1
|
Ghosh MK, Kumar S, Begam S, Ghosh S, Basu M. GBM immunotherapy: Exploring molecular and clinical frontiers. Life Sci 2024; 356:123018. [PMID: 39214286 DOI: 10.1016/j.lfs.2024.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
GBM is the most common, aggressive, and intracranial primary brain tumor; it originates from the glial progenitor cells, has poor overall survival (OS), and has limited treatment options. In this decade, GBM immunotherapy is in trend and preferred over several conventional therapies, due to their better patient survival outcome. This review explores the clinical trials of several immunotherapeutic approaches (immune checkpoint blockers (ICBs), CAR T-cell therapy, cancer vaccines, and adoptive cell therapy) with their efficacy and safety. Despite significant progress, several challenges (viz., immunosuppressive microenvironment, heterogeneity, and blood-brain barrier (BBB)) were experienced that hamper their immunotherapeutic potential. Furthermore, these challenges were clinically studied to be resolved by multiple combinatorial approaches, discussed in the later part of the review. Thus, this review suggests the clinical use and potential of immunotherapy in GBM and provides the holistic recent knowledge and future perspectives.
Collapse
Affiliation(s)
- Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| | - Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Sabana Begam
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Sayani Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN-743372, India
| |
Collapse
|
2
|
Bennett J, Yeo KK, Tabori U, Hawkins C, Lim-Fat MJ. Pediatric-type low-grade gliomas in adolescents and young adults-challenges and emerging paradigms. Childs Nerv Syst 2024; 40:3329-3339. [PMID: 38761264 DOI: 10.1007/s00381-024-06449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Pediatric-type low-grade glioma (PLGG) encompasses a heterogeneous group of WHO grade 1 or 2 tumors and is the most common central nervous system tumor found in children. PLGG extends beyond pediatrics, into adolescents and young adults (AYA, ages 15-40). PLGG represents 25% of all gliomas diagnosed in AYA with differences in tumor location and molecular alterations compared to children, resulting in improved outcome for AYAs. Long-term outcome is excellent, though patients may suffer significant morbidity depending on tumor location. There are differences in treatment practices with radiation used to treat PLGG in AYAs more often than in children. Most PLGG in AYA harbor an alteration in the RAS/MAPK pathway, with limited insight into response to targeted therapy in this age group. This review discusses the epidemiology, current therapeutic approaches, and challenges in the management of PLGG in AYA.
Collapse
Affiliation(s)
- Julie Bennett
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Arthur and Sonia Labbatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Kee Kiat Yeo
- Department of Pediatric Oncology, Dana-Farber / Boston Children's Cancer and Blood Disorder Center, Boston, MA, USA
| | - Uri Tabori
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labbatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia Hawkins
- Arthur and Sonia Labbatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
3
|
Levine AB, Hawkins CE. Molecular markers for pediatric low-grade glioma. Childs Nerv Syst 2024; 40:3223-3228. [PMID: 39379532 DOI: 10.1007/s00381-024-06639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Over the past decade, our understanding of the molecular drivers of pediatric low-grade glioma (PLGG) has expanded dramatically. These tumors are predominantly driven by RAS/MAPK pathway activating alterations (fusions and point mutations), most frequently in BRAF, FGFR1, and NF1. Furthermore, additional second hits in tumor suppressor genes (TP53, ATRX, CDKN2A) can portend more aggressive behaviour. Accordingly, comprehensive molecular profiling-specifically genetic sequencing, often plus copy number profiling-has become critical for guiding the diagnosis and management of PLGG. In this review, we discuss the most important genetic alterations that inform on classification and prognosis of PLGG, highlighting their diagnostic and therapeutic relevance.
Collapse
Affiliation(s)
- Adrian B Levine
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Cynthia E Hawkins
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada.
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Boop S, Shimony N, Boop F. How modern treatments have modified the role of surgery in pediatric low-grade glioma. Childs Nerv Syst 2024; 40:3357-3365. [PMID: 38676718 PMCID: PMC11511694 DOI: 10.1007/s00381-024-06412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
Low-grade gliomas are the most common brain tumor of childhood, and complete resection offers a high likelihood of cure. However, in many instances, tumors may not be surgically accessible without substantial morbidity, particularly in regard to gliomas arising from the optic or hypothalamic regions, as well as the brainstem. When gross total resection is not feasible, alternative treatment strategies must be considered. While conventional chemotherapy and radiation therapy have long been the backbone of adjuvant therapy for low-grade glioma, emerging techniques and technologies are rapidly changing the landscape of care for patients with this disease. This article seeks to review the current and emerging modalities of treatment for pediatric low-grade glioma.
Collapse
Affiliation(s)
- Scott Boop
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Nir Shimony
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, LeBonheur Children's Hospital, Memphis, TN, USA
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Semmes-Murphey Clinic, Memphis, TN, USA
| | - Frederick Boop
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, TN, USA.
- Global Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Siegel BI, Duke ES, Kilburn LB, Packer RJ. Molecular-targeted therapy for childhood low-grade glial and glioneuronal tumors. Childs Nerv Syst 2024; 40:3251-3262. [PMID: 38877124 DOI: 10.1007/s00381-024-06486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Since the discovery of the association between BRAF mutations and fusions in the development of childhood low-grade gliomas and the subsequent recognition that most childhood low-grade glial and glioneuronal tumors have aberrant signaling through the RAS/RAF/MAP kinase pathway, there has been a dramatic change in how these tumors are conceptualized. Many of the fusions and mutations present in these tumors are associated with molecular targets, which have agents in development or already in clinical use. Various agents, including MEK inhibitors, BRAF inhibitors, MTOR inhibitors and, in small subsets of patients NTRK inhibitors, have been used successfully to treat children with recurrent disease, after failure of conventional approaches such as surgery or chemotherapy. The relative benefits of chemotherapy as compared to molecular-targeted therapy for children with newly diagnosed gliomas and neuroglial tumors are under study. Already the combination of an MEK inhibitor and a BRAF inhibitor has been shown superior to conventional chemotherapy (carboplatin and vincristine) in newly diagnosed children with BRAF-V600E mutated low-grade gliomas and neuroglial tumors. However, the long-term effects of such molecular-targeted treatment are unknown. The potential use of molecular-targeted therapy in early treatment has made it mandatory that the molecular make-up of the majority of low-grade glial and glioneuronal tumors is known before initiation of therapy. The primary exception to this rule is in children with neurofibromatosis type 1 who, by definition, have NF1 loss; however, even in this population, gliomas arising in late childhood and adolescence or those not responding to conventional treatment may be candidates for biopsy, especially before entry on molecular-targeted therapy trials.
Collapse
Affiliation(s)
- Benjamin I Siegel
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, USA.
- Division of Neurology, Children's National Hospital, Washington, DC, USA.
- Division of Oncology, Children's National Hospital, Washington, DC, USA.
| | - Elizabeth S Duke
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
| | - Lindsay B Kilburn
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Division of Oncology, Children's National Hospital, Washington, DC, USA
| | - Roger J Packer
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
6
|
Zhang X, Zhang Y, Liu Q, Zeng A, Song L. Glycolysis-associated lncRNAs in cancer energy metabolism and immune microenvironment: a magic key. Front Immunol 2024; 15:1456636. [PMID: 39346921 PMCID: PMC11437524 DOI: 10.3389/fimmu.2024.1456636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
The dependence of tumor cells on glycolysis provides essential energy and raw materials for their survival and growth. Recent research findings have indicated that long chain non-coding RNAs (LncRNAs) have a key regulatory function in the tumor glycolytic pathway and offer new opportunities for cancer therapy. LncRNAs are analogous to a regulatory key during glycolysis. In this paper, we review the mechanisms of LncRNA in the tumor glycolytic pathway and their potential therapeutic strategies, including current alterations in cancer-related energy metabolism with lncRNA mediating the expression of key enzymes, lactate production and transport, and the mechanism of interaction with transcription factors, miRNAs, and other molecules. Studies targeting LncRNA-regulated tumor glycolytic pathways also offer the possibility of developing new therapeutic strategies. By regulating LncRNA expression, the metabolic pathways of tumor cells can be interfered with to inhibit tumor growth and metastasis, thus affecting the immune and drug resistance mechanisms of tumor cells. In addition, lncRNAs have the capacity to function as molecular markers and target therapies, thereby contributing novel strategies and approaches to the field of personalized cancer therapy and prognosis evaluation. In conclusion, LncRNA, as key molecules regulating the tumor glycolysis pathway, reveals a new mechanism of abnormal metabolism in cancer cells. Future research will more thoroughly investigate the specific mechanisms of LncRNA glycolysis regulation and develop corresponding therapeutic strategies, thereby fostering new optimism for the realization of precision medicine.
Collapse
Affiliation(s)
- Xi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
8
|
Thakur U, Ramachandran S, Mazal AT, Cheng J, Le L, Chhabra A. Multiparametric whole-body MRI of patients with neurofibromatosis type I: spectrum of imaging findings. Skeletal Radiol 2024:10.1007/s00256-024-04765-6. [PMID: 39105762 DOI: 10.1007/s00256-024-04765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Neurofibromatosis (NF) type I is a neuroectodermal and mesodermal dysplasia caused by a mutation of the neurofibromin tumor suppressor gene. Phenotypic features of NF1 vary, and patients develop benign peripheral nerve sheath tumors and malignant neoplasms, such as malignant peripheral nerve sheath tumor, malignant melanoma, and astrocytoma. Multiparametric whole-body MR imaging (WBMRI) plays a critical role in disease surveillance. Multiparametric MRI, typically used in prostate imaging, is a general term for a technique that includes multiple sequences, i.e. anatomic, diffusion, and Dixon-based pre- and post-contrast imaging. This article discusses the value of multiparametric WBMRI and illustrates the spectrum of whole-body lesions of NF1 in a single imaging setting. Examples of lesions include those in the skin (tumors and axillary freckling), soft tissues (benign and malignant peripheral nerve sheath tumors, visceral plexiform, and diffuse lesions), bone and joints (nutrient nerve lesions, non-ossifying fibromas, intra-articular neurofibroma, etc.), spine (acute-angled scoliosis, dural ectasia, intraspinal tumors, etc.), and brain/skull (optic nerve glioma, choroid plexus xanthogranuloma, sphenoid wing dysplasia, cerebral hamartomas, etc.). After reading this article, the reader will gain knowledge of the variety of lesions encountered with NF1 and their WBMRI appearances. Timely identification of such lesions can aid in accurate diagnosis and appropriate patient management.
Collapse
Affiliation(s)
- Uma Thakur
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Shyam Ramachandran
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Alexander T Mazal
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jonathan Cheng
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lu Le
- Department of Dermatology and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Ayasa LA, Rahhal S, Najjar AK, Suboh BN, Aliwaiai M, Daqour AM, Bakri I. Glioblastoma multiforme in a patient with neurofibromatosis type 1: a case report and review of literature. J Surg Case Rep 2024; 2024:rjae517. [PMID: 39211378 PMCID: PMC11358049 DOI: 10.1093/jscr/rjae517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor. Individuals with neurofibromatosis type 1 (NF1) have an increased risk of developing GBM. We present a case report of a 44-year-old male with NF1 who developed GBM. NF1-associated GBM presents distinct molecular features and younger age at diagnosis compared to sporadic cases. Treatment typically follows standard protocols for GBM. Despite advancements in neuro-oncology, gaps in knowledge persist regarding NF1-associated GBM, including its prevalence, molecular mechanisms, and optimal treatment strategies. Larger studies and collaborative efforts are needed to address these gaps and enhance patient care.
Collapse
Affiliation(s)
- Laith A Ayasa
- Al Quds University Faculty of Medicine, Mount of Olives St. 26, Sheikh Jarrah, P.O. Box 22246, Jerusalem 91513, Palestine
| | - Sara Rahhal
- School of Medicine, The University of Jordan, Amman, Queen Rania St. Jubeiha, P.O. Box 11942, Amman, Jordan
| | - Alaa Khaled Najjar
- Department of Neurosurgery, Al-Makassed Islamic Charitable Hospital, Jerusalem 97103, Palestine
| | - Bashar N Suboh
- Department of Neurosurgery, Al-Makassed Islamic Charitable Hospital, Jerusalem 97103, Palestine
| | - Mohammed Aliwaiai
- Department of Neurosurgery, Al-Makassed Islamic Charitable Hospital, Jerusalem 97103, Palestine
| | - Ahmad M Daqour
- Department of Neurosurgery, Al-Makassed Islamic Charitable Hospital, Jerusalem 97103, Palestine
| | - Izzeddin Bakri
- Department of Pathology, Al-Makassed Islamic Charitable Hospital, Jerusalem 97103, Palestine
| |
Collapse
|
10
|
Levine AB, Nobre L, Das A, Milos S, Bianchi V, Johnson M, Fernandez NR, Stengs L, Ryall S, Ku M, Rana M, Laxer B, Sheth J, Sbergio SG, Fedoráková I, Ramaswamy V, Bennett J, Siddaway R, Tabori U, Hawkins C. Immuno-oncologic profiling of pediatric brain tumors reveals major clinical significance of the tumor immune microenvironment. Nat Commun 2024; 15:5790. [PMID: 38987542 PMCID: PMC11237052 DOI: 10.1038/s41467-024-49595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
With the success of immunotherapy in cancer, understanding the tumor immune microenvironment (TIME) has become increasingly important; however in pediatric brain tumors this remains poorly characterized. Accordingly, we developed a clinical immune-oncology gene expression assay and used it to profile a diverse range of 1382 samples with detailed clinical and molecular annotation. In low-grade gliomas we identify distinct patterns of immune activation with prognostic significance in BRAF V600E-mutant tumors. In high-grade gliomas, we observe immune activation and T-cell infiltrates in tumors that have historically been considered immune cold, as well as genomic correlates of inflammation levels. In mismatch repair deficient high-grade gliomas, we find that high tumor inflammation signature is a significant predictor of response to immune checkpoint inhibition, and demonstrate the potential for multimodal biomarkers to improve treatment stratification. Importantly, while overall patterns of immune activation are observed for histologically and genetically defined tumor types, there is significant variability within each entity, indicating that the TIME must be evaluated as an independent feature from diagnosis. In sum, in addition to the histology and molecular profile, this work underscores the importance of reporting on the TIME as an essential axis of cancer diagnosis in the era of personalized medicine.
Collapse
Affiliation(s)
- Adrian B Levine
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Clinician Investigator Program, University of British Columbia, Vancouver, BC, Canada
| | - Liana Nobre
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, University of Alberta, Edmonton, AB, Canada
| | - Anirban Das
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Neuro-Oncology Unit, Division of Haematology Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Scott Milos
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vanessa Bianchi
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Monique Johnson
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nicholas R Fernandez
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lucie Stengs
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Scott Ryall
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Michelle Ku
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mansuba Rana
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Benjamin Laxer
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Javal Sheth
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stefanie-Grace Sbergio
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ivana Fedoráková
- Clinic of Pediatric Oncology and Hematology, University Children's Hospital, Banská Bystrica, Slovakia
| | - Vijay Ramaswamy
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Neuro-Oncology Unit, Division of Haematology Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Bennett
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Neuro-Oncology Unit, Division of Haematology Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Robert Siddaway
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Uri Tabori
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Neuro-Oncology Unit, Division of Haematology Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
11
|
Miao H, Wang L, Gong F, Duan L, Wang L, Yao Y, Feng M, Deng K, Wang R, Xiao Y, Ling Q, Zhu H, Lu L. A long-term prognosis study of human USP8-mutated ACTH-secreting pituitary neuroendocrine tumours. Clin Endocrinol (Oxf) 2024; 101:32-41. [PMID: 38691659 DOI: 10.1111/cen.15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/29/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE Somatic variants in the ubiquitin-specific protease 8 (USP8) gene are the most common genetic cause of Cushing disease. We aimed to explore the relationship between clinical outcomes and USP8 status in a single centre. DESIGN, PATIENTS AND MEASUREMENTS We investigated the USP8 status in 48 patients with pituitary corticotroph tumours. A median of 62 months of follow-up was conducted after surgery from November 2013 to January 2015. The clinical, biochemical and imaging features were collected and analysed. RESULTS Seven USP8 variants (p.Ser718Pro, p.Ser719del, p.Pro720Arg, p.Pro720Gln, p.Ser718del, p.Ser718Phe, p.Lys713Arg) were identified in 24 patients (50%). USP8 variants showed a female predominance (100% vs. 75% in wild type [WT], p = .022). Patients with p.Ser719del showed an older age at surgery compared to patients with the p.Pro720Arg variant (47- vs. 24-year-olds, p = .033). Patients with p.Pro720Arg showed a higher rate of macroadenoma compared to patients harbouring the p.Ser718Pro variant (60% vs. 0%, p = .037). No significant differences were observed in serum and urinary cortisol and adrenocorticotropin hormone (ACTH) levels. Immediate surgical remission (79% vs. 75%) and long-term hormone remission (79% vs. 67%) were not significantly different between the two groups. The recurrence rate was 21% (4/19) in patients harbouring USP8 variants and 13% (2/16) in WT patients. Recurrence-free survival presented a tendency to be shorter in USP8-mutated individuals (76.7 vs. 109.2 months, p = .068). CONCLUSIONS Somatic USP8 variants accounted for 50% of the genetic causes in this cohort with a significant female frequency. A long-term follow-up revealed a tendency toward shorter recurrence-free survival in USP8-mutant patients.
Collapse
Affiliation(s)
- Hui Miao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luo Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Translational Medicine Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Translational Medicine Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Translational Medicine Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Translational Medicine Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Ling
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Translational Medicine Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lin Lu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Translational Medicine Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Chen Y, Yu J, Ge S, Jia R, Song X, Wang Y, Fan X. An Overview of Optic Pathway Glioma With Neurofibromatosis Type 1: Pathogenesis, Risk Factors, and Therapeutic Strategies. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38837168 PMCID: PMC11160950 DOI: 10.1167/iovs.65.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Optic pathway gliomas (OPGs) are most predominant pilocytic astrocytomas, which are typically diagnosed within the first decade of life. The majority of affected children with OPGs also present with neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome. OPGs in individuals with NF1 primarily affect the optic pathway and lead to visual disturbance. However, it is challenging to assess risk in asymptomatic patients without valid biomarkers. On the other hand, for symptomatic patients, there is still no effective treatment to prevent or recover vision loss. Therefore, this review summarizes current knowledge regarding the pathogenesis of NF1-associated OPGs (NF1-OPGs) from preclinical studies to seek potential prognostic markers and therapeutic targets. First, the loss of the NF1 gene activates 3 distinct Ras effector pathways, including the PI3K/AKT/mTOR pathway, the MEK/ERK pathway, and the cAMP pathway, which mediate glioma tumorigenesis. Meanwhile, non-neoplastic cells from the tumor microenvironment (microglia, T cells, neurons, etc.) also contribute to gliomagenesis via various soluble factors. Subsequently, we investigated potential genetic risk factors, molecularly targeted therapies, and neuroprotective strategies for tumor prevention and vision recovery. Last, potential directions and promising preclinical models of NF1-OPGs are presented for further research. On the whole, NF1-OPGs develop as a result of the interaction between glioma cells and the tumor microenvironment. Developing effective treatments require a better understanding of tumor molecular characteristics, as well as multistage interventions targeting both neoplastic cells and non-neoplastic cells.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xin Song
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Yefei Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
13
|
Yang T, Zhang R, Cui Z, Zheng B, Zhu X, Yang X, Huang Q. Glycolysis‑related lncRNA may be associated with prognosis and immune activity in grade II‑III glioma. Oncol Lett 2024; 27:238. [PMID: 38601183 PMCID: PMC11005085 DOI: 10.3892/ol.2024.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024] Open
Abstract
Glucose metabolism, as a novel theory to explain tumor cell behavior, has been intensively studied in various tumors. The present study explored the long non-coding RNAs (lncRNAs) related to glycolysis in grade II-III glioma, aiming to provide a promising target for further research. Pearson correlation analysis was used to identify glycolysis-related lncRNAs. Univariate/multivariate Cox regression analysis and the Least Absolute Shrinkage and Selection Operator algorithm were applied to identify glycolysis-related lncRNAs to construct a prognosis prediction model. Subsequently, multi-dimensional evaluations were used to verify whether the risk model could predict the prognosis and survival rate of patients with grade II-III glioma. Finally, it was verified by functional experiments. The present study finally identified seven glycolysis-related lncRNAs (CRNDE, AC022034.1, RHOQ-AS1, AL159169.2, AL133215.2, AC007098.1 and LINC02587) to construct a prognosis prediction model. The present study further investigated the underlying immune microenvironment, somatic landscape and functional enrichment pathways. Additionally, individualized immunotherapeutic strategies and candidate compounds were identified to guide clinical treatment. The experimental results demonstrated that CRNDE could increase the proliferation of SHG-44 cells. In conclusion, a large sample of human grade II-III glioma in The Cancer Genome Atlas database was used to construct a risk model using glycolysis-related lncRNAs to predict the prognosis of patients with grade II-III glioma.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
- Department of Neurosurgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ruiguang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
| | - Zhenfen Cui
- Department of Neurosurgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Bowen Zheng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
| | - Xiaowei Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
| |
Collapse
|
14
|
Xiao M, Cui X, Xu C, Xin L, Zhao J, Yang S, Hong B, Tan Y, Zhang J, Li X, Li J, Kang C, Fang C. Deep-targeted gene sequencing reveals ARID1A mutation as an important driver of glioblastoma. CNS Neurosci Ther 2024; 30:e14698. [PMID: 38600891 PMCID: PMC11007544 DOI: 10.1111/cns.14698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
AIMS To investigate the key factors influencing glioma progression and the emergence of treatment resistance by examining the intrinsic connection between mutations in DNA damage and repair-related genes and the development of chemoresistance in gliomas. METHODS We conducted a comprehensive analysis of deep-targeted gene sequencing data from 228 glioma samples. This involved identifying differentially mutated genes across various glioma grades, assessing their functions, and employing I-TASSER for homology modeling. We elucidated the functional changes induced by high-frequency site mutations in these genes and investigated their impact on glioma progression. RESULTS The analysis of sequencing mutation results of deep targeted genes in integration revealed that ARID1A gene mutation occurs frequently in glioblastoma and alteration of ARID1A could affect the tolerance of glioma cells to temozolomide treatment. The deletion of proline at position 16 in the ARID1A protein affected the stability of binding of the SWI/SNF core subunit BRG1, which in turn affected the stability of the SWI/SNF complex and led to altered histone modifications in the CDKN1A promoter region, thereby affecting the biological activity of glioma cells, as inferred from modeling and protein interaction analysis. CONCLUSION The ARID1A gene is a critical predictive biomarker for glioma. Mutations at the ARID1A locus alter the stability of the SWI/SNF complex, leading to changes in transcriptional regulation in glioma cells. This contributes to an increased malignant phenotype of GBM and plays a pivotal role in mediating chemoresistance.
Collapse
Affiliation(s)
- Menglin Xiao
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| | - Xiaoteng Cui
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Can Xu
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| | - Lei Xin
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| | - Jixing Zhao
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Shixue Yang
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Biao Hong
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Yanli Tan
- Department of PathologyAffiliated Hospital of Hebei UniversityBaodingChina
- Department of PathologyHebei University School of Basic Medical SciencesBaodingChina
| | - Jie Zhang
- Department of PathologyHebei University School of Basic Medical SciencesBaodingChina
| | - Xiang Li
- Department of PathologyHebei University School of Basic Medical SciencesBaodingChina
| | - Jie Li
- Department of ProteomicsTianjin Enterprise Key Laboratory of Clinical Multi‐omicsTianjinChina
| | - Chunsheng Kang
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Chuan Fang
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| |
Collapse
|
15
|
Kim KH, Migliozzi S, Koo H, Hong JH, Park SM, Kim S, Kwon HJ, Ha S, Garofano L, Oh YT, D'Angelo F, Kim CI, Kim S, Lee JY, Kim J, Hong J, Jang EH, Mathon B, Di Stefano AL, Bielle F, Laurenge A, Nesvizhskii AI, Hur EM, Yin J, Shi B, Kim Y, Moon KS, Kwon JT, Lee SH, Lee SH, Gwak HS, Lasorella A, Yoo H, Sanson M, Sa JK, Park CK, Nam DH, Iavarone A, Park JB. Integrated proteogenomic characterization of glioblastoma evolution. Cancer Cell 2024; 42:358-377.e8. [PMID: 38215747 PMCID: PMC10939876 DOI: 10.1016/j.ccell.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/11/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
The evolutionary trajectory of glioblastoma (GBM) is a multifaceted biological process that extends beyond genetic alterations alone. Here, we perform an integrative proteogenomic analysis of 123 longitudinal glioblastoma pairs and identify a highly proliferative cellular state at diagnosis and replacement by activation of neuronal transition and synaptogenic pathways in recurrent tumors. Proteomic and phosphoproteomic analyses reveal that the molecular transition to neuronal state at recurrence is marked by post-translational activation of the wingless-related integration site (WNT)/ planar cell polarity (PCP) signaling pathway and BRAF protein kinase. Consistently, multi-omic analysis of patient-derived xenograft (PDX) models mirror similar patterns of evolutionary trajectory. Inhibition of B-raf proto-oncogene (BRAF) kinase impairs both neuronal transition and migration capability of recurrent tumor cells, phenotypic hallmarks of post-therapy progression. Combinatorial treatment of temozolomide (TMZ) with BRAF inhibitor, vemurafenib, significantly extends the survival of PDX models. This study provides comprehensive insights into the biological mechanisms of glioblastoma evolution and treatment resistance, highlighting promising therapeutic strategies for clinical intervention.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Proteomics Core Facility, Research Core Center, Research Institute, National Cancer Center, Goyang, Korea
| | - Simona Migliozzi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Harim Koo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jun-Hee Hong
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seung Min Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Sooheon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hyung Joon Kwon
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seokjun Ha
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Luciano Garofano
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Young Taek Oh
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fulvio D'Angelo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chan Il Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seongsoo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Ji Yoon Lee
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jiwon Kim
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jisoo Hong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Eun-Hae Jang
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Bertrand Mathon
- Service de Neurochirurgie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| | - Anna-Luisa Di Stefano
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France; Department of Neurology, Foch Hospital, Suresnes, France
| | - Franck Bielle
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Alice Laurenge
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | | | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea; BK21 Four Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jinlong Yin
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Youngwook Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - Jeong Taik Kwon
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Shin Heon Lee
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seung Hoon Lee
- Department of Neurosurgery, Eulji University School of Medicine, Daejeon, Korea
| | - Ho Shin Gwak
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Anna Lasorella
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Heon Yoo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Marc Sanson
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France.
| | - Jason K Sa
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.
| | - Chul-Kee Park
- Deparment of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery and Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery and Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Department of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| |
Collapse
|
16
|
White EE, Rhodes SD. The NF1+/- Immune Microenvironment: Dueling Roles in Neurofibroma Development and Malignant Transformation. Cancers (Basel) 2024; 16:994. [PMID: 38473354 PMCID: PMC10930863 DOI: 10.3390/cancers16050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder resulting in the development of both benign and malignant tumors of the peripheral nervous system. NF1 is caused by germline pathogenic variants or deletions of the NF1 tumor suppressor gene, which encodes the protein neurofibromin that functions as negative regulator of p21 RAS. Loss of NF1 heterozygosity in Schwann cells (SCs), the cells of origin for these nerve sheath-derived tumors, leads to the formation of plexiform neurofibromas (PNF)-benign yet complex neoplasms involving multiple nerve fascicles and comprised of a myriad of infiltrating stromal and immune cells. PNF development and progression are shaped by dynamic interactions between SCs and immune cells, including mast cells, macrophages, and T cells. In this review, we explore the current state of the field and critical knowledge gaps regarding the role of NF1(Nf1) haploinsufficiency on immune cell function, as well as the putative impact of Schwann cell lineage states on immune cell recruitment and function within the tumor field. Furthermore, we review emerging evidence suggesting a dueling role of Nf1+/- immune cells along the neurofibroma to MPNST continuum, on one hand propitiating PNF initiation, while on the other, potentially impeding the malignant transformation of plexiform and atypical neurofibroma precursor lesions. Finally, we underscore the potential implications of these discoveries and advocate for further research directed at illuminating the contributions of various immune cells subsets in discrete stages of tumor initiation, progression, and malignant transformation to facilitate the discovery and translation of innovative diagnostic and therapeutic approaches to transform risk-adapted care.
Collapse
Affiliation(s)
- Emily E. White
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven D. Rhodes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Lam K, Kamiya-Matsuoka C, Slopis JM, McCutcheon IE, Majd NK. Therapeutic Strategies for Gliomas Associated With Cancer Predisposition Syndromes. JCO Precis Oncol 2024; 8:e2300442. [PMID: 38394467 DOI: 10.1200/po.23.00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 02/25/2024] Open
Abstract
PURPOSE The purpose of this article was to provide an overview of syndromic gliomas. DESIGN The authors conducted a nonsystematic literature review. RESULTS Cancer predisposition syndromes (CPSs) are genetic conditions that increase one's risk for certain types of cancer compared with the general population. Syndromes that can predispose one to developing gliomas include neurofibromatosis, Li-Fraumeni syndrome, Lynch syndrome, and tuberous sclerosis complex. The standard treatment for sporadic glioma may involve resection, radiation therapy, and/or alkylating chemotherapy. However, DNA-damaging approaches, such as radiation and alkylating agents, may increase the risk of secondary malignancies and other complications in patients with CPSs. In some cases, depending on genetic aberrations, targeted therapies or immunotherapeutic approaches may be considered. Data on clinical characteristics, therapeutic strategies, and prognosis of syndromic gliomas remain limited. CONCLUSION In this review, we provide an overview of syndromic gliomas with a focus on management for patients with CPSs and the role of novel treatments that can be considered.
Collapse
Affiliation(s)
- Keng Lam
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| | | | - John M Slopis
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| | - Ian E McCutcheon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer, Houston, TX
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| |
Collapse
|
18
|
Na B, Shah S, Nghiemphu PL. Cancer Predisposition Syndromes in Neuro-oncology. Semin Neurol 2024; 44:16-25. [PMID: 38096910 DOI: 10.1055/s-0043-1777702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Although most primary central and peripheral nervous system (NS) tumors occur sporadically, there are a subset that may arise in the context of a cancer predisposition syndrome. These syndromes occur due to a pathogenic mutation in a gene that normally functions as a tumor suppressor. With increased understanding of the molecular pathogenesis of these tumors, more people have been identified with a cancer predisposition syndrome. Identification is crucial, as this informs surveillance, diagnosis, and treatment options. Moreover, relatives can also be identified through genetic testing. Although there are many cancer predisposition syndromes that increase the risk of NS tumors, in this review, we focus on three of the most common cancer predisposition syndromes, neurofibromatosis type 1, neurofibromatosis type 2, and tuberous sclerosis complex type 1 and type 2, emphasizing the clinical manifestations, surveillance guidelines, and treatment options.
Collapse
Affiliation(s)
- Brian Na
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Shilp Shah
- Department of Bioengineering, UCLA Samueli School of Engineering, Los Angeles, California
| | | |
Collapse
|
19
|
Sun T, Xin B, Fan Y, Zhang J. In Silico: Predicting Intrinsic Features of HLA Class-I Restricted Neoantigens. Methods Mol Biol 2024; 2809:245-261. [PMID: 38907902 DOI: 10.1007/978-1-0716-3874-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Mutation-containing immunogenic peptides from tumor cells, also named as neoantigens, have various amino acid descriptors and physical-chemical properties characterized intrinsic features, which are useful in prioritizing the immunogenicity potentials of neoantigens and predicting patients' survival. Here, we describe a glioma neoantigen intrinsic feature database, GNIFdb, that hosts computationally predicted HLA-I restricted neoantigens of gliomas, their intrinsic features, and the tools for calculating intrinsic features and predicting overall survival of gliomas. We illustrate the application of GNIFdb in searching for possible neoantigen candidates from ATF6 that plays important roles in tumor growth and resistance to radiotherapy in glioblastoma. We also demonstrate the application of intrinsic feature associated tools in GNIFdb to predict the overall survival of primary IDH wild-type glioblastoma.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Haidian District, Beijing, People's Republic of China
| | - Beibei Xin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Haidian District, Beijing, People's Republic of China
- Department of Plant Genetics and Breeding, State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Haidian District, Beijing, People's Republic of China
| | - Jing Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Haidian District, Beijing, People's Republic of China
| |
Collapse
|
20
|
Eoli M. Management of neurofibromatosis type 1 associated tumors of central and peripheral nervous system. Curr Opin Oncol 2023; 35:558-563. [PMID: 37820091 DOI: 10.1097/cco.0000000000000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW In recent years emerging evidence suggests that some tumor types, extremely rare in general population and understudied, can be observed in NF1 and neoplasms related with this condition harbor peculiar genetic and epigenetic features. The aim of this review is to summarize recent advances that, delving into the tumor complexity, have identified new diagnostic tools and potential tumor subtype that may have been associated with clinical implications. RECENT FINDINGS The available data confirmed the presence of peculiar molecular signatures in those tumors, different from those observed in sporadic neoplasms and suggest that a specific reference to NF1 associated neoplasms would deserve to be mentioned in tumor WHO classification. Comprehensive multiomic analysis shows that the histologic assessment does not always match the methylation group assignment and facilitates tumor subclassification into categories predictive of clinical behavior. The non-invasive assessment of tumor genetic profiles by the analysis of plasma ctDNA is representative of tumor features, may help differential diagnosis and may identify malignant transformation, sparing the patient from repeated biopsies. SUMMARY A better knowledge of NF1 associated tumors at the molecular level may suggest changes in the clinical management of the disease and open new frontiers of personalized treatment.
Collapse
Affiliation(s)
- Marica Eoli
- Experimental Neuro-Oncology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
21
|
McDonald MF, Prather LL, Helfer CR, Ludmir EB, Echeverria AE, Yust-Katz S, Patel AJ, Deneen B, Rao G, Jalali A, Dhar SU, Amos CI, Mandel JJ. Prevalence of pathogenic germline variants in adult-type diffuse glioma. Neurooncol Pract 2023; 10:482-490. [PMID: 37720399 PMCID: PMC10502787 DOI: 10.1093/nop/npad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Background No consensus germline testing guidelines currently exist for glioma patients, so the prevalence of germline pathogenic variants remains unknown. This study aims to determine the prevalence and type of pathogenic germline variants in adult glioma. Methods A retrospective review at a single institution with paired tumor/normal sequencing from August 2018-April 2022 was performed and corresponding clinical data were collected. Results We identified 152 glioma patients of which 15 (9.8%) had pathogenic germline variants. Pathogenic germline variants were seen in 11/84 (13.1%) of Glioblastoma, IDH wild type; 3/42 (7.1%) of Astrocytoma, IDH mutant; and 1/26 (3.8%) of Oligodendroglioma, IDH mutant, and 1p/19q co-deleted patients. Pathogenic variants in BRCA2, MUTYH, and CHEK2 were most common (3/15, 20% each). BRCA1 variants occurred in 2/15 (13%) patients, with variants in NF1, ATM, MSH2, and MSH3 occurring in one patient (7%) each. Prior cancer diagnosis was found in 5/15 patients (33%). Second-hit somatic variants were seen in 3/15 patients (20%) in NF1, MUTYH, and MSH2. Referral to genetics was performed in 6/15 (40%) patients with pathogenic germline variants. 14/15 (93%) of patients discovered their pathogenic variant as a result of their paired glioma sequencing. Conclusions These findings suggest a possible overlooked opportunity for determination of hereditary cancer syndromes with impact on surveillance as well as potential broader treatment options. Further studies that can determine the role of variants in gliomagenesis and confirm the occurrence and types of pathogenic germline variants in patients with IDH wild type compared to IDH mutant tumors are necessary.
Collapse
Affiliation(s)
- Malcolm F McDonald
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Lyndsey L Prather
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Cassandra R Helfer
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Ethan B Ludmir
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Alfredo E Echeverria
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
| | - Benjamin Deneen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Shweta U Dhar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Chris I Amos
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J Mandel
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
Goetsch Weisman A, Weiss McQuaid S, Radtke HB, Stoll J, Brown B, Gomes A. Neurofibromatosis- and schwannomatosis-associated tumors: Approaches to genetic testing and counseling considerations. Am J Med Genet A 2023; 191:2467-2481. [PMID: 37485904 DOI: 10.1002/ajmg.a.63346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 07/25/2023]
Abstract
Neurofibromatosis (NF) and schwannomatosis (SWN) are genetic conditions characterized by the risk of developing nervous system tumors. Recently revised diagnostic criteria include the addition of genetic testing to confirm a pathogenic variant, as well as to detect the presence of mosaicism. Therefore, the use and interpretation of both germline and tumor-based testing have increasing importance in the diagnostic approach, treatment decisions, and risk stratification of these conditions. This focused review discusses approaches to genetic testing of NF- and SWN-related tumor types, which are somewhat rare and perhaps lesser known to non-specialized clinicians. These include gastrointestinal stromal tumors, breast cancer, plexiform neurofibromas with or without transformation to malignant peripheral nerve sheath tumors, gliomas, and schwannomas, and emphasizes the need for inclusion of genetic providers in patient care and appropriate pre- and post-test education, genetic counseling, and focused evaluation by a medical geneticist or other healthcare provider familiar with clinical manifestations of these disorders.
Collapse
Affiliation(s)
- Allison Goetsch Weisman
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shelly Weiss McQuaid
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Heather B Radtke
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children's Tumor Foundation, New York, New York, USA
| | | | - Bryce Brown
- Medical Genomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alicia Gomes
- Medical Genomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
23
|
Hu LS, D'Angelo F, Weiskittel TM, Caruso FP, Fortin Ensign SP, Blomquist MR, Flick MJ, Wang L, Sereduk CP, Meng-Lin K, De Leon G, Nespodzany A, Urcuyo JC, Gonzales AC, Curtin L, Lewis EM, Singleton KW, Dondlinger T, Anil A, Semmineh NB, Noviello T, Patel RA, Wang P, Wang J, Eschbacher JM, Hawkins-Daarud A, Jackson PR, Grunfeld IS, Elrod C, Mazza GL, McGee SC, Paulson L, Clark-Swanson K, Lassiter-Morris Y, Smith KA, Nakaji P, Bendok BR, Zimmerman RS, Krishna C, Patra DP, Patel NP, Lyons M, Neal M, Donev K, Mrugala MM, Porter AB, Beeman SC, Jensen TR, Schmainda KM, Zhou Y, Baxter LC, Plaisier CL, Li J, Li H, Lasorella A, Quarles CC, Swanson KR, Ceccarelli M, Iavarone A, Tran NL. Integrated molecular and multiparametric MRI mapping of high-grade glioma identifies regional biologic signatures. Nat Commun 2023; 14:6066. [PMID: 37770427 PMCID: PMC10539500 DOI: 10.1038/s41467-023-41559-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA.
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | - Fulvio D'Angelo
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Taylor M Weiskittel
- Mayo Clinic Alix School of Medicine Minnesota, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Francesca P Caruso
- Department of Electrical Engineering and Information Technologies, University of Naples, "Federico II", I-80128, Naples, Italy
- BIOGEM Institute of Molecular Biology and Genetics, I-83031, Ariano Irpino, Italy
| | - Shannon P Fortin Ensign
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Mylan R Blomquist
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine Arizona, Scottsdale, AZ, USA
| | - Matthew J Flick
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Mayo Clinic Alix School of Medicine Arizona, Scottsdale, AZ, USA
| | - Lujia Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christopher P Sereduk
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Kevin Meng-Lin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gustavo De Leon
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ashley Nespodzany
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Javier C Urcuyo
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ashlyn C Gonzales
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Lee Curtin
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Erika M Lewis
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Kyle W Singleton
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Aliya Anil
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Natenael B Semmineh
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teresa Noviello
- Department of Electrical Engineering and Information Technologies, University of Naples, "Federico II", I-80128, Naples, Italy
- BIOGEM Institute of Molecular Biology and Genetics, I-83031, Ariano Irpino, Italy
| | - Reyna A Patel
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Panwen Wang
- Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Junwen Wang
- Division of Applied Oral Sciences & Community Dental Care, The University of Hong Kong, Hong Kong SAR, China
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | | | - Pamela R Jackson
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Itamar S Grunfeld
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
- Department of Psychology, The Graduate Center, The City University of New York, New York, NY, USA
| | | | - Gina L Mazza
- Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Sam C McGee
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, USA
| | - Lisa Paulson
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | | | - Kris A Smith
- Department of Neurosurgery, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Banner University Medical Center, University of Arizona, Phoenix, AZ, USA
| | - Bernard R Bendok
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Richard S Zimmerman
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Chandan Krishna
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Devi P Patra
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Naresh P Patel
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Mark Lyons
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Matthew Neal
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Kliment Donev
- Department of Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | | - Alyx B Porter
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Scott C Beeman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Kathleen M Schmainda
- Departments of Biophysics and Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yuxiang Zhou
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Leslie C Baxter
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
- Departments of Psychiatry and Psychology, Mayo Clinic, AZ, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Anna Lasorella
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - C Chad Quarles
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin R Swanson
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Michele Ceccarelli
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Antonio Iavarone
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
24
|
Visioli A, Trivieri N, Mencarelli G, Giani F, Copetti M, Palumbo O, Pracella R, Cariglia MG, Barile C, Mischitelli L, Soriano AA, Palumbo P, Legnani F, DiMeco F, Gorgoglione L, Pesole G, Vescovi AL, Binda E. Different states of stemness of glioblastoma stem cells sustain glioblastoma subtypes indicating novel clinical biomarkers and high-efficacy customized therapies. J Exp Clin Cancer Res 2023; 42:244. [PMID: 37735434 PMCID: PMC10512479 DOI: 10.1186/s13046-023-02811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM. METHODS Here, we isolated and established functionally stable and steadily expanding GSCs lines from a large cohort of GBM patients. The molecular, functional and antigenic landscape of GBM tissues and their derivative GSCs was highlited in a side-by-side comprehensive genomic and transcriptomic characterization by ANOVA and Fisher's exact tests. GSCs' physio-pathological hallmarks were delineated by comparing over time in vitro and in vivo their expansion, self-renewal and tumorigenic ability with hierarchical linear models for repeated measurements and Kaplan-Meier method. Candidate biomarkers performance in discriminating GBM patients' classification emerged by classification tree and patients' survival analysis. RESULTS Here, distinct biomarker signatures together with aberrant functional programs were shown to stratify GBM patients as well as their sibling GSCs population into TCGA clusters. Of importance, GSCs cells were demonstrated to fully resemble over time the molecular features of their patient of origin. Furthermore, we pointed out the existence of distinct GSCs subsets within GBM classification, inherently endowed with different self-renewal and tumorigenic potential. Particularly, classical GSCs were identified by more undifferentiated biological hallmarks, enhanced expansion and clonal capacity as compared to the more mature, relatively slow-propagating mesenchymal and proneural cells, likely endowed with a higher potential for infiltration either ex vivo or in vivo. Importantly, the combination of DCX and EGFR markers, selectively enriched among GSCs pools, almost exactly predicted GBM patients' clusters together with their survival and drug response. CONCLUSIONS In this study we report that an inherent enrichment of distinct GSCs pools underpin the functional inter-cluster variances displayed by GBM patients. We uncover two selectively represented novel functional biomarkers capable of discriminating GBM patients' stratification, survival and drug response, setting the stage for the determination of patient-tailored diagnostic and prognostic strategies and, mostly, for the design of appropriate, patient-selective treatment protocols.
Collapse
Affiliation(s)
| | - Nadia Trivieri
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Gandino Mencarelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | | | - Massimiliano Copetti
- Biostatistical Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Maria Grazia Cariglia
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Chiara Barile
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Luigi Mischitelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Amata Amy Soriano
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Pietro Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Federico Legnani
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
- Department of Neurosurgery, John Hopkins University, Baltimore, Mariland, USA
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Angelo L Vescovi
- Scientific Directorate, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
- Hyperstem SA, Lugano, Switzerland.
| | - Elena Binda
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
25
|
Merati A, Kotian S, Acton A, Placzek W, Smithberger E, Shelton AK, Miller CR, Stern JL. Glioma Stem Cells Are Sensitized to BCL-2 Family Inhibition by Compromising Histone Deacetylases. Int J Mol Sci 2023; 24:13688. [PMID: 37761989 PMCID: PMC10530722 DOI: 10.3390/ijms241813688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) remains an incurable disease with an extremely high five-year recurrence rate. We studied apoptosis in glioma stem cells (GSCs) in response to HDAC inhibition (HDACi) combined with MEK1/2 inhibition (MEKi) or BCL-2 family inhibitors. MEKi effectively combined with HDACi to suppress growth, induce cell cycle defects, and apoptosis, as well as to rescue the expression of the pro-apoptotic BH3-only proteins BIM and BMF. A RNAseq analysis of GSCs revealed that HDACi repressed the pro-survival BCL-2 family genes MCL1 and BCL-XL. We therefore replaced MEKi with BCL-2 family inhibitors and observed enhanced apoptosis. Conversely, a ligand for the cancer stem cell receptor CD44 led to reductions in BMF, BIM, and apoptosis. Our data strongly support further testing of HDACi in combination with MEKi or BCL-2 family inhibitors in glioma.
Collapse
Affiliation(s)
- Aran Merati
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Spandana Kotian
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexus Acton
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erin Smithberger
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Abigail K. Shelton
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - C. Ryan Miller
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Josh L. Stern
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
| |
Collapse
|
26
|
Jethalia M, Jani SP, Ceccarelli M, Mall R. Pancancer network analysis reveals key master regulators for cancer invasiveness. J Transl Med 2023; 21:558. [PMID: 37599366 PMCID: PMC10440887 DOI: 10.1186/s12967-023-04435-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Tumor invasiveness reflects numerous biological changes, including tumorigenesis, progression, and metastasis. To decipher the role of transcriptional regulators (TR) involved in tumor invasiveness, we performed a systematic network-based pan-cancer assessment of master regulators of cancer invasiveness. MATERIALS AND METHODS We stratified patients in The Cancer Genome Atlas (TCGA) into invasiveness high (INV-H) and low (INV-L) groups using consensus clustering based on an established robust 24-gene signature to determine the prognostic association of invasiveness with overall survival (OS) across 32 different cancers. We devise a network-based protocol to identify TRs as master regulators (MRs) unique to INV-H and INV-L phenotypes. We validated the activity of MRs coherently associated with INV-H phenotype and worse OS across cancers in TCGA on a series of additional datasets in the Prediction of Clinical Outcomes from the Genomic Profiles (PRECOG) repository. RESULTS Based on the 24-gene signature, we defined the invasiveness score for each patient sample and stratified patients into INV-H and INV-L clusters. We observed that invasiveness was associated with worse survival outcomes in almost all cancers and had a significant association with OS in ten out of 32 cancers. Our network-based framework identified common invasiveness-associated MRs specific to INV-H and INV-L groups across the ten prognostic cancers, including COL1A1, which is also part of the 24-gene signature, thus acting as a positive control. Downstream pathway analysis of MRs specific to INV-H phenotype resulted in the identification of several enriched pathways, including Epithelial into Mesenchymal Transition, TGF-β signaling pathway, regulation of Toll-like receptors, cytokines, and inflammatory response, and selective expression of chemokine receptors during T-cell polarization. Most of these pathways have connotations of inflammatory immune response and feasibility for metastasis. CONCLUSION Our pan-cancer study provides a comprehensive master regulator analysis of tumor invasiveness and can suggest more precise therapeutic strategies by targeting the identified MRs and downstream enriched pathways for patients across multiple cancers.
Collapse
Affiliation(s)
- Mahesh Jethalia
- Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Siddhi P Jani
- Centre of Brain Research, Indian Institute of Sciences, Bangalore, Karnataka, India
- Institute of Science, Nirma University, Ahmedabad, India
| | - Michele Ceccarelli
- Department of Public Health Sciences, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Raghvendra Mall
- St. Jude Children's Hospital, Memphis, TN, USA.
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
27
|
Romo CG, Piotrowski AF, Campian JL, Diarte J, Rodriguez FJ, Bale TA, Dahiya S, Gutmann DH, Lucas CHG, Prichett L, Mellinghoff I, Blakeley JO. Clinical, histological, and molecular features of gliomas in adults with neurofibromatosis type 1. Neuro Oncol 2023; 25:1474-1486. [PMID: 36840626 PMCID: PMC10398805 DOI: 10.1093/neuonc/noad033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND People with NF1 have an increased prevalence of central nervous system malignancy. However, little is known about the clinical course or pathologic features of NF1-associated gliomas in adults, limiting clinical care and research. METHODS Adults (≥18 years) with NF1 and histologically confirmed non-optic pathway gliomas (non-OPGs) at Johns Hopkins Hospital, Memorial Sloan Kettering Cancer Center, and Washington University presenting between 1990 and 2020 were identified. Retrospective data were collated, and pathology was reviewed centrally. RESULTS Forty-five patients, comprising 23 females (51%), met eligibility criteria, with a median of age 37 (18-68 years) and performance status of 80% (30%-100%). Tissue was available for 35 patients. Diagnoses included infiltrating (low-grade) astrocytoma (9), glioblastoma (7), high-grade astrocytoma with piloid features (4), pilocytic astrocytoma (4), high-grade astrocytoma (3), WHO diagnosis not reached (4) and one each of gliosarcoma, ganglioglioma, embryonal tumor, and diffuse midline glioma. Seventy-one percent of tumors were midline and underwent biopsy only. All 27 tumors evaluated were IDH1-wild-type, independent of histology. In the 10 cases with molecular testing, the most common genetic variants were NF1, EGFR, ATRX, CDKN2A/B, TP53, TERT, and MSH2/3 mutation. While the treatments provided varied, the median overall survival was 24 months [2-267 months] across all ages, and 38.5 [18-109] months in individuals with grade 1-2 gliomas. CONCLUSIONS Non-OPGs in adults with NF1, including low-grade tumors, often have an aggressive clinical course, indicating a need to better understand the pathobiology of these NF1-associated gliomas.
Collapse
Affiliation(s)
- Carlos G Romo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anna F Piotrowski
- Departments of Neurology and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jian L Campian
- Departments of Neurology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jose Diarte
- Departments of Neurology and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fausto J Rodriguez
- Department of Pathology, University of California Los Angeles, Los Angeles, California, USA
| | - Tejus A Bale
- Departments of Neurology and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sonika Dahiya
- Departments of Neurology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David H Gutmann
- Departments of Neurology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura Prichett
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ingo Mellinghoff
- Departments of Neurology and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Bredel M, Espinosa L, Kim H, Scholtens DM, McElroy JP, Rajbhandari R, Meng W, Kollmeyer TM, Malta TM, Quezada MA, Harsh GR, Lobo-Jarne T, Solé L, Merati A, Nagaraja S, Nair S, White JJ, Thudi NK, Fleming JL, Webb A, Natsume A, Ogawa S, Weber RG, Bertran J, Haque SJ, Hentschel B, Miller CR, Furnari FB, Chan TA, Grosu AL, Weller M, Barnholtz-Sloan JS, Monje M, Noushmehr H, Jenkins RB, Rogers CL, MacDonald DR, Pugh SL, Chakravarti A. Haploinsufficiency of NFKBIA reshapes the epigenome antipodal to the IDH mutation and imparts disease fate in diffuse gliomas. Cell Rep Med 2023; 4:101082. [PMID: 37343523 PMCID: PMC10314122 DOI: 10.1016/j.xcrm.2023.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/18/2022] [Accepted: 05/18/2023] [Indexed: 06/23/2023]
Abstract
Genetic alterations help predict the clinical behavior of diffuse gliomas, but some variability remains uncorrelated. Here, we demonstrate that haploinsufficient deletions of chromatin-bound tumor suppressor NFKB inhibitor alpha (NFKBIA) display distinct patterns of occurrence in relation to other genetic markers and are disproportionately present at recurrence. NFKBIA haploinsufficiency is associated with unfavorable patient outcomes, independent of genetic and clinicopathologic predictors. NFKBIA deletions reshape the DNA and histone methylome antipodal to the IDH mutation and induce a transcriptome landscape partly reminiscent of H3K27M mutant pediatric gliomas. In IDH mutant gliomas, NFKBIA deletions are common in tumors with a clinical course similar to that of IDH wild-type tumors. An externally validated nomogram model for estimating individual patient survival in IDH mutant gliomas confirms that NFKBIA deletions predict comparatively brief survival. Thus, NFKBIA haploinsufficiency aligns with distinct epigenome changes, portends a poor prognosis, and should be incorporated into models predicting the disease fate of diffuse gliomas.
Collapse
Affiliation(s)
- Markus Bredel
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA.
| | - Lluís Espinosa
- Cancer Research Program, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Institut Mar d'Investigacions Mèdiques, Hospital del Mar, 08003 Barcelona, Spain
| | - Hyunsoo Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Denise M Scholtens
- Division of Biostatistics-Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph P McElroy
- Center for Biostatistics-Department of Biomedical Informatics, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Rajani Rajbhandari
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Wei Meng
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Thomas M Kollmeyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Tathiane M Malta
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI 48202, USA
| | - Michael A Quezada
- Department of Neurology & Neurological Sciences and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Griffith R Harsh
- Department of Neurological Surgery, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | - Teresa Lobo-Jarne
- Cancer Research Program, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Institut Mar d'Investigacions Mèdiques, Hospital del Mar, 08003 Barcelona, Spain
| | - Laura Solé
- Cancer Research Program, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Institut Mar d'Investigacions Mèdiques, Hospital del Mar, 08003 Barcelona, Spain
| | - Aran Merati
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Surya Nagaraja
- Department of Neurology & Neurological Sciences and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sindhu Nair
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Jaclyn J White
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| | - Nanda K Thudi
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Jessica L Fleming
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Amy Webb
- Center for Biostatistics-Department of Biomedical Informatics, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya 464-8601, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Ruthild G Weber
- Institute for Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Joan Bertran
- Biosciences Department, Faculty of Sciences, Technology, and Engineering. University of Vic-Central University of Catalonia, 08500 Vic, Spain
| | - S Jaharul Haque
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany
| | - C Ryan Miller
- Division of Neuropathology-Department of Pathology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Frank B Furnari
- Laboratory of Tumor Biology, Division of Regenerative Medicine-Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Freiburg, 79106 Freiburg, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Jill S Barnholtz-Sloan
- Division of Cancer Epidemiology and Genetics-National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michelle Monje
- Department of Neurology & Neurological Sciences and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI 48202, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - David R MacDonald
- London Regional Cancer Program, Western University, London, ON N6A 5W9, Canada
| | - Stephanie L Pugh
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA 19103, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Cipri S, Del Baldo G, Fabozzi F, Boccuto L, Carai A, Mastronuzzi A. Unlocking the power of precision medicine for pediatric low-grade gliomas: molecular characterization for targeted therapies with enhanced safety and efficacy. Front Oncol 2023; 13:1204829. [PMID: 37397394 PMCID: PMC10311254 DOI: 10.3389/fonc.2023.1204829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
In the past decade significant advancements have been made in the discovery of targetable lesions in pediatric low-grade gliomas (pLGGs). These tumors account for 30-50% of all pediatric brain tumors with generally a favorable prognosis. The latest 2021 WHO classification of pLGGs places a strong emphasis on molecular characterization for significant implications on prognosis, diagnosis, management, and the potential target treatment. With the technological advances and new applications in molecular diagnostics, the molecular characterization of pLGGs has revealed that tumors that appear similar under a microscope can have different genetic and molecular characteristics. Therefore, the new classification system divides pLGGs into several distinct subtypes based on these characteristics, enabling a more accurate strategy for diagnosis and personalized therapy based on the specific genetic and molecular abnormalities present in each tumor. This approach holds great promise for improving outcomes for patients with pLGGs, highlighting the importance of the recent breakthroughs in the discovery of targetable lesions.
Collapse
Affiliation(s)
- Selene Cipri
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
30
|
Barry A, Samuel SF, Hosni I, Moursi A, Feugere L, Sennett CJ, Deepak S, Achawal S, Rajaraman C, Iles A, Wollenberg Valero KC, Scott IS, Green V, Stead LF, Greenman J, Wade MA, Beltran-Alvarez P. Investigating the effects of arginine methylation inhibitors on microdissected brain tumour biopsies maintained in a miniaturised perfusion system. LAB ON A CHIP 2023; 23:2664-2682. [PMID: 37191188 DOI: 10.1039/d3lc00204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arginine methylation is a post-translational modification that consists of the transfer of one or two methyl (CH3) groups to arginine residues in proteins. Several types of arginine methylation occur, namely monomethylation, symmetric dimethylation and asymmetric dimethylation, which are catalysed by different protein arginine methyltransferases (PRMTs). Inhibitors of PRMTs have recently entered clinical trials to target several types of cancer, including gliomas (NCT04089449). People with glioblastoma (GBM), the most aggressive form of brain tumour, are among those with the poorest quality of life and likelihood of survival of anyone diagnosed with cancer. There is currently a lack of (pre)clinical research on the possible application of PRMT inhibitors to target brain tumours. Here, we set out to investigate the effects of clinically-relevant PRMT inhibitors on GBM biopsies. We present a new, low-cost, easy to fabricate perfusion device that can maintain GBM tissue in a viable condition for at least eight days post-surgical resection. The miniaturised perfusion device enables the treatment of GBM tissue with PRMT inhibitors ex vivo, and we observed a two-fold increase in apoptosis in treated samples compared to parallel control experiments. Mechanistically, we show thousands of differentially expressed genes after treatment, and changes in the type of arginine methylation of the RNA binding protein FUS that are consistent with hundreds of differential gene splicing events. This is the first time that cross-talk between different types of arginine methylation has been observed in clinical samples after treatment with PRMT inhibitors.
Collapse
Affiliation(s)
- Antonia Barry
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Sabrina F Samuel
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Ines Hosni
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Amr Moursi
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Hull, UK
| | | | - Srihari Deepak
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Shailendra Achawal
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Chittoor Rajaraman
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | | | | | - Ian S Scott
- Neuroscience Laboratories, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Vicky Green
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Lucy F Stead
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - John Greenman
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Mark A Wade
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | | |
Collapse
|
31
|
Roelands J, Kuppen PJK, Ahmed EI, Mall R, Masoodi T, Singh P, Monaco G, Raynaud C, de Miranda NFCC, Ferraro L, Carneiro-Lobo TC, Syed N, Rawat A, Awad A, Decock J, Mifsud W, Miller LD, Sherif S, Mohamed MG, Rinchai D, Van den Eynde M, Sayaman RW, Ziv E, Bertucci F, Petkar MA, Lorenz S, Mathew LS, Wang K, Murugesan S, Chaussabel D, Vahrmeijer AL, Wang E, Ceccarelli A, Fakhro KA, Zoppoli G, Ballestrero A, Tollenaar RAEM, Marincola FM, Galon J, Khodor SA, Ceccarelli M, Hendrickx W, Bedognetti D. An integrated tumor, immune and microbiome atlas of colon cancer. Nat Med 2023; 29:1273-1286. [PMID: 37202560 PMCID: PMC10202816 DOI: 10.1038/s41591-023-02324-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/28/2023] [Indexed: 05/20/2023]
Abstract
The lack of multi-omics cancer datasets with extensive follow-up information hinders the identification of accurate biomarkers of clinical outcome. In this cohort study, we performed comprehensive genomic analyses on fresh-frozen samples from 348 patients affected by primary colon cancer, encompassing RNA, whole-exome, deep T cell receptor and 16S bacterial rRNA gene sequencing on tumor and matched healthy colon tissue, complemented with tumor whole-genome sequencing for further microbiome characterization. A type 1 helper T cell, cytotoxic, gene expression signature, called Immunologic Constant of Rejection, captured the presence of clonally expanded, tumor-enriched T cell clones and outperformed conventional prognostic molecular biomarkers, such as the consensus molecular subtype and the microsatellite instability classifications. Quantification of genetic immunoediting, defined as a lower number of neoantigens than expected, further refined its prognostic value. We identified a microbiome signature, driven by Ruminococcus bromii, associated with a favorable outcome. By combining microbiome signature and Immunologic Constant of Rejection, we developed and validated a composite score (mICRoScore), which identifies a group of patients with excellent survival probability. The publicly available multi-omics dataset provides a resource for better understanding colon cancer biology that could facilitate the discovery of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Jessica Roelands
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Eiman I Ahmed
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Tariq Masoodi
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Gianni Monaco
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
- Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Christophe Raynaud
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Luigi Ferraro
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, Naples, Italy
| | | | - Najeeb Syed
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Arun Rawat
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Amany Awad
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - William Mifsud
- Department of Pathology, Sidra Medicine, Doha, Qatar
- Weill-Cornell Medicine Qatar, Doha, Qatar
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shimaa Sherif
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mahmoud G Mohamed
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Women's Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | - Darawan Rinchai
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Marc Van den Eynde
- Institut Roi Albert II, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Rosalyn W Sayaman
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Francois Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Mahir Abdulla Petkar
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Stephan Lorenz
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Lisa Sara Mathew
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Kun Wang
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Damien Chaussabel
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Computational Sciences Department, The Jackson Laboratory, Farmington, CT, USA
| | | | - Ena Wang
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Nurix Therapeutics, San Francisco, CA, USA
| | - Anna Ceccarelli
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Khalid A Fakhro
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Weill-Cornell Medicine Qatar, Doha, Qatar
| | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesco M Marincola
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Sonata Therapeutics, Watertown, MA, USA
| | - Jérôme Galon
- Inserm, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre Le Cancer, Centre de Recherche de Cordeliers, Université de Paris, Sorbonne Université, Paris, France
| | - Souhaila Al Khodor
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Michele Ceccarelli
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, Naples, Italy
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Wouter Hendrickx
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Davide Bedognetti
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy.
| |
Collapse
|
32
|
Sait SF, Giantini-Larsen AM, Tringale KR, Souweidane MM, Karajannis MA. Treatment of Pediatric Low-Grade Gliomas. Curr Neurol Neurosci Rep 2023; 23:185-199. [PMID: 36881254 PMCID: PMC10121885 DOI: 10.1007/s11910-023-01257-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Pediatric low-grade gliomas and glioneuronal tumors (pLGG) account for approximately 30% of pediatric CNS neoplasms, encompassing a heterogeneous group of tumors of primarily glial or mixed neuronal-glial histology. This article reviews the treatment of pLGG with emphasis on an individualized approach incorporating multidisciplinary input from surgery, radiation oncology, neuroradiology, neuropathology, and pediatric oncology to carefully weigh the risks and benefits of specific interventions against tumor-related morbidity. Complete surgical resection can be curative for cerebellar and hemispheric lesions, while use of radiotherapy is restricted to older patients or those refractory to medical therapy. Chemotherapy remains the preferred first-line therapy for adjuvant treatment of the majority of recurrent or progressive pLGG. RECENT FINDINGS Technologic advances offer the potential to limit volume of normal brain exposed to low doses of radiation when treating pLGG with either conformal photon or proton RT. Recent neurosurgical techniques such as laser interstitial thermal therapy offer a "dual" diagnostic and therapeutic treatment modality for pLGG in specific surgically inaccessible anatomical locations. The emergence of novel molecular diagnostic tools has enabled scientific discoveries elucidating driver alterations in mitogen-activated protein kinase (MAPK) pathway components and enhanced our understanding of the natural history (oncogenic senescence). Molecular characterization strongly supplements the clinical risk stratification (age, extent of resection, histological grade) to improve diagnostic precision and accuracy, prognostication, and can lead to the identification of patients who stand to benefit from precision medicine treatment approaches. The success of molecular targeted therapy (BRAF inhibitors and/or MEK inhibitors) in the recurrent setting has led to a gradual and yet significant paradigm shift in the treatment of pLGG. Ongoing randomized trials comparing targeted therapy to standard of care chemotherapy are anticipated to further inform the approach to upfront management of pLGG patients.
Collapse
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Alexandra M Giantini-Larsen
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Kathryn R Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Mark M Souweidane
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
33
|
Dougherty J, Harvey K, Liou A, Labella K, Moran D, Brosius S, De Raedt T. Identification of therapeutic sensitivities in a spheroid drug combination screen of Neurofibromatosis Type I associated High Grade Gliomas. PLoS One 2023; 18:e0277305. [PMID: 36730269 PMCID: PMC9894422 DOI: 10.1371/journal.pone.0277305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/22/2022] [Indexed: 02/03/2023] Open
Abstract
Neurofibromatosis Type 1 (NF1) patients develop an array of benign and malignant tumors, of which Malignant Peripheral Nerve Sheath Tumors (MPNST) and High Grade Gliomas (HGG) have a dismal prognosis. About 15-20% of individuals with NF1 develop brain tumors and one third of these occur outside of the optic pathway. These non-optic pathway gliomas are more likely to progress to malignancy, especially in adults. Despite their low frequency, high grade gliomas have a disproportional effect on the morbidity of NF1 patients. In vitro drug combination screens have not been performed on NF1-associated HGG, hindering our ability to develop informed clinical trials. Here we present the first in vitro drug combination screen (21 compounds alone or in combination with MEK or PI3K inhibitors) on the only human NF1 patient derived HGG cell line available and on three mouse glioma cell lines derived from the NF1-P53 genetically engineered mouse model, which sporadically develop HGG. These mouse glioma cell lines were never exposed to serum, grow as spheres and express markers that are consistent with an Oligodendrocyte Precursor Cell (OPC) lineage origin. Importantly, even though the true cell of origin for HGG remains elusive, they are thought to arise from the OPC lineage. We evaluated drug sensitivities of the three murine glioma cell lines in a 3D spheroid growth assay, which more accurately reflects drug sensitivities in vivo. Excitingly, we identified six compounds targeting HDACs, BRD4, CHEK1, BMI-1, CDK1/2/5/9, and the proteasome that potently induced cell death in our NF1-associated HGG. Moreover, several of these inhibitors work synergistically with either MEK or PI3K inhibitors. This study forms the basis for further pre-clinical evaluation of promising targets, with an eventual hope to translate these to the clinic.
Collapse
Affiliation(s)
- Jacquelyn Dougherty
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kyra Harvey
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Angela Liou
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katherine Labella
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Deborah Moran
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Stephanie Brosius
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department or Neurology, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Thomas De Raedt
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
Miretti M, Graglia MAG, Suárez AI, Prucca CG. Photodynamic Therapy for glioblastoma: a light at the end of the tunnel. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
35
|
Ruggiero A, Attinà G, Campanelli A, Maurizi P, Triarico S, Romano A, Massimi L, Tamburrini G, Verdolotti T, Mastrangelo S. Pediatric low-grade glioma and neurofibromatosis type 1: A single-institution experience. J Cancer Res Ther 2023; 19:228-234. [PMID: 37313902 DOI: 10.4103/jcrt.jcrt_1677_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Neurofibromatosis type 1 (NF1)-related gliomas appear to have a clinical behavior different from that of sporadic cases. The purpose of the study was to investigate the role of different factors in influencing the tumor response rate of children receiving chemotherapy for their symptomatic glioma. Methods Between 1995 and 2015, 60 patients with low-grade glioma (42 sporadic cases and 18 cases with NF1) were treated. Patients with brainstem gliomas were excluded. Thirty-nine patients underwent exclusive or postsurgical chemotherapy (vincristine/carboplatin-based regimen). Results Disease reduction was achieved in 12 of the 28 patients (42.8%) with sporadic low-grade glioma and in 9 of the 11 patients (81.8%) with NF1, with a significant difference between the 2 groups (P < 0.05). The response to chemotherapy in both the patient groups was not significantly influenced by sex, age, tumor site, and histopathology, although disease reduction occurred more frequently in children aged under 3 years. Conclusions Our study showed that pediatric patients with low-grade glioma and NF1 are more likely to respond to chemotherapy than those with non-NF1.
Collapse
Affiliation(s)
- Antonio Ruggiero
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Anastasia Campanelli
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Triarico
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Alberto Romano
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Massimi
- Pediatric Neurosurgery Unit, Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Gianpiero Tamburrini
- Pediatric Neurosurgery Unit, Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Tommaso Verdolotti
- Radiology and Neuroradiology Unit, Department of Radiological Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
36
|
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer. Cancers (Basel) 2022; 14:cancers14235967. [PMID: 36497448 PMCID: PMC9739414 DOI: 10.3390/cancers14235967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing.
Collapse
|
37
|
Role of nerves in neurofibromatosis type 1-related nervous system tumors. Cell Oncol (Dordr) 2022; 45:1137-1153. [PMID: 36327093 DOI: 10.1007/s13402-022-00723-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder that affects nearly 1 in 3000 infants. Neurofibromin inactivation and NF1 gene mutations are involved in various aspects of neuronal function regulation, including neuronal development induction, electrophysiological activity elevation, growth factor expression, and neurotransmitter release. NF1 patients often exhibit a predisposition to tumor development, especially in the nervous system, resulting in the frequent occurrence of peripheral nerve sheath tumors and gliomas. Recent evidence suggests that nerves play a role in the development of multiple tumor types, prompting researchers to investigate the nerve as a vital component in and regulator of the initiation and progression of NF1-related nervous system tumors. CONCLUSION In this review, we summarize existing evidence about the specific effects of NF1 mutation on neurons and emerging research on the role of nerves in neurological tumor development, promising a new set of selective and targeted therapies for NF1-related tumors.
Collapse
|
38
|
Cordell EC, Alghamri MS, Castro MG, Gutmann DH. T lymphocytes as dynamic regulators of glioma pathobiology. Neuro Oncol 2022; 24:1647-1657. [PMID: 35325210 PMCID: PMC9527522 DOI: 10.1093/neuonc/noac055] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The brain tumor microenvironment contains numerous distinct types of nonneoplastic cells, which each serve a diverse set of roles relevant to the formation, maintenance, and progression of these central nervous system cancers. While varying in frequencies, monocytes (macrophages, microglia, and myeloid-derived suppressor cells), dendritic cells, natural killer cells, and T lymphocytes represent the most common nonneoplastic cellular constituents in low- and high-grade gliomas (astrocytomas). Although T cells are conventionally thought to target and eliminate neoplastic cells, T cells also exist in other states, characterized by tolerance, ignorance, anergy, and exhaustion. In addition, T cells can function as drivers of brain cancer growth, especially in low-grade gliomas. Since T cells originate in the blood and bone marrow sinuses, their capacity to function as both positive and negative regulators of glioma growth has ignited renewed interest in their deployment as immunotherapeutic agents. In this review, we discuss the roles of T cells in low- and high-grade glioma formation and progression, as well as the potential uses of modified T lymphocytes for brain cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Maria G Castro
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - David H Gutmann
- Corresponding Author: David H. Gutmann, MD, PhD, Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA ()
| |
Collapse
|
39
|
How Genetics and Genomics Advances Are Rewriting Pediatric Cancer Research and Clinical Care. Medicina (B Aires) 2022; 58:medicina58101386. [PMID: 36295546 PMCID: PMC9610804 DOI: 10.3390/medicina58101386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
In the last two decades, thanks to the data that have been obtained from the Human Genome Project and the development of next-generation sequencing (NGS) technologies, research in oncology has produced extremely important results in understanding the genomic landscape of pediatric cancers, which are the main cause of death during childhood. NGS has provided significant advances in medicine by detecting germline and somatic driver variants that determine the development and progression of many types of cancers, allowing a distinction between hereditary and non-hereditary cancers, characterizing resistance mechanisms that are also related to alterations of the epigenetic apparatus, and quantifying the mutational burden of tumor cells. A combined approach of next-generation technologies allows us to investigate the numerous molecular features of the cancer cell and the effects of the environment on it, discovering and following the path of personalized therapy to defeat an "ancient" disease that has had victories and defeats. In this paper, we provide an overview of the results that have been obtained in the last decade from genomic studies that were carried out on pediatric cancer and their contribution to the more accurate and faster diagnosis in the stratification of patients and the development of new precision therapies.
Collapse
|
40
|
Patil P, Pencheva BB, Patil VM, Fangusaro J. Nervous system (NS) Tumors in Cancer Predisposition Syndromes. Neurotherapeutics 2022; 19:1752-1771. [PMID: 36056180 PMCID: PMC9723057 DOI: 10.1007/s13311-022-01277-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic syndromes which develop one or more nervous system (NS) tumors as one of the manifestations can be grouped under the umbrella term of NS tumor predisposition syndromes. Understanding the underlying pathological pathways at the molecular level has led us to many radical discoveries, in understanding the mechanisms of tumorigenesis, tumor progression, interactions with the tumor microenvironment, and development of targeted therapies. Currently, at least 7-10% of all pediatric cancers are now recognized to occur in the setting of genetic predisposition to cancer or cancer predisposition syndromes. Specifically, the cancer predisposition rate in pediatric patients with NS tumors has been reported to be as high as 15%, though it can approach 50% in certain tumor types (i.e., choroid plexus carcinoma associated with Li Fraumeni Syndrome). Cancer predisposition syndromes are caused by pathogenic variation in genes that primarily function as tumor suppressors and proto-oncogenes. These variants are found in the germline or constitutional DNA. Mosaicism, however, can affect only certain tissues, resulting in varied manifestations. Increased understanding of the genetic underpinnings of cancer predisposition syndromes and the ability of clinical laboratories to offer molecular genetic testing allows for improvement in the identification of these patients. The identification of a cancer predisposition syndrome in a CNS tumor patient allows for changes to medical management to be made, including the initiation of cancer surveillance protocols. Finally, the identification of at-risk biologic relatives becomes feasible through cascade (genetic) testing. These fundamental discoveries have also broadened the horizon of novel therapeutic possibilities and have helped to be better predictors of prognosis and survival. The treatment paradigm of specific NS tumors may also vary based on the patient's cancer predisposition syndrome and may be used to guide therapy (i.e., immune checkpoint inhibitors in constitutional mismatch repair deficiency [CMMRD] predisposition syndrome) [8]. Early diagnosis of these cancer predisposition syndromes is therefore critical, in both unaffected and affected patients. Genetic counselors are uniquely trained master's level healthcare providers with a focus on the identification of hereditary disorders, including hereditary cancer, or cancer predisposition syndromes. Genetic counseling, defined as "the process of helping people understand and adapt to the medical, psychological and familial implications of genetic contributions to disease" plays a vital role in the adaptation to a genetic diagnosis and the overall management of these diseases. Cancer predisposition syndromes that increase risks for NS tumor development in childhood include classic neurocutaneous disorders like neurofibromatosis type 1 and type 2 (NF1, NF2) and tuberous sclerosis complex (TSC) type 1 and 2 (TSC1, TSC2). Li Fraumeni Syndrome, Constitutional Mismatch Repair Deficiency, Gorlin syndrome (Nevoid Basal Cell Carcinoma), Rhabdoid Tumor Predisposition syndrome, and Von Hippel-Lindau disease. Ataxia Telangiectasia will also be discussed given the profound neurological manifestations of this syndrome. In addition, there are other cancer predisposition syndromes like Cowden/PTEN Hamartoma Tumor Syndrome, DICER1 syndrome, among many others which also increase the risk of NS neoplasia and are briefly described. Herein, we discuss the NS tumor spectrum seen in the abovementioned cancer predisposition syndromes as with their respective germline genetic abnormalities and recommended surveillance guidelines when applicable. We conclude with a discussion of the importance and rationale for genetic counseling in these patients and their families.
Collapse
Affiliation(s)
- Prabhumallikarjun Patil
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Bojana Borislavova Pencheva
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Vinayak Mahesh Patil
- Intensive Care Unit Medical Officer, District Hospital Vijayapura, Karnataka, India
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
41
|
Lucas CHG, Sloan EA, Gupta R, Wu J, Pratt D, Vasudevan HN, Ravindranathan A, Barreto J, Williams EA, Shai A, Whipple NS, Bruggers CS, Maher O, Nabors B, Rodriguez M, Samuel D, Brown M, Carmichael J, Lu R, Mirchia K, Sullivan DV, Pekmezci M, Tihan T, Bollen AW, Perry A, Banerjee A, Mueller S, Gupta N, Hervey-Jumper SL, Oberheim Bush NA, Daras M, Taylor JW, Butowski NA, de Groot J, Clarke JL, Raleigh DR, Costello JF, Phillips JJ, Reddy AT, Chang SM, Berger MS, Solomon DA. Multiplatform molecular analyses refine classification of gliomas arising in patients with neurofibromatosis type 1. Acta Neuropathol 2022; 144:747-765. [PMID: 35945463 PMCID: PMC9468105 DOI: 10.1007/s00401-022-02478-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/28/2023]
Abstract
Gliomas arising in the setting of neurofibromatosis type 1 (NF1) are heterogeneous, occurring from childhood through adulthood, can be histologically low-grade or high-grade, and follow an indolent or aggressive clinical course. Comprehensive profiling of genetic alterations beyond NF1 inactivation and epigenetic classification of these tumors remain limited. Through next-generation sequencing, copy number analysis, and DNA methylation profiling of gliomas from 47 NF1 patients, we identified 2 molecular subgroups of NF1-associated gliomas. The first harbored biallelic NF1 inactivation only, occurred primarily during childhood, followed a more indolent clinical course, and had a unique epigenetic signature for which we propose the terminology "pilocytic astrocytoma, arising in the setting of NF1". The second subgroup harbored additional oncogenic alterations including CDKN2A homozygous deletion and ATRX mutation, occurred primarily during adulthood, followed a more aggressive clinical course, and was epigenetically diverse, with most tumors aligning with either high-grade astrocytoma with piloid features or various subclasses of IDH-wildtype glioblastoma. Several patients were treated with small molecule MEK inhibitors that resulted in stable disease or tumor regression when used as a single agent, but only in the context of those tumors with NF1 inactivation lacking additional oncogenic alterations. Together, these findings highlight recurrently altered pathways in NF1-associated gliomas and help inform targeted therapeutic strategies for this patient population.
Collapse
Affiliation(s)
- Calixto-Hope G Lucas
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily A Sloan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Pathology, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Rohit Gupta
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Jasper Wu
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Drew Pratt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ajay Ravindranathan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Jairo Barreto
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Erik A Williams
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas S Whipple
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Carol S Bruggers
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Ossama Maher
- Department of Oncology, Nicklaus Children's Hospital, Miami, FL, USA
| | - Burt Nabors
- Division of Neuro-Oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David Samuel
- Department of Hematology/Oncology, Valley Children's Hospital, Madera, CA, USA
| | - Melandee Brown
- Department of Neurosurgery, Valley Children's Hospital, Madera, CA, USA
| | - Jason Carmichael
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Rufei Lu
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Kanish Mirchia
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Daniel V Sullivan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Tarik Tihan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Anuradha Banerjee
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Sabine Mueller
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mariza Daras
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jennie W Taylor
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas A Butowski
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - John de Groot
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer L Clarke
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Alyssa T Reddy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA.
| |
Collapse
|
42
|
Zhang Y, Yu B, Tian Y, Ren P, Lyu B, Fu L, Chen H, Li J, Gong S. A novel risk score model based on fourteen chromatin regulators-based genes for predicting overall survival of patients with lower-grade gliomas. Front Genet 2022; 13:957059. [PMID: 36246611 PMCID: PMC9554745 DOI: 10.3389/fgene.2022.957059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Low grade gliomas(LGGs) present vexatious management issues for neurosurgeons. Chromatin regulators (CRs) are emerging as a focus of tumor research due to their pivotal role in tumorigenesis and progression. Hence, the goal of the current work was to unveil the function and value of CRs in patients with LGGs. Methods: RNA-Sequencing and corresponding clinical data were extracted from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) database. A single-cell RNA-seq dataset was sourced from the Gene Expression Omnibus (GEO) database. Altogether 870 CRs were retrieved from the published articles in top academic journals. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression analysis were applied to construct the prognostic risk model. Patients were then assigned into high- and low-risk groups based on the median risk score. The Kaplan–Meier (K-M) survival curve and receiver operating characteristic curve (ROC) were performed to assess the prognostic value. Sequentially, functional enrichment, tumor immune microenvironment, tumor mutation burden, drug prediction, single cell analysis and so on were analyzed to further explore the value of CR-based signature. Finally, the expression of signature genes were validated by immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR). Results: We successfully constructed and validated a 14 CRs-based model for predicting the prognosis of patients with LGGs. Moreover, we also found 14 CRs-based model was an independent prognostic factor. Functional analysis revealed that the differentially expressed genes were mainly enriched in tumor and immune related pathways. Subsequently, our research uncovered that LGGs patients with higher risk scores exhibited a higher TMB and were less likely to be responsive to immunotherapy. Meanwhile, the results of drug analysis offered several potential drug candidates. Furthermore, tSNE plots highlighting the magnitude of expression of the genes of interest in the cells from the scRNA-seq assay. Ultimately, transcription expression of six representative signature genes at the mRNA level was consistent with their protein expression changes. Conclusion: Our findings provided a reliable biomarker for predicting the prognosis, which is expected to offer new insight into LGGs management and would hopefully become a promising target for future research.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Beibei Yu
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yunze Tian
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Pengyu Ren
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Boqiang Lyu
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Longhui Fu
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Huangtao Chen
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
- *Correspondence: Jianzhong Li, ; Shouping Gong,
| | - Shouping Gong
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
- *Correspondence: Jianzhong Li, ; Shouping Gong,
| |
Collapse
|
43
|
Thomale UW, Gnekow AK, Kandels D, Bison B, Hernáiz Driever P, Witt O, Pietsch T, Koch A, Capper D, Kortmann RD, Timmermann B, Harrabi S, Simon M, El Damaty A, Krauss J, Schuhmann MU, Aigner A. Long-term follow-up of surgical intervention pattern in pediatric low-grade gliomas: report from the German SIOP-LGG 2004 cohort. J Neurosurg Pediatr 2022; 30:316-329. [PMID: 35901673 DOI: 10.3171/2022.6.peds22108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neurosurgical treatment is an integral part of the treatment algorithms for pediatric low-grade glioma (LGG), yet patterns of surgical procedures are rarely challenged. The objective of this study was to evaluate surgical treatment patterns in pediatric LGG. METHODS The German Societé Internationale d'Oncologie Pédiatrique (SIOP)-LGG 2004 cohort was analyzed to identify relevant patient and tumor characteristics associated with time to death, next surgery, number of resections, and radiological outcome. RESULTS A total of 1271 patients underwent 1713 neurosurgical interventions (1 intervention in 947, 2 in 230, 3 in 70, and 4-6 in 24). The median age of the study population was 8.57 years at first surgery, and 46.1% were female. Neurofibromatosis type 1 (NF1) was found in 4.4%, and 5.4% had tumor dissemination. Three hundred fifty-four patients (27.9%) had chemotherapy and/or radiotherapy. The cumulative incidence of second surgery at 10 years was 26%, and was higher for infants, those with spinal and supratentorial midline (SML) tumors, and those with pilomyxoid astrocytomas. The hazard ratio for subsequent surgery was higher given dissemination and noncomplete initial resection, and lower for caudal brainstem and SML tumors. Among 1225 patients with fully documented surgical records and radiological outcome, 613 reached complete remission during the observation period, and 50 patients died. Patients with pilocytic astrocytoma had higher chances for a final complete remission, whereas patients with initial partial or subtotal tumor resection, dissemination, NF1, or primary tumor sites in the spinal cord and SML had lower chances. CONCLUSIONS Neurosurgery is a key element of pediatric LGG treatment. In almost 50% of the patients, however, at least some tumor burden will remain during long-term follow-up. This study found that most of these patients reached a stable disease status without further surgeries. Multidisciplinary team decisions must balance the goal of complete resection, risk factors, repeated surgeries, and possible treatment alternatives in a wide range of heterogeneous entities. Procedural details and neurological outcome should be recorded to better assess their impact on long-term outcome.
Collapse
Affiliation(s)
- Ulrich-Wilhelm Thomale
- 1Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Astrid K Gnekow
- 2Pediatric and Adolescent Medicine, Swabian Children's Cancer Research Center, Medical Faculty, University of Augsburg
| | - Daniela Kandels
- 2Pediatric and Adolescent Medicine, Swabian Children's Cancer Research Center, Medical Faculty, University of Augsburg
| | - Brigitte Bison
- 3Institute of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg
- 4Institute of Diagnostic and Interventional Neuroradiology, Medical Faculty, University of Augsburg
| | - Pablo Hernáiz Driever
- 5Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Olaf Witt
- 6Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), and Heidelberg University Hospital, Heidelberg
| | - Torsten Pietsch
- 7Department of Neuropathology, DGNN Brain Tumor Reference Centre, University of Bonn Medical Centre, Bonn
| | - Arend Koch
- 8Institute for Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - David Capper
- 8Institute for Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | | | - Beate Timmermann
- 10Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Centre (WTZ), German Cancer Consortium (DKTK), Essen
| | - Semi Harrabi
- 11Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg
| | - Michèle Simon
- 5Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Ahmed El Damaty
- 12Division of Pediatric Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg
| | - Juergen Krauss
- 13Department of Pediatric Neurosurgery, University Children's Hospital, University of Würzburg
| | - Martin U Schuhmann
- 14Division of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen; and
| | - Annette Aigner
- 15Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
44
|
Iranzo J, Gruenhagen G, Calle-Espinosa J, Koonin EV. Pervasive conditional selection of driver mutations and modular epistasis networks in cancer. Cell Rep 2022; 40:111272. [PMID: 36001960 DOI: 10.1016/j.celrep.2022.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/18/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer driver mutations often display mutual exclusion or co-occurrence, underscoring the key role of epistasis in carcinogenesis. However, estimating the magnitude of epistasis and quantifying its effect on tumor evolution remains a challenge. We develop a method (Coselens) to quantify conditional selection on the excess of nonsynonymous substitutions in cancer genes. Coselens infers the number of drivers per gene in different partitions of a cancer genomics dataset using covariance-based mutation models and determines whether coding mutations in a gene affect selection for drivers in any other gene. Using Coselens, we identify 296 conditionally selected gene pairs across 16 cancer types in the TCGA dataset. Conditional selection affects 25%-50% of driver substitutions in tumors with >2 drivers. Conditionally co-selected genes form modular networks, whose structures challenge the traditional interpretation of within-pathway mutual exclusivity and across-pathway synergy, suggesting a more complex scenario where gene-specific across-pathway epistasis shapes differentiated cancer subtypes.
Collapse
Affiliation(s)
- Jaime Iranzo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain; Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.
| | - George Gruenhagen
- Institute of Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jorge Calle-Espinosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
45
|
Bewley AF, Akinwe TM, Turner TN, Gutmann DH. Neurofibromatosis-1 Gene Mutational Profiles Differ Between Syndromic Disease and Sporadic Cancers. Neurol Genet 2022; 8:e200003. [PMID: 37435433 PMCID: PMC10331586 DOI: 10.1212/nxg.0000000000200003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/18/2022] [Indexed: 07/13/2023]
Abstract
Objectives Variants in the neurofibromatosis type 1 (NF1) gene are not only responsible for the NF1 cancer predisposition syndrome, but also frequently identified in cancers arising in the general population. While germline variants are pathogenic, it is not known whether those that arise in cancer (somatic variants) are passenger or driver variants. To address this question, we sought to define the landscape of NF1 variants in sporadic cancers. Methods NF1 variants in sporadic cancers were compiled using data curated on the c-Bio database and compared with published germline variants and Genome Aggregation Database data. Pathogenicity was determined using Polyphen and Sorting Intolerant From Tolerant prediction tools. Results The spectrum of NF1 variants in sporadic tumors differ from those most commonly seen in individuals with NF1. In addition, the type and location of the variants in sporadic cancer differ from germline variants, where a high proportion of missense variants were found. Finally, many of the sporadic cancer NF1 variants were not predicted to be pathogenic. Discussion Taken together, these findings suggest that a significant proportion of NF1 variants in sporadic cancer may be passenger variants or hypomorphic alleles. Further mechanistic studies are warranted to define their unique roles in nonsyndromic cancer pathobiology.
Collapse
|
46
|
Neoantigens in precision cancer immunotherapy: from identification to clinical applications. Chin Med J (Engl) 2022; 135:1285-1298. [PMID: 35838545 PMCID: PMC9433083 DOI: 10.1097/cm9.0000000000002181] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunotherapies targeting cancer neoantigens are safe, effective, and precise. Neoantigens can be identified mainly by genomic techniques such as next-generation sequencing and high-throughput single-cell sequencing; proteomic techniques such as mass spectrometry; and bioinformatics tools based on high-throughput sequencing data, mass spectrometry data, and biological databases. Neoantigen-related therapies are widely used in clinical practice and include neoantigen vaccines, neoantigen-specific CD8+ and CD4+ T cells, and neoantigen-pulsed dendritic cells. In addition, neoantigens can be used as biomarkers to assess immunotherapy response, resistance, and prognosis. Therapies based on neoantigens are an important and promising branch of cancer immunotherapy. Unremitting efforts are needed to unravel the comprehensive role of neoantigens in anti-tumor immunity and to extend their clinical application. This review aimed to summarize the progress in neoantigen research and to discuss its opportunities and challenges in precision cancer immunotherapy.
Collapse
|
47
|
Yuan M, Eberhart CG, Pratilas CA, Blakeley JO, Davis C, Stojanova M, Reilly K, Meeker AK, Heaphy CM, Rodriguez FJ. Therapeutic Vulnerability to ATR Inhibition in Concurrent NF1 and ATRX-Deficient/ALT-Positive High-Grade Solid Tumors. Cancers (Basel) 2022; 14:cancers14123015. [PMID: 35740680 PMCID: PMC9221513 DOI: 10.3390/cancers14123015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Tumors of the brain and nerves develop frequently in patients with neurofibromatosis type 1. Many are benign growths, such as pilocytic astrocytomas in the brain and neurofibromas in the nerves. However, in some patients, the tumors become malignant and may cause local damage, disseminate to distant sites and result in death. We studied changes in the levels of chromatin proteins and changes in telomeres, in cells obtained from mouse gliomas that are deficient in neurofibromin as well as excess brain and nerve tumor tissue from patients with neurofibromatosis type 1 or sporadic tumors lacking neurofibromin expression. A decrease in the levels of these proteins in experimental cell lines resulted in susceptibility to a class of specific drugs knowns as ATR inhibitors, which may represent a specific vulnerability of these tumor subgroups. We expect our data to provide the required rationale for the development of more accurate animal models to study neurofibromatosis, as well as specific molecularly based drugs for treatment as alternatives to the current, often devastating approaches of surgery, radiation, and chemotherapy. Abstract Subsets of Neurofibromatosis Type 1 (NF1)-associated solid tumors have been shown to display high frequencies of ATRX mutations and the presence of alternative lengthening of telomeres (ALT). We studied the phenotype of combined NF1 and ATRX deficiency in malignant solid tumors. Cell lines derived from NF1-deficient sporadic glioblastomas (U251, SF188), an NF1-associated ATRX mutant glioblastoma cell line (JHH-NF1-GBM1), an NF1-derived sarcoma cell line (JHH-CRC65), and two NF1-deficient MPNST cell lines (ST88-14, NF90.8) were utilized. Cancer cells were treated with ATR inhibitors, with or without a MEK inhibitor or temozolomide. In contrast to the glioma cell line SF188, combined ATRX knockout (KO) and TERC KO led to ALT-like properties and sensitized U251 glioma cells to ATR inhibition in vitro and in vivo. In addition, ATR inhibitors sensitized U251 cells to temozolomide, but not MEK inhibition, irrespective of ATRX level manipulation; whereas, the JHH-NF1-GBM1 cell line demonstrated sensitivity to ATR inhibition, but not temozolomide. Similar effects were noted using the MPNST cell line NF90.8 after combined ATRX knockdown and TERC KO; however, not in ST88-14. Taken together, our study supports the feasibility of targeting the ATR pathway in subsets of NF1-deficient and associated tumors.
Collapse
Affiliation(s)
- Ming Yuan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (M.Y.); (C.G.E.); (C.D.); (A.K.M.)
| | - Charles G. Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (M.Y.); (C.G.E.); (C.D.); (A.K.M.)
| | - Christine A. Pratilas
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (C.A.P.); (J.O.B.)
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Jaishri O. Blakeley
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (C.A.P.); (J.O.B.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Christine Davis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (M.Y.); (C.G.E.); (C.D.); (A.K.M.)
| | - Marija Stojanova
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA;
| | | | - Alan K. Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (M.Y.); (C.G.E.); (C.D.); (A.K.M.)
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (C.A.P.); (J.O.B.)
| | - Christopher M. Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (M.Y.); (C.G.E.); (C.D.); (A.K.M.)
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (C.A.P.); (J.O.B.)
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA;
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
- Correspondence: (C.M.H.); (F.J.R.)
| | - Fausto J. Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (M.Y.); (C.G.E.); (C.D.); (A.K.M.)
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (C.A.P.); (J.O.B.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), 10833 Le Conte Avenue, CHS Bldg., Suite 18-170B, Los Angeles, CA 90095, USA
- Correspondence: (C.M.H.); (F.J.R.)
| |
Collapse
|
48
|
Molecular Dynamics Simulations Reveal Structural Interconnections within Sec14-PH Bipartite Domain from Human Neurofibromin. Int J Mol Sci 2022; 23:ijms23105707. [PMID: 35628517 PMCID: PMC9147397 DOI: 10.3390/ijms23105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Neurofibromin, the main RasGAP in the nervous system, is a 2818 aa protein with several poorly characterized functional domains. Mutations in the NF1-encoding gene lead to an autosomal dominant syndrome, neurofibromatosis, with an incidence of 1 out of 3000 newborns. Missense mutations spread in the Sec14-PH-encoding sequences as well. Structural data could not highlight the defect in mutant Sec14-PH functionality. By performing molecular dynamics simulations at different temperatures, we found that the lid-lock is fundamental for the structural interdependence of the NF1 bipartite Sec14-PH domain. In fact, increased flexibility in the lid-lock loop, observed for the K1750Δ mutant, leads to disconnection of the two subdomains and can affect the stability of the Sec14 subdomain.
Collapse
|
49
|
Tong S, Devine WP, Shieh JT. Tumor and Constitutional Sequencing for Neurofibromatosis Type 1. JCO Precis Oncol 2022; 6:e2100540. [PMID: 35584348 PMCID: PMC9200388 DOI: 10.1200/po.21.00540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
NF1 variants in tumors are important to recognize, as multiple mechanisms may give rise to biallelic variants. Both deletions and copy-neutral loss of heterozygosity (LOH) are potential mechanisms of NF1 loss, distinct from point mutations, and additional genes altered may drive different tumor types. This study investigates whether tumors from individuals with neurofibromatosis type 1 (NF1) demonstrate additional gene variants and detects NF1 second hits using paired germline and somatic sequencing. In addition, rare tumor types in NF1 may also be characterized by tumor sequencing. NF1 second hits are primarily copy-neutral LOH and offer opportunity for variant interpretation
Collapse
Affiliation(s)
- Schuyler Tong
- Division of Hematology/Oncology, Pediatrics, Benioff Children's Hospital Oakland, University of California San Francisco, San Francisco, CA
| | - W Patrick Devine
- Department of Pathology, University of California San Francisco, San Francisco, CA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA
| | - Joseph T Shieh
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA
| |
Collapse
|
50
|
Shafi O, Siddiqui G. Tracing the origins of glioblastoma by investigating the role of gliogenic and related neurogenic genes/signaling pathways in GBM development: a systematic review. World J Surg Oncol 2022; 20:146. [PMID: 35538578 PMCID: PMC9087910 DOI: 10.1186/s12957-022-02602-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 02/16/2023] Open
Abstract
Background Glioblastoma is one of the most aggressive tumors. The etiology and the factors determining its onset are not yet entirely known. This study investigates the origins of GBM, and for this purpose, it focuses primarily on developmental gliogenic processes. It also focuses on the impact of the related neurogenic developmental processes in glioblastoma oncogenesis. It also addresses why glial cells are at more risk of tumor development compared to neurons. Methods Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving glioblastoma, gliogenesis, neurogenesis, stemness, neural stem cells, gliogenic signaling and pathways, neurogenic signaling and pathways, and astrocytogenic genes. Results The origin of GBM is dependent on dysregulation in multiple genes and pathways that accumulatively converge the cells towards oncogenesis. There are multiple layers of steps in glioblastoma oncogenesis including the failure of cell fate-specific genes to keep the cells differentiated in their specific cell types such as p300, BMP, HOPX, and NRSF/REST. There are genes and signaling pathways that are involved in differentiation and also contribute to GBM such as FGFR3, JAK-STAT, and hey1. The genes that contribute to differentiation processes but also contribute to stemness in GBM include notch, Sox9, Sox4, c-myc gene overrides p300, and then GFAP, leading to upregulation of nestin, SHH, NF-κB, and others. GBM mutations pathologically impact the cell circuitry such as the interaction between Sox2 and JAK-STAT pathway, resulting in GBM development and progression. Conclusion Glioblastoma originates when the gene expression of key gliogenic genes and signaling pathways become dysregulated. This study identifies key gliogenic genes having the ability to control oncogenesis in glioblastoma cells, including p300, BMP, PAX6, HOPX, NRSF/REST, LIF, and TGF beta. It also identifies key neurogenic genes having the ability to control oncogenesis including PAX6, neurogenins including Ngn1, NeuroD1, NeuroD4, Numb, NKX6-1 Ebf, Myt1, and ASCL1. This study also postulates how aging contributes to the onset of glioblastoma by dysregulating the gene expression of NF-κB, REST/NRSF, ERK, AKT, EGFR, and others.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|