
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Luca Pinello
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Lin H, Yang X, Ye S, Huang L, Mu W. Antigen escape in CAR-T cell therapy: Mechanisms and overcoming strategies. Biomed Pharmacother 2024; 178:117252. [PMID: 39098176 DOI: 10.1016/j.biopha.2024.117252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has shown promise in treating hematological malignancies and certain solid tumors. However, its efficacy is often hindered by negative relapses resulting from antigen escape. This review firstly elucidates the mechanisms underlying antigen escape during CAR-T cell therapy, including the enrichment of pre-existing target-negative tumor clones, antigen gene mutations or alternative splicing, deficits in antigen processing, antigen redistribution, lineage switch, epitope masking, and trogocytosis-mediated antigen loss. Furthermore, we summarize various strategies to overcome antigen escape, evaluate their advantages and limitations, and propose future research directions. Thus, we aim to provide valuable insights to enhance the effectiveness of CAR-T cell therapy.
Collapse
Affiliation(s)
- Haolong Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Xiuxiu Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Shanwei Ye
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China.
| |
Collapse
|
9
|
Qie Y, Gadd ME, Shao Q, To T, Liu A, Li S, Rivera‐Valentin R, Yassine F, Murthy HS, Dronca R, Kharfan‐Dabaja MA, Qin H, Luo Y. Targeting chronic lymphocytic leukemia with B-cell activating factor receptor CAR T cells. MedComm (Beijing) 2024; 5:e716. [PMID: 39224539 PMCID: PMC11366826 DOI: 10.1002/mco2.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
The challenge of disease relapsed/refractory (R/R) remains a therapeutic hurdle in chimeric antigen receptor (CAR) T-cell therapy, especially for hematological diseases, with chronic lymphocytic leukemia (CLL) being particularly resistant to CD19 CAR T cells. Currently, there is no approved CAR T-cell therapy for CLL patients. In this study, we aimed to address this unmet medical need by choosing the B-cell activating factor receptor (BAFF-R) as a promising target for CAR design against CLL. BAFF-R is essential for B-cell survival and is consistently expressed on CLL tumors. Our research discovered that BAFF-R CAR T-cell therapy exerted the cytotoxic effects on both CLL cell lines and primary B cells derived from CLL patients. In addition, the CAR T cells exhibited cytotoxicity against CD19-knockout CLL cells that are resistant to CD19 CAR T therapy. Furthermore, we were able to generate BAFF-R CAR T cells from small blood samples collected from CLL patients and then demonstrated the cytotoxic effects of these patient-derived CAR T cells against autologous tumor cells. Given these promising results, BAFF-R CAR T-cell therapy has the potential to meet the long-standing need for an effective treatment on CLL patients.
Collapse
Affiliation(s)
- Yaqing Qie
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Martha E. Gadd
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Qing Shao
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Tommy To
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Andrew Liu
- Department of Cancer BiologyMayo ClinicJacksonvilleFloridaUSA
| | - Shuhua Li
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Rocio Rivera‐Valentin
- Department of Pediatric Hematology‑OncologyUniversity of Florida‐JacksonvilleJacksonvilleFloridaUSA
| | - Farah Yassine
- Division of Hematology and Medical OncologyDepartment of Internal MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Hemant S. Murthy
- Division of Hematology and Medical OncologyDepartment of Internal MedicineMayo ClinicJacksonvilleFloridaUSA
- Blood and Marrow Transplantation and Cellular Therapy ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Roxana Dronca
- Division of Hematology and Medical OncologyDepartment of Internal MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Mohamed A. Kharfan‐Dabaja
- Division of Hematology and Medical OncologyDepartment of Internal MedicineMayo ClinicJacksonvilleFloridaUSA
- Blood and Marrow Transplantation and Cellular Therapy ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Hong Qin
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
- Department of Cancer BiologyMayo ClinicJacksonvilleFloridaUSA
- Division of Hematology and Medical OncologyDepartment of Internal MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Yan Luo
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
- Department of Cancer BiologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
10
|
Torabi A, Love J, Hyun T, Pham A, Gauthier J, Hirayama A, Wu D, Naresh K. Complete loss of lineage defining antigens in two cases of B-cell malignancies following CAR-T therapy. J Hematop 2024:10.1007/s12308-024-00602-w. [PMID: 39186243 DOI: 10.1007/s12308-024-00602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Targeted immunotherapy is a promising approach in treating high-risk and refractory/relapsed lymphoid malignancies. Although this strategy has shown a significant success in treating non-Hodgkin B-cell lymphomas and plasma cell myeloma, relapse with loss of targeted antigen can occur. Rarely, complete loss of multiple lineage specific markers can happen. We are describing 2 cases of B-cell neoplasms along with contributing immunohistochemistry, cytogenetic, and molecular results. Post-targeted CAR-T therapy, both cases, one aggressive B-cell lymphoma and the other plasma cell myeloma, lost B-cell, and plasma cell antigens, respectively. Complete loss of lineage specific markers post-targeted therapy is a rare event that makes the diagnosis of the relapsed neoplasm challenging. In this article, we also reviewed the literature and highlighted possible mechanisms of antigen loss following targeted therapy.
Collapse
Affiliation(s)
- Alireza Torabi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle 1959 NE Pacific Street, Box 357110, Seattle, WA, 98195, USA.
| | - Jason Love
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle 1959 NE Pacific Street, Box 357110, Seattle, WA, 98195, USA
| | - Teresa Hyun
- Department of Hematopathology, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Angie Pham
- Cellnetix Pathology Group, Seattle, WA, USA
| | - Jordan Gauthier
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alexandre Hirayama
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle 1959 NE Pacific Street, Box 357110, Seattle, WA, 98195, USA
| | - Kikkeri Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle 1959 NE Pacific Street, Box 357110, Seattle, WA, 98195, USA
- Department of Hematopathology, Fred Hutch Cancer Center, Seattle, WA, USA
| |
Collapse
|
11
|
Chen PH, Raghunandan R, Morrow JS, Katz SG. Finding Your CAR: The Road Ahead for Engineered T Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1409-1423. [PMID: 38697513 PMCID: PMC11284763 DOI: 10.1016/j.ajpath.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Adoptive cellular therapy using chimeric antigen receptors (CARs) has transformed immunotherapy by engineering T cells to target specific antigens on tumor cells. As the field continues to advance, pathology laboratories will play increasingly essential roles in the complicated multi-step process of CAR T-cell therapy. These include detection of targetable tumor antigens by flow cytometry or immunohistochemistry at the time of disease diagnosis and the isolation and infusion of CAR T cells. Additional roles include: i) detecting antigen loss or heterogeneity that renders resistance to CAR T cells as well as identifying alternative targetable antigens on tumor cells, ii) monitoring the phenotype, persistence, and tumor infiltration properties of CAR T cells and the tumor microenvironment for factors that predict CAR T-cell therapy success, and iii) evaluating side effects and biomarkers of CAR T-cell cytotoxicity such as cytokine release syndrome. This review highlights existing technologies that are applicable to monitoring CAR T-cell persistence, target antigen identification, and loss. Also discussed are emerging technologies that address new challenges such as how to put a brake on CAR T cells. Although pathology laboratories have already provided companion diagnostic tests important in immunotherapy (eg, programmed death-ligand 1, microsatellite instability, and human epidermal growth factor receptor 2 testing), it draws attention to the exciting new translational research opportunities in adoptive cellular therapy.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Rianna Raghunandan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Jon S Morrow
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
12
|
Frank MJ, Baird JH, Kramer AM, Srinagesh HK, Patel S, Brown AK, Oak JS, Younes SF, Natkunam Y, Hamilton MP, Su YJ, Agarwal N, Chinnasamy H, Egeler E, Mavroukakis S, Feldman SA, Sahaf B, Mackall CL, Muffly L, Miklos DB. CD22-directed CAR T-cell therapy for large B-cell lymphomas progressing after CD19-directed CAR T-cell therapy: a dose-finding phase 1 study. Lancet 2024; 404:353-363. [PMID: 38996463 PMCID: PMC11329226 DOI: 10.1016/s0140-6736(24)00746-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Outcomes are poor for patients with large B-cell lymphoma who relapse after CD19-directed chimeric antigen receptor (CAR) T-cell therapy (CAR19). CD22 is a nearly universally expressed B-cell surface antigen and the efficacy of a CD22-directed CAR T-cell therapy (CAR22) in large B-cell lymphoma is unknown, which was what we aimed to examine in this study. METHODS In this single centre, open-label, dose-escalation phase 1 trial, we intravenously administered CAR22 at two dose levels (1 million and 3 million CAR22-positive T cells per kg of bodyweight) to adult patients (aged ≥18 years) who relapsed after CAR19 or had CD19-negative large B-cell lymphoma. The primary endpoints were manufacturing feasibility, safety measured by the incidence and severity of adverse events and dose-limiting toxicities, and identification of the maximum tolerated dose (ie, the recommended phase 2 dose). This study is registered with ClinicalTrials.gov (NCT04088890) and is active, but closed for enrolment. FINDINGS From Oct 17, 2019, to Oct 19, 2022, a total of 41 patients were assessed for eligibility; however, one patient withdrew. 40 patients underwent leukapheresis and 38 (95%) had CAR T-cell products manufactured successfully. The median age was 65 years (range 25-84), 17 (45%) were women, 32 (84%) had elevated pretreatment lactate dehydrogenase, 11 (29%) had refractory disease to all previous therapies, and patients had received a median of four lines of previous therapy (range 3-8). Of the 38 patients treated, 37 (97%) had relapsed after previous CAR19. The identified maximum tolerated dose was 1 million CAR T cells per kg. Of 29 patients who received the maximum tolerated dose, no patients developed a dose-limiting toxicity or grade 3 or higher cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, or immune effector cell-associated haemophagocytic lymphohistiocytosis-like syndrome. INTERPRETATION This trial identifies CD22 as an immunotherapeutic target in large B-cell lymphoma and demonstrates the durable clinical activity of CAR22 in patients with disease progression after CAR19 therapy. Although these findings are promising, it is essential to recognise that this is a phase 1 dose-finding study. Further investigations are warranted to establish the long-term efficacy and to delineate the patient subgroups that will derive the most benefit from this therapeutic approach. FUNDING National Cancer Institute, National Institutes of Health, Stanford Cancer Institute, Leukemia & Lymphoma Society, Parker Institute for Cancer Immunotherapy, Lymph & Co, and the European Hematology Association.
Collapse
Affiliation(s)
- Matthew J Frank
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - John H Baird
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Anne Marijn Kramer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Cancer Center Amsterdam, Department of Hematology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Hrishikesh K Srinagesh
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shabnum Patel
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Annie Kathleen Brown
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Jean S Oak
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheren F Younes
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark P Hamilton
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Yi-Jiun Su
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Neha Agarwal
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Harshini Chinnasamy
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Emily Egeler
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Sharon Mavroukakis
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Bita Sahaf
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Crystal L Mackall
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Lori Muffly
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - David B Miklos
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Zhou D, Zhu X, Xiao Y. CAR-T cell combination therapies in hematologic malignancies. Exp Hematol Oncol 2024; 13:69. [PMID: 39026380 PMCID: PMC11264744 DOI: 10.1186/s40164-024-00536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
Chimeric antigen receptor-T cell therapy, a groundbreaking cancer treatment, has achieved remarkable success against hematologic malignancies. However, CAR-T monotherapy faces challenges in certain cases, including treatment tolerance and relapse rates. To overcome these challenges, researchers are investigating combining CAR-T cells with other treatments to enhance therapeutic efficacy. Therefore, this review aims to investigate the progress of research in combining CAR-T cells for hematologic malignancies. It covers the basic principles and clinical applications of CAR-T cell therapy, detailing combinations with chemotherapy, immune checkpoint inhibitors, targeted drugs, radiotherapy, hematopoietic stem cell transplantation, and other treatments. These combinations synergistically enhance the antitumor effects of CAR-T cells and comprehensively target tumors through different mechanisms, improving patient response and survival rates.
Collapse
Affiliation(s)
- Delian Zhou
- 1Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaojian Zhu
- 1Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yi Xiao
- 1Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
14
|
Zhao Y, Short NJ, Kantarjian HM, Chang TC, Ghate PS, Qu C, Macaron W, Jain N, Thakral B, Phillips AH, Khoury J, Garcia-Manero G, Zhang W, Fan Y, Yang H, Garris RS, Nasr LF, Kriwacki RW, Roberts KG, Konopleva M, Jabbour EJ, Mullighan CG. Genomic determinants of response and resistance to inotuzumab ozogamicin in B-cell ALL. Blood 2024; 144:61-73. [PMID: 38551807 PMCID: PMC11251222 DOI: 10.1182/blood.2024023930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
ABSTRACT Inotuzumab ozogamicin (InO) is an antibody-drug conjugate that delivers calicheamicin to CD22-expressing cells. In a retrospective cohort of InO-treated patients with B-cell acute lymphoblastic leukemia, we sought to understand the genomic determinants of the response and resistance to InO. Pre- and post-InO-treated patient samples were analyzed by whole genome, exome, and/or transcriptome sequencing. Acquired CD22 mutations were observed in 11% (3/27) of post-InO-relapsed tumor samples, but not in refractory samples (0/16). There were multiple CD22 mutations per sample and the mechanisms of CD22 escape included epitope loss (protein truncation and destabilization) and epitope alteration. Two CD22 mutant cases were post-InO hyper-mutators resulting from error-prone DNA damage repair (nonhomologous/alternative end-joining repair, or mismatch repair deficiency), suggesting that hypermutation drove escape from CD22-directed therapy. CD22-mutant relapses occurred after InO and subsequent hematopoietic stem cell transplantation (HSCT), suggesting that InO eliminated the predominant clones, leaving subclones with acquired CD22 mutations that conferred resistance to InO and subsequently expanded. Acquired loss-of-function mutations in TP53, ATM, and CDKN2A were observed, consistent with a compromise of the G1/S DNA damage checkpoint as a mechanism for evading InO-induced apoptosis. Genome-wide CRISPR/Cas9 screening of cell lines identified DNTT (terminal deoxynucleotidyl transferase) loss as a marker of InO resistance. In conclusion, genetic alterations modulating CD22 expression and DNA damage response influence InO efficacy. Our findings highlight the importance of defining the basis of CD22 escape and eradication of residual disease before HSCT. The identified mechanisms of escape from CD22-targeted therapy extend beyond antigen loss and provide opportunities to improve therapeutic approaches and overcome resistance. These trials were registered at www.ClinicalTrials.gov as NCT01134575, NCT01371630, and NCT03441061.
Collapse
Affiliation(s)
- Yaqi Zhao
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Pankaj S. Ghate
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - Chunxu Qu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - Walid Macaron
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Beenu Thakral
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | - Aaron H. Phillips
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Joseph Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | | | - Wenchao Zhang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hui Yang
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | | | - Lewis F. Nasr
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kathryn G. Roberts
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - Marina Konopleva
- Department of Oncology and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | | | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
15
|
Dreyzin A, Rankin AW, Luciani K, Gavrilova T, Shah NN. Overcoming the challenges of primary resistance and relapse after CAR-T cell therapy. Expert Rev Clin Immunol 2024; 20:745-763. [PMID: 38739466 PMCID: PMC11180598 DOI: 10.1080/1744666x.2024.2349738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION While CAR T-cell therapy has led to remarkable responses in relapsed B-cell hematologic malignancies, only 50% of patients ultimately have a complete, sustained response. Understanding the mechanisms of resistance and relapse after CAR T-cell therapy is crucial to future development and improving outcomes. AREAS COVERED We review reasons for both primary resistance and relapse after CAR T-cell therapies. Reasons for primary failure include CAR T-cell manufacturing problems, suboptimal fitness of autologous T-cells themselves, and intrinsic features of the underlying cancer and tumor microenvironment. Relapse after initial response to CAR T-cell therapy may be antigen-positive, due to CAR T-cell exhaustion or limited persistence, or antigen-negative, due to antigen-modulation on the target cells. Finally, we discuss ongoing efforts to overcome resistance to CAR T-cell therapy with enhanced CAR constructs, manufacturing methods, alternate cell types, combinatorial strategies, and optimization of both pre-infusion conditioning regimens and post-infusion consolidative strategies. EXPERT OPINION There is a continued need for novel approaches to CAR T-cell therapy for both hematologic and solid malignancies to obtain sustained remissions. Opportunities for improvement include development of new targets, optimally combining existing CAR T-cell therapies, and defining the role for adjunctive immune modulators and stem cell transplant in enhancing long-term survival.
Collapse
Affiliation(s)
- Alexandra Dreyzin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Oncology, Children's National Hospital, Washington DC, USA
| | - Alexander W Rankin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katia Luciani
- School of Medicine, University of Limerick, Limerick, Ireland
| | | | - Nirali N Shah
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Tang D, Zhao L, Yan F, Ren C, Xu K, Zhao K. Expression of VISTA regulated via IFN-γ governs endogenous T-cell function and exhibits correlation with the efficacy of CD19 CAR-T cell treated B-malignant mice. J Immunother Cancer 2024; 12:e008364. [PMID: 38925679 PMCID: PMC11202651 DOI: 10.1136/jitc-2023-008364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Despite continuous improvements in the new target and construction of chimeric antigen receptor (CAR)-T, relapse remains a significant challenge following CAR-T therapy. Tumor microenvironment (TME) strongly correlates with the efficacy of CAR-T therapy. V-domain Ig suppressor of T-cell activation (VISTA), which exerts a multifaceted and controversial role in regulating the TME, acts not only as a ligand on antigen-presenting cells but also functions as a receptor on T cells. However, the characteristics and underlying mechanisms governing endogenous T-cell activation by VISTA, which are pivotal for reshaping the TME, remain incompletely elucidated. METHODS The immunocompetent B acute lymphoblastic leukemia (B-ALL), lymphoma, and melanoma murine models were employed to investigate the characteristics of endogenous T cells within the TME following CD19 and hCAIX CAR-T cell therapy, respectively. Furthermore, we examined the role of VISTA controlled by interferon (IFN)-γ signaling in regulating endogenous T-cell activation and functionality in B-ALL mice. RESULTS We demonstrated that the administration of CD19 CAR-T or hCAIX CAR-T cell therapy elicited augmented immune responses of endogenous T cells within the TME of B-ALL, lymphoma, and melanoma mice, thereby substantiating the efficacy of CAR-T cell efficacy. However, in the TME lacking IFN-γ signaling, VISTA levels remained elevated, resulting in attenuated cytotoxicity of endogenous T cells and reduced B-ALL recipient survival. Mice treated with CD19 CAR-T cells exhibited increased proportions of endogenous memory T cells during prolonged remission, which possessed the tumor-responsive capabilities to protect against B-ALL re-challenge. Compared with wild-type (WT) CAR-T treated mice, the administration of IFN-γ-/- CAR-T to both WT and IFN-γ-/- recipients resulted in a reduction in the numbers of endogenous CD4+ and CD8+ effectors, while exhibiting increased populations of naïve-like CD4+ T and memory CD8+ T cells. VISTA expression consistently remained elevated in resting or memory CD4+ T cells, with distinct localization from programmed cell death protein-1 (PD-1) expressing T subsets. Blocking the VISTA signal enhanced dendritic cell-induced proliferation and cytokine production by syngeneic T cells. CONCLUSION Our findings confirm that endogenous T-cell activation and functionality are regulated by VISTA, which is associated with the therapeutic efficiency of CAR-T and provides a promising therapeutic strategy for relapse cases in CAR-T therapy.
Collapse
Affiliation(s)
- Donghai Tang
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Zhao
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fen Yan
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunxiao Ren
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Zhao
- Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
17
|
Caulier B, Joaquina S, Gelebart P, Dowling TH, Kaveh F, Thomas M, Tandaric L, Wernhoff P, Katyayini NU, Wogsland C, Gjerstad ME, Fløisand Y, Kvalheim G, Marr C, Kobold S, Enserink JM, Gjertsen BT, McCormack E, Inderberg EM, Wälchli S. CD37 is a safe chimeric antigen receptor target to treat acute myeloid leukemia. Cell Rep Med 2024; 5:101572. [PMID: 38754420 PMCID: PMC11228397 DOI: 10.1016/j.xcrm.2024.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells in the bone marrow and the peripheral blood. Nearly half of the AML patients relapse after standard induction therapy, and new forms of therapy are urgently needed. Chimeric antigen receptor (CAR) T therapy has so far not been successful in AML due to lack of efficacy and safety. Indeed, the most attractive antigen targets are stem cell markers such as CD33 or CD123. We demonstrate that CD37, a mature B cell marker, is expressed in AML samples, and its presence correlates with the European LeukemiaNet (ELN) 2017 risk stratification. We repurpose the anti-lymphoma CD37CAR for the treatment of AML and show that CD37CAR T cells specifically kill AML cells, secrete proinflammatory cytokines, and control cancer progression in vivo. Importantly, CD37CAR T cells display no toxicity toward hematopoietic stem cells. Thus, CD37 is a promising and safe CAR T cell AML target.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Animals
- Immunotherapy, Adoptive/methods
- Mice
- Tetraspanins/immunology
- Cell Line, Tumor
- T-Lymphocytes/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Female
- Male
- Antigens, Neoplasm
Collapse
Affiliation(s)
- Benjamin Caulier
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway; Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sandy Joaquina
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Pascal Gelebart
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Tara Helén Dowling
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Fatemeh Kaveh
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Moritz Thomas
- Institue of AI for Health, Helmholtz Munich, 85764 Neuherberg, Germany; School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Luka Tandaric
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway; Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Patrik Wernhoff
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Niveditha Umesh Katyayini
- Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Cara Wogsland
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - May Eriksen Gjerstad
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Yngvar Fløisand
- Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Carsten Marr
- Institue of AI for Health, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Jorrit M Enserink
- Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway; Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
18
|
Rathgeber AC, Ludwig LS, Penter L. Single-cell genomics-based immune and disease monitoring in blood malignancies. Clin Hematol Int 2024; 6:62-84. [PMID: 38884110 PMCID: PMC11180218 DOI: 10.46989/001c.117961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/25/2023] [Indexed: 06/18/2024] Open
Abstract
Achieving long-term disease control using therapeutic immunomodulation is a long-standing concept with a strong tradition in blood malignancies. Besides allogeneic hematopoietic stem cell transplantation that continues to provide potentially curative treatment for otherwise challenging diagnoses, recent years have seen impressive progress in immunotherapies for leukemias and lymphomas with immune checkpoint blockade, bispecific monoclonal antibodies, and CAR T cell therapies. Despite their success, non-response, relapse, and immune toxicities remain frequent, thus prioritizing the elucidation of the underlying mechanisms and identifying predictive biomarkers. The increasing availability of single-cell genomic tools now provides a system's immunology view to resolve the molecular and cellular mechanisms of immunotherapies at unprecedented resolution. Here, we review recent studies that leverage these technological advancements for tracking immune responses, the emergence of immune resistance, and toxicities. As single-cell immune monitoring tools evolve and become more accessible, we expect their wide adoption for routine clinical applications to catalyze more precise therapeutic steering of personal immune responses.
Collapse
Affiliation(s)
- Anja C. Rathgeber
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Leif S. Ludwig
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Livius Penter
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- BIH Biomedical Innovation AcademyBerlin Institute of Health at Charité - Universitätsmedizin Berlin
| |
Collapse
|
19
|
Guo S, Lei W, Jin X, Liu H, Wang JQ, Deng W, Qian W. CD70-specific CAR NK cells expressing IL-15 for the treatment of CD19-negative B-cell malignancy. Blood Adv 2024; 8:2635-2645. [PMID: 38564778 PMCID: PMC11157212 DOI: 10.1182/bloodadvances.2023012202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR) natural killer (NK) cells can eliminate tumors not only through the ability of the CAR molecule to recognize antigen-expressed cancer cells but also through NK-cell receptors themselves. This overcomes some of the limitations of CAR T cells, paving the way for CAR NK cells for safer and more effective off-the-shelf cellular therapy. In this study, CD70-specific (a pan-target of lymphoma) fourth-generation CAR with 4-1BB costimulatory domain and interleukin-15 (IL-15) was constructed and transduced into cord blood-derived NK cells by Baboon envelope pseudotyped lentiviral vector. CD70-CAR NK cells displayed superior cytotoxic activity in vitro and in vivo against CD19-negative B-cell lymphoma when compared with nontransduced NK cells and CD19-specific CAR NK cells. Importantly, mice that received 2 doses of CD70-CAR NK cells showed effective eradication of tumors, accompanied by increased concentration of plasma IL-15 and enhanced CAR NK cell proliferation and persistence. Our study suggests that repetitive administration-based CAR NK-cell therapy has clinical advantage compared with a single dose of CAR NK cells for the treatment of B-cell lymphoma.
Collapse
MESH Headings
- Interleukin-15
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Animals
- Humans
- Mice
- Lymphoma, B-Cell/therapy
- Lymphoma, B-Cell/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Antigens, CD19/immunology
- CD27 Ligand
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Cytotoxicity, Immunologic
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Haining, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Haining, China
| | - Wen Lei
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Haining, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Haining, China
| | - Xueli Jin
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Haining, China
| | - Hui Liu
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Haining, China
| | - James Q. Wang
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Haining, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Wenhai Deng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Haining, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
20
|
Wei L, Meng J, Xiang D, Yang Q, Zhou Y, Xu L, Chen J, Han Y. The Pan-Cancer Analysis Uncovers the Prognostic and Immunotherapeutic Significance of CD19 as an Immune Marker in Tumor. Int J Gen Med 2024; 17:2593-2612. [PMID: 38855424 PMCID: PMC11162214 DOI: 10.2147/ijgm.s459914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Background The specific cytotoxic effects of anti-CD19 chimeric antigen receptor (CAR) T-cell therapy have led to impressive outcomes in individuals previously treated for B-cell malignancies. However, the specific biological role of CD19(+) target cells, which exert antitumor immunity against some solid tumors, remains to be elucidated. Methods We collected information regarding the level of CD19 mRNA and protein expression from various databases including The Cancer Genome Atlas (TCGA), Tumor Immune Estimation Resource (TIMER), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) for both tumor and normal samples. To evaluate the patient's prognosis according to CD19 expression, a Kaplan-Meier (KM) analysis and univariate Cox regression were performed. Furthermore, using the Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using the Expression Data (ESTIMATE) algorithm, we estimated the ratio of immune cells infiltrating malignant tumor tissues. Afterward, the GSCALite repository was employed to evaluate the vulnerability of tumors expressing CD19 to drugs used in chemotherapy. To validate the results in clinical samples of certain cancer types, immunohistochemistry was then performed. Results Most tumor types exhibited CD19 expression differently, apart from colon adenocarcinoma (COAD). The early diagnostic value of CD19 has been demonstrated in 9 different tumor types, and the overexpression of CD19 has the potential to extend the survival duration of patients. Multiple tumors showed a positive correlation between CD19 expression and tumor mutation burden (TMB), microsatellite instability (MSI), and ESTIMATE score. Furthermore, a direct association was discovered between the expression of CD19 and the infiltration of immune cells, particularly in cases of breast invasive carcinoma (BRCA). Moreover, CD19 is highly sensitive to a variety of chemotherapy drugs. Conclusion The study reveals the potential of CD19 as both a predictive biomarker and a target for different cancer immunotherapies.
Collapse
Affiliation(s)
- Lanyi Wei
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Jingjing Meng
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Danfeng Xiang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Yangyun Zhou
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Lingyan Xu
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Junjun Chen
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Yonglong Han
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| |
Collapse
|
21
|
Takayanagi SI, Chuganji S, Tanaka M, Wang B, Hasegawa S, Fukumoto K, Wasano N, Kakitani M, Ochiai N, Kawai Y, Ueda T, Ishikawa A, Kurimoto Y, Fukui A, Kamibayashi S, Imai E, Kunisato A, Nozawa H, Kaneko S. A culture method with berbamine, a plant alkaloid, enhances CAR-T cell efficacy through modulating cellular metabolism. Commun Biol 2024; 7:685. [PMID: 38834758 DOI: 10.1038/s42003-024-06297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Memory T cells demonstrate superior in vivo persistence and antitumor efficacy. However, methods for manufacturing less differentiated T cells are not yet well-established. Here, we show that producing chimeric antigen receptor (CAR)-T cells using berbamine (BBM), a natural compound found in the Chinese herbal medicine Berberis amurensis, enhances the antitumor efficacy of CAR-T cells. BBM is identified through cell-based screening of chemical compounds using induced pluripotent stem cell-derived T cells, leading to improved viability with a memory T cell phenotype. Transcriptomics and metabolomics using stem cell memory T cells reveal that BBM broadly enhances lipid metabolism. Furthermore, the addition of BBM downregulates the phosphorylation of p38 mitogen-activated protein kinase and enhanced mitochondrial respiration. CD19-CAR-T cells cultured with BBM also extend the survival of leukaemia mouse models due to their superior in vivo persistence. This technology offers a straightforward approach to enhancing the antitumor efficacy of CAR-T cells.
Collapse
Affiliation(s)
- Shin-Ichiro Takayanagi
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan.
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Biomedical Science Research Laboratories 2, Research Division, Kyowa Kirin Co., Ltd., Tokyo, Japan.
| | - Sayaka Chuganji
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masahiro Tanaka
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Bo Wang
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Saki Hasegawa
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ken Fukumoto
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nariaki Wasano
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Makoto Kakitani
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Nakaba Ochiai
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yohei Kawai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuki Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akihiro Ishikawa
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuko Kurimoto
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Asami Fukui
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Sanae Kamibayashi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eri Imai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Kunisato
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hajime Nozawa
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
22
|
Chen D, Fuda F, Rosado F, Saumell S, John S, Chen M, Koduru P, Chen W. Clinicopathologic features of relapsed CD19(-) B-ALL in CD19-targeted immunotherapy: Biological insights into relapse and LILRB1 as a novel B-cell marker for CD19(-) B lymphoblasts. Int J Lab Hematol 2024; 46:503-509. [PMID: 38177979 DOI: 10.1111/ijlh.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION The mechanism of relapsed CD19(-) B-ALL after anti-CD19 immunotherapy (Kymriah [CART-19] and blinatumomab) is under active investigation. Our study aims to assess LILRB1 as a novel B-cell marker for detecting CD19(-) B-lymphoblasts and to analyze the clinicopathologic/genetic features of such disease to provide biological insight into relapse. METHODS Six patients (3 males/3 females, median age of 14 years) with relapsed CD19(-) B-ALL were analyzed for cytogenetic/genetic profile and immunophenotype. RESULTS CD19(-) B-ALL emerged after an interval of 5.8 months following anti-CD19 therapy. Five of six patients had B-cell aplasia, indicative of a persistent effect of CART or blinatumomab at relapse. Importantly, LILRB1 was variably expressed on CD19(-) and CD19(+) B lymphoblasts, strong on CD34(+) lymphoblasts and dim/partial on CD34(-) lymphoblasts. Three of six patients with paired B-ALL samples (pre- and post-anti-CD19 therapy) carried complex and different cytogenetic abnormalities, either as completely different or sharing a subset of cytogenetic abnormalities. CONCLUSION LILRB1 can be used as a novel B-cell marker to identify CD19(-) B lymphoblasts. The emergence of CD19(-) B-ALL appears to be associated with complex cytogenetic evolutions. The mechanism of CD19(-) B-ALL relapse under anti-CD19 immune pressure remains to be explored by comprehensive molecular studies.
Collapse
Affiliation(s)
- Dong Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pathology and Laboratory Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Franklin Fuda
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Flavia Rosado
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sílvia Saumell
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Samuel John
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prasad Koduru
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
23
|
Shang Q, Xue L, Lu A, Jia Y, Zuo Y, Zeng H, Zhang L. Efficacy and Safety of Children With Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia After Anti-CD19 CAR T-Cell Therapy Without Bridging Transplantation. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:392-399.e5. [PMID: 38429221 DOI: 10.1016/j.clml.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Anti-CD19 chimeric antigen receptor (CAR) T-cell therapies have demonstrated significant efficacy in achieving complete remission (CR) in pediatric patients with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). However, a considerable number of patients experience relapse within 1 year after CAR T-cell therapy, leading to an extremely poor prognosis, particularly in patients without bridging transplantation. MATERIALS AND METHODS In our study, we investigated 42 children with R/R B-ALL who underwent anti-CD19 CAR T-cell therapy without bridging transplantation at our center. All patients were included in the response analysis and evaluated for survival and toxicity. RESULTS The cohort that received the CAR T-cell infusion exhibited a 100% CR rate by day 28 (d28). The overall survival (OS) at 4 years was 61.3% ± 8.5%, and the event-free survival (EFS) was 55.9% ± 7.9%, with a median follow-up duration of 50.1 months. Minimal residual disease (MRD) ≥1% was associated with inferior outcomes, resulting in lower 4-year OS (P = .033) and EFS (P = .014) compared to MRD<1%. The incidences of grade ≥3 cytokine release syndrome (CRS) and neurotoxicity were 26.8% and 23.8%, respectively. Furthermore, MRD≥1% was identified as an independent factor associated with increased severity of CRS and occurrence of neurotoxicity. CONCLUSION These findings suggest that reducing the pre-infusion MRD could serve as an effective treatment strategy to enhance the outcomes of CAR T-cell therapy.
Collapse
Affiliation(s)
- Qianwen Shang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Lian Xue
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Aidong Lu
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yueping Jia
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - YingXi Zuo
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Huimin Zeng
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China.
| |
Collapse
|
24
|
Mohan M, Van Oekelen O, Akhtar OS, Cohen A, Parekh S. Charting the Course: Sequencing Immunotherapy for Multiple Myeloma. Am Soc Clin Oncol Educ Book 2024; 44:e432204. [PMID: 38875506 DOI: 10.1200/edbk_432204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Multiple chimeric antigen receptor (CAR) T-cell and bispecific antibody (bsAb) therapies have been approved, demonstrating impressive clinical efficacy in relapsed/refractory multiple myeloma (MM). Currently, these treatment share overlapping approval indications in the relapsed/refractory space, highlighting the importance of optimal selection and sequencing to maximize clinical efficacy. For patients previously unexposed to T-cell-directed therapies, several factors should be weighed when both options are available. These factors include access and logistical challenges associated with CAR T-cell therapy, disease-specific factors such as tempo of disease relapse, in addition to patient-specific factors such as frailty, and distinct toxicity profiles across these agents. Sequential therapy, whether it involves CAR T-cell therapy followed by bsAb or vice versa, has demonstrated clinical efficacy. When sequencing these agents, it is crucial to consider various factors that contribute to treatment resistance with careful selection of treatments for subsequent therapy in order to achieve favorable long-term patient outcomes.
Collapse
Affiliation(s)
- Meera Mohan
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Oliver Van Oekelen
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Othman Salim Akhtar
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Adam Cohen
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Samir Parekh
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
25
|
Franzese O, Ancona P, Bianchi N, Aguiari G. Apoptosis, a Metabolic "Head-to-Head" between Tumor and T Cells: Implications for Immunotherapy. Cells 2024; 13:924. [PMID: 38891056 PMCID: PMC11171541 DOI: 10.3390/cells13110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Induction of apoptosis represents a promising therapeutic approach to drive tumor cells to death. However, this poses challenges due to the intricate nature of cancer biology and the mechanisms employed by cancer cells to survive and escape immune surveillance. Furthermore, molecules released from apoptotic cells and phagocytes in the tumor microenvironment (TME) can facilitate cancer progression and immune evasion. Apoptosis is also a pivotal mechanism in modulating the strength and duration of anti-tumor T-cell responses. Combined strategies including molecular targeting of apoptosis, promoting immunogenic cell death, modulating immunosuppressive cells, and affecting energy pathways can potentially overcome resistance and enhance therapeutic outcomes. Thus, an effective approach for targeting apoptosis within the TME should delicately balance the selective induction of apoptosis in tumor cells, while safeguarding survival, metabolic changes, and functionality of T cells targeting crucial molecular pathways involved in T-cell apoptosis regulation. Enhancing the persistence and effectiveness of T cells may bolster a more resilient and enduring anti-tumor immune response, ultimately advancing therapeutic outcomes in cancer treatment. This review delves into the pivotal topics of this multifaceted issue and suggests drugs and druggable targets for possible combined therapies.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via F. Mortara 74, 44121 Ferrara, Italy;
| |
Collapse
|
26
|
Liu Y, Dong M, Chu Y, Zhou L, You Y, Pang X, Yang S, Zhang L, Chen L, Zhu L, Xiao J, Wang W, Qin C, Tian D. Dawn of CAR-T cell therapy in autoimmune diseases. Chin Med J (Engl) 2024; 137:1140-1150. [PMID: 38613216 PMCID: PMC11101238 DOI: 10.1097/cm9.0000000000003111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 04/14/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR)-T cell therapy has achieved remarkable success in the treatment of hematological malignancies. Based on the immunomodulatory capability of CAR-T cells, efforts have turned toward exploring their potential in treating autoimmune diseases. Bibliometric analysis of 210 records from 128 academic journals published by 372 institutions in 40 countries/regions indicates a growing number of publications on CAR-T therapy for autoimmune diseases, covering a range of subtypes such as systemic lupus erythematosus, multiple sclerosis, among others. CAR-T therapy holds promise in mitigating several shortcomings, including the indiscriminate suppression of the immune system by traditional immunosuppressants, and non-sustaining therapeutic levels of monoclonal antibodies due to inherent pharmacokinetic constraints. By persisting and proliferating in vivo , CAR-T cells can offer a tailored and precise therapeutics. This paper reviewed preclinical experiments and clinical trials involving CAR-T and CAR-related therapies in various autoimmune diseases, incorporating innovations well-studied in the field of hematological tumors, aiming to explore a safe and effective therapeutic option for relapsed/refractory autoimmune diseases.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Minghao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunhui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luoqi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunfan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaowei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luyang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lifang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Daishi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
27
|
Georgievski A, Bellaye PS, Tournier B, Choubley H, Pais de Barros JP, Herbst M, Béduneau A, Callier P, Collin B, Végran F, Ballerini P, Garrido C, Quéré R. Valrubicin-loaded immunoliposomes for specific vesicle-mediated cell death in the treatment of hematological cancers. Cell Death Dis 2024; 15:328. [PMID: 38734740 PMCID: PMC11088660 DOI: 10.1038/s41419-024-06715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
We created valrubicin-loaded immunoliposomes (Val-ILs) using the antitumor prodrug valrubicin, a hydrophobic analog of daunorubicin. Being lipophilic, valrubicin readily incorporated Val-lLs that were loaded with specific antibodies. Val-ILs injected intravenously rapidly reached the bone marrow and spleen, indicating their potential to effectively target cancer cells in these areas. Following the transplantation of human pediatric B-cell acute lymphoblastic leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL), or acute myeloid leukemia (AML) in immunodeficient NSG mice, we generated patient-derived xenograft (PDX) models, which were treated with Val-ILs loaded with antibodies to target CD19, CD7 or CD33. Only a small amount of valrubicin incorporated into Val-ILs was needed to induce leukemia cell death in vivo, suggesting that this approach could be used to efficiently treat acute leukemia cells. We also demonstrated that Val-ILs could reduce the risk of contamination of CD34+ hematopoietic stem cells by acute leukemia cells during autologous peripheral blood stem cell transplantation, which is a significant advantage for clinical applications. Using EL4 lymphoma cells on immunocompetent C57BL/6 mice, we also highlighted the potential of Val-ILs to target immunosuppressive cell populations in the spleen, which could be valuable in impairing cancer cell expansion, particularly in lymphoma cases. The most efficient Val-ILs were found to be those loaded with CD11b or CD223 antibodies, which, respectively, target the myeloid-derived suppressor cells (MDSC) or the lymphocyte-activation gene 3 (LAG-3 or CD223) on T4 lymphocytes. This study provides a promising preclinical demonstration of the effectiveness and ease of preparation of Val-ILs as a novel nanoparticle technology. In the context of hematological cancers, Val-ILs have the potential to be used as a precise and effective therapy based on targeted vesicle-mediated cell death.
Collapse
Affiliation(s)
- Aleksandra Georgievski
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
| | - Pierre-Simon Bellaye
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- Plateforme d'imagerie et de radiothérapie précliniques, Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Benjamin Tournier
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- Service de Pathologie, Plateforme de génétique somatique des cancers de Bourgogne, CHU Dijon-Bourgogne, Dijon, France
| | - Hélène Choubley
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
- Plateforme DiviOmics, UMS58 Inserm BioSanD, Université de Bourgogne, Dijon, France
| | - Jean-Paul Pais de Barros
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
- Plateforme DiviOmics, UMS58 Inserm BioSanD, Université de Bourgogne, Dijon, France
| | - Michaële Herbst
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR6303 CNRS/Université de Bourgogne, Dijon, France
| | - Arnaud Béduneau
- LipSTIC Labex, Dijon, France
- Université de Franche-Comté, EFS, Inserm, UMR1098 RIGHT, Besançon, France
| | - Patrick Callier
- Laboratoire de Génétique Chromosomique et Moléculaire, CHU Dijon-Bourgogne, Dijon, France
| | - Bertrand Collin
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- Plateforme d'imagerie et de radiothérapie précliniques, Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Frédérique Végran
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
- Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Paola Ballerini
- Laboratoire d'Hématologie, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Carmen Garrido
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
- Centre Georges François Leclerc-Unicancer, Dijon, France
- Label of excellence from la Ligue Nationale contre le Cancer, Paris, France
| | - Ronan Quéré
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France.
- LipSTIC Labex, Dijon, France.
| |
Collapse
|
28
|
Brillembourg H, Martínez-Cibrián N, Bachiller M, Alserawan L, Ortiz-Maldonado V, Guedan S, Delgado J. The role of chimeric antigen receptor T cells targeting more than one antigen in the treatment of B-cell malignancies. Br J Haematol 2024; 204:1649-1659. [PMID: 38362778 DOI: 10.1111/bjh.19348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Several products containing chimeric antigen receptor T cells targeting CD19 (CART19) have been approved for the treatment of patients with relapsed/refractory non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukaemia (ALL). Despite very impressive response rates, a significant percentage of patients experience disease relapse and die of progressive disease. A major cause of CART19 failure is loss or downregulation of CD19 expression in tumour cells, which has prompted a myriad of novel strategies aimed at targeting more than one antigen (e.g. CD19 and CD20 or CD22). Dual targeting can the accomplished through co-administration of two separate products, co-transduction with two different vectors, bicistronic cassettes or tandem receptors. In this manuscript, we review the pros and cons of each strategy and the clinical results obtained so far.
Collapse
Affiliation(s)
| | - Núria Martínez-Cibrián
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
| | - Mireia Bachiller
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Clinical Pharmacology, Hospital Clínic, Barcelona, Spain
| | | | - Valentín Ortiz-Maldonado
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sònia Guedan
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
| | - Julio Delgado
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- CIBERONC, Madrid, Spain
| |
Collapse
|
29
|
Yang Z, Liu Y, Zhao H. CAR T treatment beyond cancer: Hope for immunomodulatory therapy of non-cancerous diseases. Life Sci 2024; 344:122556. [PMID: 38471620 DOI: 10.1016/j.lfs.2024.122556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Engineering a patient's own T cells to accurately identify and eliminate cancer cells has effectively cured individuals afflicted with previously incurable hematologic cancers. These findings have stimulated research into employing chimeric antigen receptor (CAR) T therapy across various areas within the field of oncology. However, evidence from both clinical and preclinical investigations emphasize the broader potential of CAR T therapy, extending beyond oncology to address autoimmune disorders, persistent infections, cardiac fibrosis, age-related ailments and other conditions. Concurrently, the advent of novel technologies and platforms presents additional avenues for utilizing CAR T therapy in non-cancerous contexts. This review provides an overview of the rationale behind CAR T therapy, delineates ongoing challenges in its application to cancer treatment, summarizes recent findings in non-cancerous diseases, and engages in discourse regarding emerging technologies that bear relevance. The review delves into prospective applications of this therapeutic approach across a diverse range of scenarios. Lastly, the review underscores concerns related to precision and safety, while also outlining the envisioned trajectory for extending CAR T therapy beyond cancer treatment.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Yingfeng Liu
- Department of Neurosurgery, Tianshui First People's Hospital, Tianshui, Gansu 741000, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266005, China.
| |
Collapse
|
30
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
31
|
Nejo T, Wang L, Leung KK, Wang A, Lakshmanachetty S, Gallus M, Kwok DW, Hong C, Chen LH, Carrera DA, Zhang MY, Stevers NO, Maldonado GC, Yamamichi A, Watchmaker PB, Naik A, Shai A, Phillips JJ, Chang SM, Wiita AP, Wells JA, Costello JF, Diaz AA, Okada H. Challenges in the discovery of tumor-specific alternative splicing-derived cell-surface antigens in glioma. Sci Rep 2024; 14:6362. [PMID: 38493204 PMCID: PMC10944514 DOI: 10.1038/s41598-024-56684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
Despite advancements in cancer immunotherapy, solid tumors remain formidable challenges. In glioma, profound inter- and intra-tumoral heterogeneity of antigen landscape hampers therapeutic development. Therefore, it is critical to consider alternative sources to expand the repertoire of targetable (neo-)antigens and improve therapeutic outcomes. Accumulating evidence suggests that tumor-specific alternative splicing (AS) could be an untapped reservoir of antigens. In this study, we investigated tumor-specific AS events in glioma, focusing on those predicted to generate major histocompatibility complex (MHC)-presentation-independent, cell-surface antigens that could be targeted by antibodies and chimeric antigen receptor-T cells. We systematically analyzed bulk RNA-sequencing datasets comparing 429 tumor samples (from The Cancer Genome Atlas) and 9166 normal tissue samples (from the Genotype-Tissue Expression project), and identified 13 AS events in 7 genes predicted to be expressed in more than 10% of the patients, including PTPRZ1 and BCAN, which were corroborated by an external RNA-sequencing dataset. Subsequently, we validated our predictions and elucidated the complexity of the isoforms using full-length transcript amplicon sequencing on patient-derived glioblastoma cells. However, analyses of the RNA-sequencing datasets of spatially mapped and longitudinally collected clinical tumor samples unveiled remarkable spatiotemporal heterogeneity of the candidate AS events. Furthermore, proteomics analysis did not reveal any peptide spectra matching the putative antigens. Our investigation illustrated the diverse characteristics of the tumor-specific AS events and the challenges of antigen exploration due to their notable spatiotemporal heterogeneity and elusive nature at the protein levels. Redirecting future efforts toward intracellular, MHC-presented antigens could offer a more viable avenue.
Collapse
Affiliation(s)
- Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Lin Wang
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Albert Wang
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Senthilnath Lakshmanachetty
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Darwin W Kwok
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Lee H Chen
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Diego A Carrera
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Michael Y Zhang
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Gabriella C Maldonado
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Akul Naik
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
32
|
Kathari YK, An M, Dougherty C, Emadi A. Long-Term Follow up of Blinatumomab in Older Patients with B-Cell Acute Lymphoblastic Leukemia. Pharmaceuticals (Basel) 2024; 17:335. [PMID: 38543121 PMCID: PMC10974126 DOI: 10.3390/ph17030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Older adults who are diagnosed with acute lymphoblastic leukemia (ALL) and are treated with chemotherapy generally have poor outcomes. Blinatumomab is a CD19/CD3 bispecific T-cell engager that has been approved for the treatment of B-cell ALL in the relapsed/refractory setting or in patients with minimal residual disease (MRD) positivity. We previously reported on a small cohort of older adults with newly diagnosed Philadelphia chromosome negative B-cell ALL who were treated with blinatumomab monotherapy in the first line setting. This is a long-term follow up of those patients and their clinical courses. All five patients achieved complete remission (CR) after one cycle of blinatumomab, and three were MRD-negative. Two patients completed three cycles of blinatumomab, two patients completed four cycles of blinatumomab, and one patient completed 17 cycles of blinatumomab total. In the last four years, four of these patients had relapsed disease requiring additional therapy. Two patients are alive after 61 months and 57 months since their first cycle of blinatumomab. Two of the patients died at 10 months and one died at 20 months. Here we describe the long-term clinical courses of these patients.
Collapse
Affiliation(s)
- Yamini K. Kathari
- Departments of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Max An
- Departments of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christine Dougherty
- Departments of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Ashkan Emadi
- Departments of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
33
|
Imai K, Takeuchi Y, Terakura S, Okuno S, Adachi Y, Osaki M, Umemura K, Hanajiri R, Shimada K, Murata M, Kiyoi H. Dual CAR-T Cells Targeting CD19 and CD37 Are Effective in Target Antigen Loss B-cell Tumor Models. Mol Cancer Ther 2024; 23:381-393. [PMID: 37828726 DOI: 10.1158/1535-7163.mct-23-0408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cells targeting multiple antigens (Ag), may reduce the risk of immune escape following the loss of the target Ag and further increase the efficacy of treatment. We developed dual-targeting CAR-T cells that target CD19 and CD37 Ags and evaluated their antitumor effects. CD19/CD37 dual CAR-T cells were generated using cotransduction and simultaneous gene transfer of two types of lentiviral vectors transferring CD19CAR or CD37CAR genes, including the intracellular domains of CD28 and CD3ζ signaling domains. These dual CAR-T cells contained three fractions: CD19/CD37 bispecific CAR-T cells, single CD19CAR-T cells, and single CD37CAR-T cells. In the functional evaluation of CAR-T cells in vitro, CD19/CD37 dual CAR-T cells showed adequate proliferation and cytokine production in response to CD19 and CD37 antigen stimulation alone or in combination. Evaluation of intracellular signaling revealed that dual CAR-T cell-mediated signals were comparable with single CAR-T cells in response to CD19- and CD37-positive B-cell tumors. Although the cytotoxicity of CD19/CD37 dual CAR-T cells in both CD19- and CD37-positive B-cell tumors was similar to that of single CD19 and CD37CAR-T cells, against CD19 and CD37 Ag-heterogeneous tumor, dual CAR-T cells demonstrated significantly superior tumor lysis compared with single CAR-T cells. Furthermore, CD19/CD37 dual CAR-T cells effectively suppressed Ag-heterogeneous Raji cells in a xenograft mouse model. Collectively, these results suggest that CD19/CD37 dual CAR-T cells may be effective target-Ag-loss B-cell tumor models in vitro and in vivo, which represents a promising treatment for patients with relapsed/refractory B-cell malignancies.
Collapse
Affiliation(s)
- Kanae Imai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Takeuchi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Osaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Umemura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
34
|
Tang L, Zhang H, Zhou F, Wei Q, Du M, Wu J, Li C, Luo W, Zhou J, Wang X, Chen Z, Zhang Y, Huang Z, Wu Z, Wen Y, Jiang H, Liao D, Kou H, Xiong W, Mei H, Hu Y. Targeting autophagy overcomes cancer-intrinsic resistance to CAR-T immunotherapy in B-cell malignancies. Cancer Commun (Lond) 2024; 44:408-432. [PMID: 38407943 PMCID: PMC10958674 DOI: 10.1002/cac2.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor T (CAR-T) therapy has substantially revolutionized the clinical outcomes of patients with hematologic malignancies, but the cancer-intrinsic mechanisms underlying resistance to CAR-T cells remain yet to be fully understood. This study aims to explore the molecular determinants of cancer cell sensitivity to CAR-T cell-mediated killing and to provide a better understanding of the underlying mechanisms and potential modulation to improve clinical efficacy. METHODS The human whole-genome CRISPR/Cas9-based knockout screening was conducted to identify key genes that enable cancer cells to evade CD19 CAR-T-cell-mediated killing. The in vitro cytotoxicity assays and evaluation of tumor tissue and bone marrow specimens were further conducted to confirm the role of the key genes in cancer cell susceptibility to CAR-T cells. In addition, the specific mechanisms influencing CAR-T cell-mediated cancer clearance were elucidated in mouse and cellular models. RESULTS The CRISPR/Cas9-based knockout screening showed that the enrichment of autophagy-related genes (ATG3, BECN1, and RB1CC1) provided protection of cancer cells from CD19 CAR-T cell-mediated cytotoxicity. These findings were further validated by in vitro cytotoxicity assays in cells with genetic and pharmacological inhibition of autophagy. Notably, higher expression of the three autophagy-related proteins in tumor samples was correlated with poorer responsiveness and worse survival in patients with relapsed/refractory B-cell lymphoma after CD19 CAR-T therapy. Bulk RNA sequencing analysis of bone marrow samples from B-cell leukemia patients also suggested the clinical relevance of autophagy to the therapeutic response and relapse after CD19 CAR-T cell therapy. Pharmacological inhibition of autophagy and knockout of RB1CC1 could dramatically sensitize tumor cells to CD19 CAR-T cell-mediated killing in mouse models of both B-cell leukemia and lymphoma. Moreover, our study revealed that cancer-intrinsic autophagy mediates evasion of CAR-T cells via the TNF-α-TNFR1 axis-mediated apoptosis and STAT1/IRF1-induced chemokine signaling activation. CONCLUSIONS These findings confirm that autophagy signaling in B-cell malignancies is essential for the effective cytotoxic function of CAR-T cells and thereby pave the way for the development of autophagy-targeting strategies to improve the clinical efficacy of CAR-T cell immunotherapy.
Collapse
|
35
|
Liu Z, Lei W, Wang H, Liu X, Fu R. Challenges and strategies associated with CAR-T cell therapy in blood malignancies. Exp Hematol Oncol 2024; 13:22. [PMID: 38402232 PMCID: PMC10893672 DOI: 10.1186/s40164-024-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Cellular immunotherapy, particularly CAR-T cells, has shown potential in the improvement of outcomes in patients with refractory and recurrent malignancies of the blood. However, achieving sustainable long-term complete remission for blood cancer remains a challenge, with resistance and relapse being expected outcomes for many patients. Although many studies have attempted to clarify the mechanisms of CAR-T cell therapy failure, the mechanism remains unclear. In this article, we discuss and describe the current state of knowledge regarding these factors, which include elements that influence the CAR-T cell, cancer cells as a whole, and the microenvironment surrounding the tumor. In addition, we propose prospective approaches to overcome these obstacles in an effort to decrease recurrence rates and extend patient survival subsequent to CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| | - Wenhui Lei
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
- Department of Nephrology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, People's Republic of China
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| |
Collapse
|
36
|
Duell J, Leipold AM, Appenzeller S, Fuhr V, Rauert-Wunderlich H, Da Via M, Dietrich O, Toussaint C, Imdahl F, Eisele F, Afrin N, Grundheber L, Einsele H, Weinhold N, Rosenwald A, Topp MS, Saliba AE, Rasche L. Sequential antigen loss and branching evolution in lymphoma after CD19- and CD20-targeted T-cell-redirecting therapy. Blood 2024; 143:685-696. [PMID: 37976456 PMCID: PMC10900140 DOI: 10.1182/blood.2023021672] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
ABSTRACT CD19 chimeric antigen receptor (CAR) T cells and CD20 targeting T-cell-engaging bispecific antibodies (bispecs) have been approved in B-cell non-Hodgkin lymphoma lately, heralding a new clinical setting in which patients are treated with both approaches, sequentially. The aim of our study was to investigate the selective pressure of CD19- and CD20-directed therapy on the clonal architecture in lymphoma. Using a broad analytical pipeline on 28 longitudinally collected specimen from 7 patients, we identified truncating mutations in the gene encoding CD20 conferring antigen loss in 80% of patients relapsing from CD20 bispecs. Pronounced T-cell exhaustion was identified in cases with progressive disease and retained CD20 expression. We also confirmed CD19 loss after CAR T-cell therapy and reported the case of sequential CD19 and CD20 loss. We observed branching evolution with re-emergence of CD20+ subclones at later time points and spatial heterogeneity for CD20 expression in response to targeted therapy. Our results highlight immunotherapy as not only an evolutionary bottleneck selecting for antigen loss variants but also complex evolutionary pathways underlying disease progression from these novel therapies.
Collapse
Affiliation(s)
- Johannes Duell
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Alexander M. Leipold
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
| | - Silke Appenzeller
- Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Viktoria Fuhr
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Matteo Da Via
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Oliver Dietrich
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
| | - Christophe Toussaint
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
| | - Florian Eisele
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Nazia Afrin
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Lars Grundheber
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Max S. Topp
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Liao YM, Hsu SH, Chiou SS. Harnessing the Transcriptional Signatures of CAR-T-Cells and Leukemia/Lymphoma Using Single-Cell Sequencing Technologies. Int J Mol Sci 2024; 25:2416. [PMID: 38397092 PMCID: PMC10889174 DOI: 10.3390/ijms25042416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has greatly improved outcomes for patients with relapsed or refractory hematological malignancies. However, challenges such as treatment resistance, relapse, and severe toxicity still hinder its widespread clinical application. Traditional transcriptome analysis has provided limited insights into the complex transcriptional landscape of both leukemia cells and engineered CAR-T-cells, as well as their interactions within the tumor microenvironment. However, with the advent of single-cell sequencing techniques, a paradigm shift has occurred, providing robust tools to unravel the complexities of these factors. These techniques enable an unbiased analysis of cellular heterogeneity and molecular patterns. These insights are invaluable for precise receptor design, guiding gene-based T-cell modification, and optimizing manufacturing conditions. Consequently, this review utilizes modern single-cell sequencing techniques to clarify the transcriptional intricacies of leukemia cells and CAR-Ts. The aim of this manuscript is to discuss the potential mechanisms that contribute to the clinical failures of CAR-T immunotherapy. We examine the biological characteristics of CAR-Ts, the mechanisms that govern clinical responses, and the intricacies of adverse events. By exploring these aspects, we hope to gain a deeper understanding of CAR-T therapy, which will ultimately lead to improved clinical outcomes and broader therapeutic applications.
Collapse
Affiliation(s)
- Yu-Mei Liao
- Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
38
|
Shishido SN, Hart O, Jeong S, Moriarty A, Heeke D, Rossi J, Bot A, Kuhn P. Liquid biopsy approach to monitor the efficacy and response to CAR-T cell therapy. J Immunother Cancer 2024; 12:e007329. [PMID: 38350684 PMCID: PMC10862257 DOI: 10.1136/jitc-2023-007329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cells are approved for use in the treatment of hematological malignancies. Axicabtagene ciloleucel (YESCARTA) and brexucabtagene autoleucel (TECARTUS) genetically modified autologous T cells expressing an anti-CD19 scFv based on the FMC63 clone have shown impressive response rates for the treatment of CD19+B cell malignancies, but there remain challenges in monitoring long-term persistence as well as the functional characterization of low-level persisting CAR-T cells in patients. Furthermore, due to CD19-negative driven relapse, having the capability to monitor patients with simultaneous detection of the B cell malignancy and persisting CAR-T cells in patient peripheral blood is important for ensuring timely treatment optionality and understanding relapse. METHODS This study demonstrates the development and technical validation of a comprehensive liquid biopsy, high-definition single cell assay (HDSCA)-HemeCAR for (1) KTE-X19 CAR-T cell identification and analysis and (2) simultaneously monitoring the CD19-epitope landscape on neoplastic B cells in cryopreserved or fresh peripheral blood. Proprietary anti-CD19 CAR reagents, healthy donor transduced CAR-T cells, and patient samples consisting of malignant B cell fractions from manufacturing were used for assay development. RESULTS The CAR-T assay showed an approximate limit of detection at 1 cell in 3 million with a sensitivity of 91%. Genomic analysis was additionally used to confirm the presence of the CAR transgene. This study additionally reports the successful completion of two B cell assays with multiple CD19 variants (FMC63 and LE-CD19) and a unique fourth channel biomarker (CD20 or CD22). In patient samples, we observed that CD19 isoforms were highly heterogeneous both intrapatient and interpatient. CONCLUSIONS With the simultaneous detection of the CAR-T cells and the B cell malignancy in patient peripheral blood, the HDSCA-HemeCAR workflow may be considered for risk monitoring and patient management.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Olivia Hart
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Sujin Jeong
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Aidan Moriarty
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Darren Heeke
- Kite A Gilead Company, Santa Monica, California, USA
| | - John Rossi
- Kite A Gilead Company, Santa Monica, California, USA
| | - Adrian Bot
- Kite A Gilead Company, Santa Monica, California, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
39
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
40
|
Ligon JA, Ramakrishna S, Ceppi F, Calkoen FGJ, Diorio C, Davis KL, Jacoby E, Gottschalk S, Schultz LM, Capitini CM. INSPIRED Symposium Part 4B: Chimeric Antigen Receptor T Cell Correlative Studies-Established Findings and Future Priorities. Transplant Cell Ther 2024; 30:155-170. [PMID: 37863355 DOI: 10.1016/j.jtct.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell malignancies, with multiple CAR T cell products approved for numerous indications by regulatory agencies worldwide. However, significant work remains to be done to enhance these treatments. In March 2023, a group of experts in CAR T cell therapy assembled at the National Institutes of Health in Bethesda, Maryland at the Insights in Pediatric CAR T Cell Immunotherapy: Recent Advances and Future Directions (INSPIRED) Symposium to identify key areas for research for the coming years. In session 4B, correlative studies to be incorporated into future clinical trials and real-world settings were discussed. Active areas of research identified included (1) optimizing CAR T cell product manufacturing; (2) ensuring adequate lymphodepletion prior to CAR T cell administration; (3) overcoming immunoregulatory cells and tumor stroma present in the tumor microenvironment, particularly in solid tumors; (4) understanding tumor intrinsic properties that lead to CAR T cell immunotherapy resistance; and (5) uncovering biomarkers predictive of treatment resistance, treatment durability, or immune-related adverse events. Here we review the results of previously published clinical trials and real-world studies to summarize what is currently known about each of these topics. We then outline priorities for future research that we believe will be important for improving our understanding of CAR T cell therapy and ultimately leading to better outcomes for patients.
Collapse
Affiliation(s)
- John A Ligon
- Department of Pediatrics, Division of Hematology/Oncology, University of Florida, Gainesville, Florida; University of Florida Health Cancer Center, Gainesville, Florida.
| | - Sneha Ramakrishna
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Francesco Ceppi
- Division of Pediatrics, Department of Woman-Mother-Child, Pediatric Hematology-Oncology Unit, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Friso G J Calkoen
- Division of Pediatric Oncology, Princess Maxima Center, Utrecht, The Netherlands
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kara L Davis
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Elad Jacoby
- Pediatric Hemato-Oncology, Sheba Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Liora M Schultz
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
41
|
Hao Y, Chen P, Guo S, Li M, Jin X, Zhang M, Deng W, Li P, Lei W, Liang A, Qian W. Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of CD19-specific CAR T-cells via TGF-β signaling. Front Med 2024; 18:128-146. [PMID: 37870681 DOI: 10.1007/s11684-023-1010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/19/2023] [Indexed: 10/24/2023]
Abstract
Tumor-derived exosomes (TEXs) enriched in immune suppressive molecules predominantly drive T-cell dysfunction and impair antitumor immunity. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for refractory and relapsed hematological malignancies, but whether lymphoma TEXs have the same impact on CAR T-cell remains unclear. Here, we demonstrated that B-cell lymphoma-derived exosomes induce the initial activation of CD19-CAR T-cells upon stimulation with exosomal CD19. However, lymphoma TEXs might subsequently induce CAR T-cell apoptosis and impair the tumor cytotoxicity of the cells because of the upregulated expression of the inhibitory receptors PD-1, TIM3, and LAG3 upon prolonged exposure. Similar results were observed in the CAR T-cells exposed to plasma exosomes from patients with lymphoma. More importantly, single-cell RNA sequencing revealed that CAR T-cells typically showed differentiated phenotypes and regulatory T-cell (Treg) phenotype conversion. By blocking transforming growth factor β (TGF-β)-Smad3 signaling with TGF-β inhibitor LY2109761, the negative effects of TEXs on Treg conversion, terminal differentiation, and immune checkpoint expression were rescued. Collectively, although TEXs lead to the initial activation of CAR T-cells, the effect of TEXs suppressed CAR T-cells, which can be rescued by LY2109761. A treatment regimen combining CAR T-cell therapy and TGF-β inhibitors might be a novel therapeutic strategy for refractory and relapsed B-cell lymphoma.
Collapse
Affiliation(s)
- Yuanyuan Hao
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Panpan Chen
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shanshan Guo
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mengyuan Li
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xueli Jin
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Minghuan Zhang
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wenhai Deng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Wen Lei
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China.
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
42
|
Mishra A, Maiti R, Mohan P, Gupta P. Antigen loss following CAR-T cell therapy: Mechanisms, implications, and potential solutions. Eur J Haematol 2024; 112:211-222. [PMID: 37705357 DOI: 10.1111/ejh.14101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Chimeric Antigen Receptor T-cell (CAR-T cell) therapy has emerged as a groundbreaking immunotherapeutic approach for treating various hematological malignancies. CAR-T cells are engineered to express synthetic receptors that target specific antigens on cancer cells, leading to their eradication. While the therapy has shown remarkable efficacy, a significant challenge that has been observed in 30%-70% of patients showing recurrent disease is antigen loss or downregulation. We searched PubMed/MEDLINE, EMBASE, and Google scholar for articles on antigen loss/escape following Chimeric antigen receptor T-cell therapy in malignancies. Antigen loss refers to the loss or reduction in the expression of the target antigen on cancer cells, rendering CAR-T cells ineffective. This phenomenon poses a significant clinical concern, as it can lead to disease relapse and limited treatment options. This review explores the mechanisms underlying antigen loss following CAR-T cell therapy, its implications on treatment outcomes, and potential strategies to overcome the problem.
Collapse
Affiliation(s)
- Archana Mishra
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Prafull Mohan
- Clinical Pharmacologist, Armed Forces Medical Services, Guwahati, India
| | - Pooja Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, Delhi, India
| |
Collapse
|
43
|
Ong SY, Chen Y, Tan MSY, Ho AYL, Hwang WYK, Lim FLWI. Current perspectives on resistance to chimeric antigen receptor T-cell therapy and strategies to improve efficacy in B-cell lymphoma. Eur J Haematol 2024; 112:144-152. [PMID: 36987995 DOI: 10.1111/ejh.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Although chimeric antigen receptor (CAR) T-cell therapy has demonstrated remarkable efficacy in patients with chemo-refractory B-cell lymphoma, a significant portion is refractory or relapse. Resistance is a major barrier to improving treatment efficacy and long-term survival in CAR T-cell therapy, and clinicians have very limited tools to discriminate a priori patients who will or will not respond to treatment. While CD19-negative relapses due to loss of target antigen is well described, it accounts for only about 30% of cases with treatment failure. Recent efforts have shed light on mechanisms of CD19-positive relapse due to tumor intrinsic resistance, T-cell quality/manufacturing, or CAR T-cell exhaustion mediated by hostile tumor microenvironment. Here, we review the latest updates of preclinical and clinical trials to investigate the mechanisms of resistance and relapse post CAR T-cell therapy in B cell lymphoma and discuss novel treatment strategies to overcome resistance as well as advances that are useful for a CAR T therapist to optimize and personalize CAR T-cell therapy.
Collapse
Affiliation(s)
- Shin Yeu Ong
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Yunxin Chen
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Melinda Si Yun Tan
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | | | - William Ying Khee Hwang
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | | |
Collapse
|
44
|
Lin M, Zhao X, Chang Y, Zhao X. Current assessment and management of measurable residual disease in patients with acute lymphoblastic leukemia in the setting of CAR-T-cell therapy. Chin Med J (Engl) 2024; 137:140-151. [PMID: 38148315 PMCID: PMC10798764 DOI: 10.1097/cm9.0000000000002945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 12/28/2023] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR)-modified T-cell therapy has achieved remarkable success in the treatment of acute lymphoblastic leukemia (ALL). Measurable/minimal residual disease (MRD) monitoring plays a significant role in the prognostication and management of patients undergoing CAR-T-cell therapy. Common MRD detection methods include flow cytometry (FCM), polymerase chain reaction (PCR), and next-generation sequencing (NGS), and each method has advantages and limitations. It has been well documented that MRD positivity predicts a poor prognosis and even disease relapse. Thus, how to perform prognostic evaluations, stratify risk based on MRD status, and apply MRD monitoring to guide individual therapeutic decisions have important implications in clinical practice. This review assesses the common and novel MRD assessment methods. In addition, we emphasize the critical role of MRD as a prognostic biomarker and summarize the latest studies regarding MRD-directed combination therapy with CAR-T-cell therapy and allogeneic hematopoietic stem cell transplantation (allo-HSCT), as well as other therapeutic strategies to improve treatment effect. Furthermore, this review discusses current challenges and strategies for MRD detection in the setting of disease relapse after targeted therapy.
Collapse
Affiliation(s)
- Minghao Lin
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiaosu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Yingjun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiangyu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
45
|
Sakemura RL, Manriquez Roman C, Horvei P, Siegler EL, Girsch JH, Sirpilla OL, Stewart CM, Yun K, Can I, Ogbodo EJ, Adada MM, Bezerra ED, Kankeu Fonkoua LA, Hefazi M, Ruff MW, Kimball BL, Mai LK, Huynh TN, Nevala WK, Ilieva K, Augsberger C, Patra-Kneuer M, Schanzer J, Endell J, Heitmüller C, Steidl S, Parikh SA, Ding W, Kay NE, Nowakowski GS, Kenderian SS. CD19 occupancy with tafasitamab increases therapeutic index of CART19 cell therapy and diminishes severity of CRS. Blood 2024; 143:258-271. [PMID: 37879074 PMCID: PMC10808250 DOI: 10.1182/blood.2022018905] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023] Open
Abstract
ABSTRACT In the development of various strategies of anti-CD19 immunotherapy for the treatment of B-cell malignancies, it remains unclear whether CD19 monoclonal antibody therapy impairs subsequent CD19-targeted chimeric antigen receptor T-cell (CART19) therapy. We evaluated the potential interference between the CD19-targeting monoclonal antibody tafasitamab and CART19 treatment in preclinical models. Concomitant treatment with tafasitamab and CART19 showed major CD19 binding competition, which led to CART19 functional impairment. However, when CD19+ cell lines were pretreated with tafasitamab overnight and the unbound antibody was subsequently removed from the culture, CART19 function was not affected. In preclinical in vivo models, tafasitamab pretreatment demonstrated reduced incidence and severity of cytokine release syndrome and exhibited superior antitumor effects and overall survival compared with CART19 alone. This was associated with transient CD19 occupancy with tafasitamab, which in turn resulted in the inhibition of CART19 overactivation, leading to diminished CAR T apoptosis and pyroptosis of tumor cells.
Collapse
Affiliation(s)
- R. Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Claudia Manriquez Roman
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Paulina Horvei
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Pediatric Bone Marrow Transplant and Cellular Therapy, UPMC Children’s Hospital of Pittsburgh, PA
| | - Elizabeth L. Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - James H. Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Olivia L. Sirpilla
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Carli M. Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Ekene J. Ogbodo
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Mohamad M. Adada
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | - Mehrdad Hefazi
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Michael W. Ruff
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Department of Neurology, Mayo Clinic, Rochester, MN
| | - Brooke L. Kimball
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Long K. Mai
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Truc N. Huynh
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | | | | | | | - Wei Ding
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Saad S. Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| |
Collapse
|
46
|
Li YR, Halladay T, Yang L. Immune evasion in cell-based immunotherapy: unraveling challenges and novel strategies. J Biomed Sci 2024; 31:5. [PMID: 38217016 PMCID: PMC10785504 DOI: 10.1186/s12929-024-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Cell-based immunotherapies (CBIs), notably exemplified by chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy, have emerged as groundbreaking approaches for cancer therapy. Nevertheless, akin to various other therapeutic modalities, tumor cells employ counterstrategies to manifest immune evasion, thereby circumventing the impact of CBIs. This phenomenon is facilitated by an intricately immunosuppression entrenched within the tumor microenvironment (TME). Principal mechanisms underpinning tumor immune evasion from CBIs encompass loss of antigens, downregulation of antigen presentation, activation of immune checkpoint pathways, initiation of anti-apoptotic cascades, and induction of immune dysfunction and exhaustion. In this review, we delve into the intrinsic mechanisms underlying the capacity of tumor cells to resist CBIs and proffer prospective stratagems to navigate around these challenges.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
47
|
Naik S, Gottschalk S. Is immune escape in the rearview mirror? Blood 2024; 143:97-98. [PMID: 38206641 DOI: 10.1182/blood.2023022178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
|
48
|
Richard G, Ruggiero N, Steinberg GD, Martin WD, De Groot AS. Neoadjuvant personalized cancer vaccines: the final frontier? Expert Rev Vaccines 2024; 23:205-212. [PMID: 38189107 DOI: 10.1080/14760584.2024.2303015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
INTRODUCTION Clinical trials of personalized cancer vaccines have shown that on-demand therapies that are manufactured for each patient, result in activated T cell responses against individual tumor neoantigens. However, their use has been traditionally restricted to adjuvant settings and late-stage cancer therapy. There is growing support for the implementation of PCV earlier in the cancer therapy timeline, for reasons that will be discussed in this review. AREAS COVERED The efficacy of cancer vaccines may be to some extent dependent on treatment(s) given prior to vaccine administration. Tumors can undergo radical immunoediting following treatment with immunotherapies, such as checkpoint inhibitors, which may affect the presence of the very mutations targeted by cancer vaccines. This review will cover the topics of neoantigen cancer vaccines, tumor immunoediting, and therapy timing. EXPERT OPINION Therapy timing remains a critical topic to address in optimizing the efficacy of personalized cancer vaccines. Most personalized cancer vaccines are being evaluated in late-stage cancer patients and after treatment with checkpoint inhibitors, but they may offer a greater benefit to the patient if administered in earlier clinical settings, such as the neoadjuvant setting, where patients are not facing T cell exhaustion and/or a further compromised immune system.
Collapse
Affiliation(s)
| | | | - Gary D Steinberg
- EpiVax Therapeutics, Inc., Providence, RI, USA
- RUSH University, Chicago, IL, USA
| | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| |
Collapse
|
49
|
Testa U, Sica S, Pelosi E, Castelli G, Leone G. CAR-T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia. Mediterr J Hematol Infect Dis 2024; 16:e2024010. [PMID: 38223477 PMCID: PMC10786140 DOI: 10.4084/mjhid.2024.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024] Open
Abstract
Treatment of refractory and relapsed (R/R) B acute lymphoblastic leukemia (B-ALL) is an unmet medical need in both children and adults. Studies carried out in the last two decades have shown that autologous T cells engineered to express a chimeric antigen receptor (CAR-T) represent an effective technique for treating these patients. Antigens expressed on B-cells, such as CD19, CD20, and CD22, represent targets suitable for treating patients with R/R B-ALL. CD19 CAR-T cells induce a high rate (80-90%) of complete remissions in both pediatric and adult R/R B-ALL patients. However, despite this impressive rate of responses, about half of responding patients relapse within 1-2 years after CAR-T cell therapy. Allo-HSCT after CAR-T cell therapy might consolidate the therapeutic efficacy of CAR-T and increase long-term outcomes; however, not all the studies that have adopted allo-HSCT as a consolidative treatment strategy have shown a benefit deriving from transplantation. For B-ALL patients who relapse early after allo-HSCT or those with insufficient T-cell numbers for an autologous approach, using T cells from the original stem cell donor offers the opportunity for the successful generation of CAR-T cells and for an effective therapeutic approach. Finally, recent studies have introduced allogeneic CAR-T cells generated from healthy donors or unmatched, which are opportunely manipulated with gene editing to reduce the risk of immunological incompatibility, with promising therapeutic effects.
Collapse
Affiliation(s)
| | - Simona Sica
- Dipartimento Di Diagnostica per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy. Sezione Di Ematologia
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| | | | | | - Giuseppe Leone
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
50
|
Fetsch V, Zeiser R. Chimeric antigen receptor T cells for acute myeloid leukemia. Eur J Haematol 2024; 112:28-35. [PMID: 37455578 DOI: 10.1111/ejh.14047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The use of T cells expressing chimeric antigen receptors (CARs) that can target and eliminate cancer cells has revolutionized the treatment of B-cell malignancies. In contrast, CAR T cells have not yet become a routine treatment for myeloid malignancies such as acute myeloid leukemia (AML) or myeloproliferative neoplasms (MPNs). For these disease entities, allogeneic hematopoietic cell transplantation (allo-HCT) relying on polyclonal allo-reactive T cells is still the major cellular immunotherapy used in clinical routine. Here, we discuss major hurdles of CAR T-cell therapy for myeloid malignancies and novel approaches to enhance their efficacy and reduce toxicity. Heterogeneity of the malignant myeloid clone, CAR T-cell induced toxicity against normal hematopoietic cells, lack of long-term CAR T-cell persistence, and loss or downregulation of targetable antigens on myeloid cells are obstacles for successful CAR T cells therapy against AML and MPNs. Strategies to overcome these hurdles include pharmacological interventions, for example, demethylating therapy to increase target antigen expression, multi-targeted CAR T cells, and gene-therapy based approaches that delete the CAR target antigen in the hematopoietic cells of the recipient to protect them from CAR-induced myelotoxicity. Most of these approaches are still in preclinical testing but may reach the clinic in the coming years. In summary, we report on barriers to CAR T-cell use against AML and novel therapeutic strategies to overcome these challenges, with the goal of clinical treatment of myeloid malignancies with CAR T cells.
Collapse
Affiliation(s)
- Viktor Fetsch
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
| |
Collapse
|