1
|
Yuan J, Tong Y, Wang L, Yang X, Liu X, Shu M, Li Z, Jin W, Guan C, Wang Y, Zhang Q, Yang Y. A compendium of genetic variations associated with promoter usage across 49 human tissues. Nat Commun 2024; 15:8758. [PMID: 39384785 PMCID: PMC11464533 DOI: 10.1038/s41467-024-53131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Promoters play a crucial role in regulating gene transcription. However, our understanding of how genetic variants influence alternative promoter selection is still incomplete. In this study, we implement a framework to identify genetic variants that affect the relative usage of alternative promoters, known as promoter usage quantitative trait loci (puQTLs). By constructing an atlas of human puQTLs across 49 different tissues from 838 individuals, we have identified approximately 76,856 independent loci associated with promoter usage, encompassing 602,009 genetic variants. Our study demonstrates that puQTLs represent a distinct type of molecular quantitative trait loci, effectively uncovering regulatory targets and patterns. Furthermore, puQTLs are regulating in a tissue-specific manner and are enriched with binding sites of epigenetic marks and transcription factors, especially those involved in chromatin architecture formation. Notably, we have also found that puQTLs colocalize with complex traits or diseases and contribute to their heritability. Collectively, our findings underscore the significant role of puQTLs in elucidating the molecular mechanisms underlying tissue development and complex diseases.
Collapse
Affiliation(s)
- Jiapei Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yang Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Key Laboratory of Elderly Health, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Le Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoxiao Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaochuan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Meng Shu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zekun Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wen Jin
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chenchen Guan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuting Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Key Laboratory of Elderly Health, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yang Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Key Laboratory of Elderly Health, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Ak Ç, Sayar Z, Thibault G, Burlingame EA, Kuykendall MJ, Eng J, Chitsazan A, Chin K, Adey AC, Boniface C, Spellman PT, Thomas GV, Kopp RP, Demir E, Chang YH, Stavrinides V, Eksi SE. Multiplex imaging of localized prostate tumors reveals altered spatial organization of AR-positive cells in the microenvironment. iScience 2024; 27:110668. [PMID: 39246442 PMCID: PMC11379676 DOI: 10.1016/j.isci.2024.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Mapping the spatial interactions of cancer, immune, and stromal cell states presents novel opportunities for patient stratification and for advancing immunotherapy. While single-cell studies revealed significant molecular heterogeneity in prostate cancer cells, the impact of spatial stromal cell heterogeneity remains poorly understood. Here, we used cyclic immunofluorescent imaging on whole-tissue sections to uncover novel spatial associations between cancer and stromal cells in low- and high-grade prostate tumors and tumor-adjacent normal tissues. Our results provide a spatial map of single cells and recurrent cellular neighborhoods in the prostate tumor microenvironment of treatment-naive patients. We report unique populations of mast cells that show distinct spatial associations with M2 macrophages and regulatory T cells. Our results show disease-specific neighborhoods that are primarily driven by androgen receptor-positive (AR+) stromal cells and identify inflammatory gene networks active in AR+ prostate stroma.
Collapse
Affiliation(s)
- Çiğdem Ak
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Guillaume Thibault
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Erik A Burlingame
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - M J Kuykendall
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Jennifer Eng
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Alex Chitsazan
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Koei Chin
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Andrew C Adey
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Christopher Boniface
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Paul T Spellman
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - George V Thomas
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Pathology & Laboratory Medicine, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Ryan P Kopp
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Urology, School of Medicine, Knight Cancer Institute, Portland, OR 97239, USA
| | - Emek Demir
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Division of Oncological Sciences, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | | | - Sebnem Ece Eksi
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| |
Collapse
|
3
|
Shao M, Tian M, Chen K, Jiang H, Zhang S, Li Z, Shen Y, Chen F, Shen B, Cao C, Gu N. Leveraging Random Effects in Cistrome-Wide Association Studies for Decoding the Genetic Determinants of Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400815. [PMID: 39099406 PMCID: PMC11423091 DOI: 10.1002/advs.202400815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/09/2024] [Indexed: 08/06/2024]
Abstract
Cistrome-wide association studies (CWAS) are pivotal for identifying genetic determinants of diseases by correlating genetically regulated cistrome states with phenotypes. Traditional CWAS typically develops a model based on cistrome and genotype data to associate predicted cistrome states with phenotypes. The random effect cistrome-wide association study (RECWAS), reevaluates the necessity of cistrome state prediction in CWAS. RECWAS utilizes either a linear model or marginal effect for initial feature selection, followed by kernel-based feature aggregation for association testing is introduced. Through simulations and analysis of prostate cancer data, a thorough evaluation of CWAS and RECWAS is conducted. The results suggest that RECWAS offers improved power compared to traditional CWAS, identifying additional genomic regions associated with prostate cancer. CWAS identified 102 significant regions, while RECWAS found 50 additional significant regions compared to CWAS, many of which are validated. Validation encompassed a range of biological evidence, including risk signals from the GWAS catalog, susceptibility genes from the DisGeNET database, and enhancer-domain scores. RECWAS consistently demonstrated improved performance over traditional CWAS in identifying genomic regions associated with prostate cancer. These findings demonstrate the benefits of incorporating kernel methods into CWAS and provide new insights for genetic discovery in complex diseases.
Collapse
Affiliation(s)
- Mengting Shao
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Min Tian
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Kaiyang Chen
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Hangjin Jiang
- Center for Data ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Shuting Zhang
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Zhenghui Li
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Yan Shen
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Feng Chen
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
| | - Baixin Shen
- Department of UrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011P. R. China
| | - Chen Cao
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
- Department of UrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011P. R. China
| | - Ning Gu
- Key Laboratory for Bio‐Electromagnetic Environment and Advanced Medical TheranosticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing211166P. R. China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering MedicineInstitute of Clinical MedicineNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjing210093P. R. China
| |
Collapse
|
4
|
Ci X, Chen S, Zhu R, Zarif M, Jain R, Guo W, Ramotar M, Gong L, Xu W, Singh O, Mansouri S, Zadeh G, Wei GH, Xu W, Bristow R, Berlin A, Koritzinsky M, van der Kwast T, He HH. Oral pimonidazole unveils clinicopathologic and epigenetic features of hypoxic tumour aggressiveness in localized prostate cancer. BMC Cancer 2024; 24:744. [PMID: 38890593 PMCID: PMC11186205 DOI: 10.1186/s12885-024-12505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Tumor hypoxia is associated with prostate cancer (PCa) treatment resistance and poor prognosis. Pimonidazole (PIMO) is an investigational hypoxia probe used in clinical trials. A better understanding of the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia is needed for future clinical application. Here, we investigated the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia in patients with localized PCa, in order to apply PIMO as a prognostic tool and to identify potential biomarkers for future clinical translation. METHODS A total of 39 patients with localized PCa were recruited and administered oral PIMO before undergoing radical prostatectomy (RadP). Immunohistochemical staining for PIMO was performed on 37 prostatectomy specimens with staining patterns evaluated and clinical association analyzed. Whole genome bisulfite sequencing was performed using laser-capture of microdissected specimen sections comparing PIMO positive and negative tumor areas. A hypoxia related methylation molecular signature was generated by integrating the differentially methylated regions with previously established RNA-seq datasets. RESULTS Three PIMO staining patterns were distinguished: diffuse, focal, and comedo-like. The comedo-like staining pattern was more commonly associated with adverse pathology. PIMO-defined hypoxia intensity was positively correlated with advanced pathologic stage, tumor invasion, and cribriform and intraductal carcinoma morphology. The generated DNA methylation signature was found to be a robust hypoxia biomarker, which could risk-stratify PCa patients across multiple clinical datasets, as well as be applicable in other cancer types. CONCLUSIONS Oral PIMO unveiled clinicopathologic features of disease aggressiveness in localized PCa. The generated DNA methylation signature is a novel and robust hypoxia biomarker that has the potential for future clinical translation.
Collapse
Affiliation(s)
- Xinpei Ci
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Present Address: West China School of Public Health, West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mojgan Zarif
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rahi Jain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wangyuan Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Matthew Ramotar
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Linsey Gong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wenjie Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Olivia Singh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sheila Mansouri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert Bristow
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Christie NHS Trust and CRUK Manchester Institute and Cancer Centre, Manchester, UK
| | - Alejandro Berlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Theodorus van der Kwast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Division of Anatomic Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Kulac I, Roudier MP, Haffner MC. Molecular Pathology of Prostate Cancer. Clin Lab Med 2024; 44:161-180. [PMID: 38821639 DOI: 10.1016/j.cll.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Molecular profiling studies have shed new light on the complex biology of prostate cancer. Genomic studies have highlighted that structural rearrangements are among the most common recurrent alterations. In addition, both germline and somatic mutations in DNA repair genes are enriched in patients with advanced disease. Primary prostate cancer has long been known to be multifocal, but recent studies demonstrate that a large fraction of prostate cancer shows evidence of multiclonality, suggesting that genetically distinct, independently arising tumor clones coexist. Metastatic prostate cancer shows a high level of morphologic and molecular diversity, which is associated with resistance to systemic therapies. The resulting high level of intratumoral heterogeneity has important implications for diagnosis and poses major challenges for the implementation of molecular studies. Here we provide a concise review of the molecular pathology of prostate cancer, highlight clinically relevant alterations, and discuss opportunities for molecular testing.
Collapse
Affiliation(s)
- Ibrahim Kulac
- Department of Pathology, Koç University School of Medicine, Davutpasa Caddesi No:4, Istanbul 34010, Turkey
| | - Martine P Roudier
- Department of Urology, University of Washington, Northeast Pacific Street, Seattle, WA 98195, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Houlahan KE, Khan A, Greenwald NF, Vivas CS, West RB, Angelo M, Curtis C. Germline-mediated immunoediting sculpts breast cancer subtypes and metastatic proclivity. Science 2024; 384:eadh8697. [PMID: 38815010 DOI: 10.1126/science.adh8697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
Tumors with the same diagnosis can have different molecular profiles and response to treatment. It remains unclear when and why these differences arise. Somatic genomic aberrations occur within the context of a highly variable germline genome. Interrogating 5870 breast cancer lesions, we demonstrated that germline-derived epitopes in recurrently amplified genes influence somatic evolution by mediating immunoediting. Individuals with a high germline-epitope burden in human epidermal growth factor receptor 2 (HER2/ERBB2) are less likely to develop HER2-positive breast cancer compared with other subtypes. The same holds true for recurrent amplicons defining three aggressive estrogen receptor (ER)-positive subgroups. Tumors that overcome such immune-mediated negative selection are more aggressive and demonstrate an "immune cold" phenotype. These data show that the germline genome plays a role in dictating somatic evolution.
Collapse
Affiliation(s)
- Kathleen E Houlahan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aziz Khan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Noah F Greenwald
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christina Curtis
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Li Y, Li C, Wu L, Li J, Gan Y, Tan S, Zhou L, Xiong W, Zhou L, Li C, Liu J, Liu D, Wang Y, Fu Y, Yao K, Wang L. Epigenetic-related gene-based prognostic model construction and validation in prostate adenocarcinoma. Heliyon 2024; 10:e30941. [PMID: 38779031 PMCID: PMC11109796 DOI: 10.1016/j.heliyon.2024.e30941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Prostate adenocarcinoma (PRAD), driven by both genetic and epigenetic factors, is a common malignancy that affects men worldwide. We aimed to identify and characterize differentially expressed epigenetic-related genes (ERGs) in PRAD and investigate their potential roles in disease progression and prognosis. We used PRAD samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) to identify prognosis-associated ERGs. Thirteen ERGs with two distinct expression profiles were identified through consensus clustering. Gene set variation analysis highlighted differences in pathway activities, particularly in the Hedgehog and Notch pathways. Higher epigenetic scores correlated with favorable prognosis and improved immunotherapeutic response. Experimental validation underscored the importance of CBX3 and KAT2A, suggesting their pivotal roles in PRAD. This study provides crucial insights into the epigenetic scoring approach and presents a promising prognostic tool, with CBX3 and KAT2A as key players. These findings pave the way for targeted and personalized interventions for the treatment of PRAD.
Collapse
Affiliation(s)
- Youyou Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chao Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Longxiang Wu
- Department of Urology, The Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jiaren Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yu Gan
- Department of Urology, The Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shuo Tan
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Lei Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Liang Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Dingwen Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yichuan Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yunlong Fu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Kun Yao
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
8
|
Lu B, Liu Y, Yao Y, Yang T, Zhang H, Yang X, Huang R, Zhou W, Pan X, Cui X. Advances in sequencing and omics studies in prostate cancer: unveiling molecular pathogenesis and clinical applications. Front Oncol 2024; 14:1355551. [PMID: 38800374 PMCID: PMC11116611 DOI: 10.3389/fonc.2024.1355551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the most threatening health problems for the elderly males. However, our understanding of the disease has been limited by the research technology for a long time. Recently, the maturity of sequencing technology and omics studies has been accelerating the studies of PCa, establishing themselves as an essential impetus in this field. Methods We assessed Web of Science (WoS) database for publications of sequencing and omics studies in PCa on July 3rd, 2023. Bibliometrix was used to conduct ulterior bibliometric analysis of countries/affiliations, authors, sources, publications, and keywords. Subsequently, purposeful large amounts of literature reading were proceeded to analyze research hotspots in this field. Results 3325 publications were included in the study. Research associated with sequencing and omics studies in PCa had shown an obvious increase recently. The USA and China were the most productive countries, and harbored close collaboration. CHINNAIYAN AM was identified as the most influential author, and CANCER RESEARCH exhibited huge impact in this field. Highly cited publications and their co-citation relationships were used to filtrate literatures for subsequent literature reading. Based on keyword analysis and large amounts of literature reading, 'the molecular pathogenesis of PCa' and 'the clinical application of sequencing and omics studies in PCa' were summarized as two research hotspots in the field. Conclusion Sequencing technology had a deep impact on the studies of PCa. Sequencing and omics studies in PCa helped researchers reveal the molecular pathogenesis, and provided new possibilities for the clinical practice of PCa.
Collapse
Affiliation(s)
- Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyue Yang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Delgado D, Gillard M, Tong L, Demanelis K, Oliva M, Gleason KJ, Chernoff M, Chen L, Paner GP, Vander Griend D, Pierce BL. The Impact of Inherited Genetic Variation on DNA Methylation in Prostate Cancer and Benign Tissues of African American and European American Men. Cancer Epidemiol Biomarkers Prev 2024; 33:557-566. [PMID: 38294689 PMCID: PMC10990789 DOI: 10.1158/1055-9965.epi-23-0849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND American men of African ancestry (AA) have higher prostate cancer incidence and mortality rates compared with American men of European ancestry (EA). Differences in genetic susceptibility mechanisms may contribute to this disparity. METHODS To gain insights into the regulatory mechanisms of prostate cancer susceptibility variants, we tested the association between SNPs and DNA methylation (DNAm) at nearby CpG sites across the genome in benign and cancer prostate tissue from 74 AA and 74 EA men. Genome-wide SNP data (from benign tissue) and DNAm were generated using Illumina arrays. RESULTS Among AA men, we identified 6,298 and 2,641 cis-methylation QTLs (meQTL; FDR of 0.05) in benign and tumor tissue, respectively, with 6,960 and 1,700 detected in EA men. We leveraged genome-wide association study (GWAS) summary statistics to identify previously reported prostate cancer GWAS signals likely to share a common causal variant with a detected meQTL. We identified nine GWAS-meQTL pairs with strong evidence of colocalization (four in EA benign, three in EA tumor, two in AA benign, and three in AA tumor). Among these colocalized GWAS-meQTL pairs, we identified colocalizing expression quantitative trait loci (eQTL) impacting four eGenes with known roles in tumorigenesis. CONCLUSIONS These findings highlight epigenetic regulatory mechanisms by which prostate cancer-risk SNPs can modify local DNAm and/or gene expression in prostate tissue. IMPACT Overall, our findings showed general consistency in the meQTL landscape of AA and EA men, but meQTLs often differ by tissue type (normal vs. cancer). Ancestry-based linkage disequilibrium differences and lack of AA representation in GWAS decrease statistical power to detect colocalization for some regions.
Collapse
Affiliation(s)
- Dayana Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637
| | - Marc Gillard
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637
| | - Kathryn Demanelis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637
- Genomics Research Center, AbbVie, North Chicago, IL 60064
| | | | - Meytal Chernoff
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Lin Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637
| | - Gladell P. Paner
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Donald Vander Griend
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60607
- The University of Illinois Cancer Center, Chicago, IL
| | - Brandon L. Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60615
- Comprehensive Cancer Center, University of Chicago, Chicago, IL 60637
| |
Collapse
|
10
|
Qin Q, Zhou Y, Guo J, Chen Q, Tang W, Li Y, You J, Li Q. Conserved methylation signatures associate with the tumor immune microenvironment and immunotherapy response. Genome Med 2024; 16:47. [PMID: 38566132 PMCID: PMC10985907 DOI: 10.1186/s13073-024-01318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Aberrant DNA methylation is a major characteristic of cancer genomes. It remains unclear which biological processes determine epigenetic reprogramming and how these processes influence the variants in the cancer methylome, which can further impact cancer phenotypes. METHODS We performed pairwise permutations of 381,900 loci in 569 paired DNA methylation profiles of cancer tissue and matched normal tissue from The Cancer Genome Atlas (TCGA) and defined conserved differentially methylated positions (DMPs) based on the resulting null distribution. Then, we derived independent methylation signatures from 2,465 cancer-only methylation profiles from the TCGA and 241 cell line-based methylation profiles from the Genomics of Drug Sensitivity in Cancer (GDSC) cohort using nonnegative matrix factorization (NMF). We correlated DNA methylation signatures with various clinical and biological features, including age, survival, cancer stage, tumor immune microenvironment factors, and immunotherapy response. We inferred the determinant genes of these methylation signatures by integrating genomic and transcriptomic data and evaluated the impact of these signatures on cancer phenotypes in independent bulk and single-cell RNA/methylome cohorts. RESULTS We identified 7,364 differentially methylated positions (2,969 Hyper-DMPs and 4,395 Hypo-DMPs) in nine cancer types from the TCGA. We subsequently retrieved three highly conserved, independent methylation signatures (Hyper-MS1, Hypo-MS1, and Hypo-MS4) from cancer tissues and cell lines based on these Hyper and Hypo-DMPs. Our data suggested that Hypo-MS4 activity predicts poor survival and is associated with immunotherapy response and distant tumor metastasis, and Hypo-MS4 activity is related to TP53 mutation and FOXA1 binding specificity. In addition, we demonstrated a correlation between the activities of Hypo-MS4 in cancer cells and the fractions of regulatory CD4 + T cells with the expression levels of immunological genes in the tumor immune microenvironment. CONCLUSIONS Our findings demonstrated that the methylation signatures of distinct biological processes are associated with immune activity in the cancer microenvironment and predict immunotherapy response.
Collapse
Affiliation(s)
- Qingqing Qin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ying Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jintao Guo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
| | - Weiwei Tang
- Department of Medical Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian, Medical University, Xiamen, 361003, China
| | - Yuchen Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jun You
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, Cancer Center, Xiamen, 361003, China
| | - Qiyuan Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China.
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China.
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
11
|
Tian A, Wu T, Zhang Y, Chen J, Sha J, Xia W. Triggering pyroptosis enhances the antitumor efficacy of PARP inhibitors in prostate cancer. Cell Oncol (Dordr) 2023; 46:1855-1870. [PMID: 37610690 DOI: 10.1007/s13402-023-00860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE PARP inhibitors have revolutionized the treatment landscape for advanced prostate cancer (PCa) patients who harboring mutations in homologous recombination repair (HRR) genes. However, the molecular mechanisms underlying PARP inhibitors function beyond DNA damage repair pathways remain elusive, and identifying novel predictive targets that favorably respond to PARP inhibitors in PCa is an active area of research. METHODS The expression of GSDME in PCa cell lines and human PCa samples was determined by western blotting. Targeted bisulfite sequencing, gene enrichment analysis (GSEA), clone formation, construction of the stably transfected cell lines, lactate dehydrogenase (LDH) assay, western blotting as well as a mouse model of subcutaneous xenografts were used to investigate the role of GSDME in PCa. The combinational therapeutic effect of olaparib and decitabine was determined using both in vitro and in vivo experiments. RESULTS We have found low expression of GSDME in PCa. Interestingly, we demonstrated that GSDME activity is robustly induced in olaparib-treated cells undergoing pyroptosis, and that high methylation of the GSDME promoter dampens its activity in PCa cells. Intriguingly, genetically overexpressing GSDME does not inhibit tumor cell proliferation but instead confers sensitivity to olaparib. Furthermore, pharmacological treatment with the combination of olaparib and decitabine synergistically induces GSDME expression and cleavage through caspase-3 activation, thus promoting pyroptosis and enhancing anti-tumor response, ultimately resulting in tumor remission. CONCLUSION Our findings highlight a novel therapeutic strategy for enhancing the long-term response to olaparib beyond HRR-deficient tumors in PCa, underscoring the critical role of GSDME in regulating tumorigenesis.
Collapse
Affiliation(s)
- Ao Tian
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Tingyu Wu
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yanshuang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Jiachen Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Jianjun Sha
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle road, Shanghai, 200001, China
| | - Weiliang Xia
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| |
Collapse
|
12
|
Laajala TD, Sreekanth V, Soupir AC, Creed JH, Halkola AS, Calboli FCF, Singaravelu K, Orman MV, Colin-Leitzinger C, Gerke T, Fridley BL, Tyekucheva S, Costello JC. A harmonized resource of integrated prostate cancer clinical, -omic, and signature features. Sci Data 2023; 10:430. [PMID: 37407670 PMCID: PMC10322899 DOI: 10.1038/s41597-023-02335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Genomic and transcriptomic data have been generated across a wide range of prostate cancer (PCa) study cohorts. These data can be used to better characterize the molecular features associated with clinical outcomes and to test hypotheses across multiple, independent patient cohorts. In addition, derived features, such as estimates of cell composition, risk scores, and androgen receptor (AR) scores, can be used to develop novel hypotheses leveraging existing multi-omic datasets. The full potential of such data is yet to be realized as independent datasets exist in different repositories, have been processed using different pipelines, and derived and clinical features are often not provided or not standardized. Here, we present the curatedPCaData R package, a harmonized data resource representing >2900 primary tumor, >200 normal tissue, and >500 metastatic PCa samples across 19 datasets processed using standardized pipelines with updated gene annotations. We show that meta-analysis across harmonized studies has great potential for robust and clinically meaningful insights. curatedPCaData is an open and accessible community resource with code made available for reproducibility.
Collapse
Affiliation(s)
- Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Varsha Sreekanth
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alex C Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jordan H Creed
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Anni S Halkola
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Federico C F Calboli
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Natural Resources Institute Finland (Luke), F-31600, Jokioinen, Finland
| | | | - Michael V Orman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Travis Gerke
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Svitlana Tyekucheva
- Department of Data Science, Dana-Farber Cancer Institute; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
13
|
Subasri V, Light N, Kanwar N, Brzezinski J, Luo P, Hansford JR, Cairney E, Portwine C, Elser C, Finlay JL, Nichols KE, Alon N, Brunga L, Anson J, Kohlmann W, de Andrade KC, Khincha PP, Savage SA, Schiffman JD, Weksberg R, Pugh TJ, Villani A, Shlien A, Goldenberg A, Malkin D. Multiple Germline Events Contribute to Cancer Development in Patients with Li-Fraumeni Syndrome. CANCER RESEARCH COMMUNICATIONS 2023; 3:738-754. [PMID: 37377903 PMCID: PMC10150777 DOI: 10.1158/2767-9764.crc-22-0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 03/29/2023] [Indexed: 06/29/2023]
Abstract
Li-Fraumeni syndrome (LFS) is an autosomal dominant cancer-predisposition disorder. Approximately 70% of individuals who fit the clinical definition of LFS harbor a pathogenic germline variant in the TP53 tumor suppressor gene. However, the remaining 30% of patients lack a TP53 variant and even among variant TP53 carriers, approximately 20% remain cancer-free. Understanding the variable cancer penetrance and phenotypic variability in LFS is critical to developing rational approaches to accurate, early tumor detection and risk-reduction strategies. We leveraged family-based whole-genome sequencing and DNA methylation to evaluate the germline genomes of a large, multi-institutional cohort of patients with LFS (n = 396) with variant (n = 374) or wildtype TP53 (n = 22). We identified alternative cancer-associated genetic aberrations in 8/14 wildtype TP53 carriers who developed cancer. Among variant TP53 carriers, 19/49 who developed cancer harbored a pathogenic variant in another cancer gene. Modifier variants in the WNT signaling pathway were associated with decreased cancer incidence. Furthermore, we leveraged the noncoding genome and methylome to identify inherited epimutations in genes including ASXL1, ETV6, and LEF1 that confer increased cancer risk. Using these epimutations, we built a machine learning model that can predict cancer risk in patients with LFS with an area under the receiver operator characteristic curve (AUROC) of 0.725 (0.633-0.810). Significance Our study clarifies the genomic basis for the phenotypic variability in LFS and highlights the immense benefits of expanding genetic and epigenetic testing of patients with LFS beyond TP53. More broadly, it necessitates the dissociation of hereditary cancer syndromes as single gene disorders and emphasizes the importance of understanding these diseases in a holistic manner as opposed to through the lens of a single gene.
Collapse
Affiliation(s)
- Vallijah Subasri
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Nicholas Light
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nisha Kanwar
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack Brzezinski
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ping Luo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Jordan R. Hansford
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Michael Rice Cancer Centre, Women's and Children's Hospital, North Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australia Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Elizabeth Cairney
- Department of Paediatrics, London Health Sciences Centre and Western University, London, Ontario, Canada
| | - Carol Portwine
- Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Christine Elser
- Department of Medical Oncology, Princess Margaret Hospital and Mount Sinai Hospital, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan L. Finlay
- Neuro-Oncology Program, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| | - Kim E. Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Noa Alon
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ledia Brunga
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jo Anson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Wendy Kohlmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Kelvin C. de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Payal P. Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Joshua D. Schiffman
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
- PEEL Therapeutics, Inc., Salt Lake City, Utah
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Trevor J. Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Anita Villani
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anna Goldenberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- CIFAR: Child and Brain Development, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Houlahan KE, Livingstone J, Fox NS, Kurganovs N, Zhu H, Sietsma Penington J, Jung CH, Yamaguchi TN, Heisler LE, Jovelin R, Costello AJ, Pope BJ, Kishan AU, Corcoran NM, Bristow RG, Waszak SM, Weischenfeldt J, He HH, Hung RJ, Hovens CM, Boutros PC. A polygenic two-hit hypothesis for prostate cancer. J Natl Cancer Inst 2023; 115:468-472. [PMID: 36610996 PMCID: PMC10086625 DOI: 10.1093/jnci/djad001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer is one of the most heritable cancers. Hundreds of germline polymorphisms have been linked to prostate cancer diagnosis and prognosis. Polygenic risk scores can predict genetic risk of a prostate cancer diagnosis. Although these scores inform the probability of developing a tumor, it remains unknown how germline risk influences the tumor molecular evolution. We cultivated a cohort of 1250 localized European-descent patients with germline and somatic DNA profiling. Men of European descent with higher genetic risk were diagnosed earlier and had less genomic instability and fewer driver genes mutated. Higher genetic risk was associated with better outcome. These data imply a polygenic "two-hit" model where germline risk reduces the number of somatic alterations required for tumorigenesis. These findings support further clinical studies of polygenic risk scores as inexpensive and minimally invasive adjuncts to standard risk stratification. Further studies are required to interrogate generalizability to more ancestrally and clinically diverse populations.
Collapse
Affiliation(s)
- Kathleen E Houlahan
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Ontario Institute for Cancer Research, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Julie Livingstone
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
| | - Natalie S Fox
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Natalie Kurganovs
- Australian Prostate Cancer Research Centre Epworth, Richmond, VIC, Australia
- Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Helen Zhu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, Australia
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
| | | | | | - Anthony J Costello
- Division of Urology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Bernard J Pope
- Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Amar U Kishan
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Niall M Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, VIC, Australia
- Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
- Division of Urology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Urology, Peninsula Health, Frankston, VIC, Australia
- The Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Robert G Bristow
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Manchester Cancer Research Centre, Manchester, UK
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Housheng H He
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Christopher M Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, VIC, Australia
- Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Ontario Institute for Cancer Research, Toronto, Canada
- Vector Institute, Toronto, Canada
- Department of Urology, University of California, Los Angeles, CA, USA
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Houlahan KE, Khan A, Greenwald NF, West RB, Angelo M, Curtis C. Germline-mediated immunoediting sculpts breast cancer subtypes and metastatic proclivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532870. [PMID: 36993286 PMCID: PMC10055121 DOI: 10.1101/2023.03.15.532870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cancer represents a broad spectrum of molecularly and morphologically diverse diseases. Individuals with the same clinical diagnosis can have tumors with drastically different molecular profiles and clinical response to treatment. It remains unclear when these differences arise during disease course and why some tumors are addicted to one oncogenic pathway over another. Somatic genomic aberrations occur within the context of an individual's germline genome, which can vary across millions of polymorphic sites. An open question is whether germline differences influence somatic tumor evolution. Interrogating 3,855 breast cancer lesions, spanning pre-invasive to metastatic disease, we demonstrate that germline variants in highly expressed and amplified genes influence somatic evolution by modulating immunoediting at early stages of tumor development. Specifically, we show that the burden of germline-derived epitopes in recurrently amplified genes selects against somatic gene amplification in breast cancer. For example, individuals with a high burden of germline-derived epitopes in ERBB2, encoding human epidermal growth factor receptor 2 (HER2), are significantly less likely to develop HER2-positive breast cancer compared to other subtypes. The same holds true for recurrent amplicons that define four subgroups of ER-positive breast cancers at high risk of distant relapse. High epitope burden in these recurrently amplified regions is associated with decreased likelihood of developing high risk ER-positive cancer. Tumors that overcome such immune-mediated negative selection are more aggressive and demonstrate an "immune cold" phenotype. These data show the germline genome plays a previously unappreciated role in dictating somatic evolution. Exploiting germline-mediated immunoediting may inform the development of biomarkers that refine risk stratification within breast cancer subtypes.
Collapse
Affiliation(s)
- Kathleen E. Houlahan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Aziz Khan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah F Greenwald
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert B. West
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Curtis
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
16
|
Genetic Risk Prediction for Prostate Cancer: Implications for Early Detection and Prevention. Eur Urol 2023; 83:241-248. [PMID: 36609003 DOI: 10.1016/j.eururo.2022.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
CONTEXT Prostate cancer (PCa) is a leading cause of death and partially heritable. Genetic risk prediction might be useful for strategies to reduce PCa mortality through early detection and prevention. OBJECTIVE To review evidence for genetic risk prediction for PCa. EVIDENCE ACQUISITION A collaborative literature review was conducted using PubMed and Google Scholar. Search terms included genetic, risk, prediction, and "prostate cancer". Articles addressing screening, early detection, or prevention were prioritized, as were studies involving diverse populations. EVIDENCE SYNTHESIS Rare pathogenic mutations (RPMs), especially in DNA damage repair genes, increase PCa risk. RPMs in BRCA2 are most clearly deleterious, conferring 2-8.6 times higher risk of PCa and a higher risk of aggressive disease. Common genetic variants can be combined into genetic risk scores (GRSs). A high GRS (top 20-25% of the population) confers two to three times higher risk of PCa than average; a very high GRS (top 1-5%) confers six to eight times higher risk. GRSs are not specific for aggressive PCa, possibly due to methodological limitations and/or a field effect of an elevated risk for both low- and high-grade PCa. It is challenging to disentangle genetics from structural racism and social determinants of health to understand PCa racial disparities. GRSs are independently associated with a lethal PCa risk after accounting for family history and race/ancestry. Healthy lifestyle might partially mitigate the risk of lethal PCa. CONCLUSIONS Genetic risk assessment is becoming more common; implementation studies are needed to understand the implications and to avoid exacerbating healthcare disparities. Men with a high genetic risk of PCa can reasonably be encouraged to adhere to a healthy lifestyle. PATIENT SUMMARY Prostate cancer risk is inherited through rare mutations and through the combination of hundreds of common genetic markers. Some men with a high genetic risk (especially BRCA2 mutations) likely benefit from early screening for prostate cancer. The risk of lethal prostate cancer can be reduced through a healthy lifestyle.
Collapse
|
17
|
Laajala TD, Sreekanth V, Soupir A, Creed J, Calboli FCF, Singaravelu K, Orman M, Colin-Leitzinger C, Gerke T, Fidley BL, Tyekucheva S, Costello JC. curatedPCaData: Integration of clinical, genomic, and signature features in a curated and harmonized prostate cancer data resource. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524403. [PMID: 36711769 PMCID: PMC9882125 DOI: 10.1101/2023.01.17.524403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Genomic and transcriptomic data have been generated across a wide range of prostate cancer (PCa) study cohorts. These data can be used to better characterize the molecular features associated with clinical outcomes and to test hypotheses across multiple, independent patient cohorts. In addition, derived features, such as estimates of cell composition, risk scores, and androgen receptor (AR) scores, can be used to develop novel hypotheses leveraging existing multi-omic datasets. The full potential of such data is yet to be realized as independent datasets exist in different repositories, have been processed using different pipelines, and derived and clinical features are often not provided or unstandardized. Here, we present the curatedPCaData R package, a harmonized data resource representing >2900 primary tumor, >200 normal tissue, and >500 metastatic PCa samples across 19 datasets processed using standardized pipelines with updated gene annotations. We show that meta-analysis across harmonized studies has great potential for robust and clinically meaningful insights. curatedPCaData is an open and accessible community resource with code made available for reproducibility.
Collapse
Affiliation(s)
- Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Varsha Sreekanth
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alex Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jordan Creed
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Federico CF Calboli
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Natural Resources Institute Finland (Luke), F-31600, Jokioinen, Finland
| | | | - Michael Orman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Travis Gerke
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Brooke L. Fidley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Svitlana Tyekucheva
- Department of Data Science, Dana-Farber Cancer Institute; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
18
|
Wani S, Humaira, Farooq I, Ali S, Rehman MU, Arafah A. Proteomic profiling and its applications in cancer research. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
19
|
Yuan J, Houlahan KE, Ramanand SG, Lee S, Baek G, Yang Y, Chen Y, Strand DW, Zhang MQ, Boutros PC, Mani RS. Prostate Cancer Transcriptomic Regulation by the Interplay of Germline Risk Alleles, Somatic Mutations, and 3D Genomic Architecture. Cancer Discov 2022; 12:2838-2855. [PMID: 36108240 PMCID: PMC9722594 DOI: 10.1158/2159-8290.cd-22-0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/18/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Prostate cancer is one of the most heritable human cancers. Genome-wide association studies have identified at least 185 prostate cancer germline risk alleles, most noncoding. We used integrative three-dimensional (3D) spatial genomics to identify the chromatin interaction targets of 45 prostate cancer risk alleles, 31 of which were associated with the transcriptional regulation of target genes in 565 localized prostate tumors. To supplement these 31, we verified transcriptional targets for 56 additional risk alleles using linear proximity and linkage disequilibrium analysis in localized prostate tumors. Some individual risk alleles influenced multiple target genes; others specifically influenced only distal genes while leaving proximal ones unaffected. Several risk alleles exhibited widespread germline-somatic interactions in transcriptional regulation, having different effects in tumors with loss of PTEN or RB1 relative to those without. These data clarify functional prostate cancer risk alleles in large linkage blocks and outline a strategy to model multidimensional transcriptional regulation. SIGNIFICANCE Many prostate cancer germline risk alleles are enriched in the noncoding regions of the genome and are hypothesized to regulate transcription. We present a 3D genomics framework to unravel risk SNP function and describe the widespread germline-somatic interplay in transcription control. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Jiapei Yuan
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas,State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Kathleen E Houlahan
- Department of Human Genetics, University of California, Los Angeles, California,Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, California,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada,Vector Institute, Toronto, ON M5G 1M1, Canada,Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | | | - Sora Lee
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - GuemHee Baek
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Yang Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yong Chen
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Michael Q. Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas,MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department Automation, Tsinghua University, Beijing 100084, China
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, California,Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, California,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada,Vector Institute, Toronto, ON M5G 1M1, Canada,Department of Urology, University of California, Los Angeles, California,Institute for Precision Health, University of California, Los Angeles, California
| | - Ram S. Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas,Department of Urology, UT Southwestern Medical Center, Dallas, Texas,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
20
|
Zhao D, Zhang M, Huang S, Liu Q, Zhu S, Li Y, Jiang W, Kiss DL, Cao Q, Zhang L, Chen K. CHD6 promotes broad nucleosome eviction for transcriptional activation in prostate cancer cells. Nucleic Acids Res 2022; 50:12186-12201. [PMID: 36408932 PMCID: PMC9757051 DOI: 10.1093/nar/gkac1090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being a member of the chromodomain helicase DNA-binding protein family, little is known about the exact role of CHD6 in chromatin remodeling or cancer disease. Here we show that CHD6 binds to chromatin to promote broad nucleosome eviction for transcriptional activation of many cancer pathways. By integrating multiple patient cohorts for bioinformatics analysis of over a thousand prostate cancer datasets, we found CHD6 expression elevated in prostate cancer and associated with poor prognosis. Further comprehensive experiments demonstrated that CHD6 regulates oncogenicity of prostate cancer cells and tumor development in a murine xenograft model. ChIP-Seq for CHD6, along with MNase-Seq and RNA-Seq, revealed that CHD6 binds on chromatin to evict nucleosomes from promoters and gene bodies for transcriptional activation of oncogenic pathways. These results demonstrated a key function of CHD6 in evicting nucleosomes from chromatin for transcriptional activation of prostate cancer pathways.
Collapse
Affiliation(s)
- Dongyu Zhao
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Min Zhang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Shaodong Huang
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Liu
- Department of Urology, and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sen Zhu
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yanqiang Li
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Weihua Jiang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Daniel L Kiss
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Qi Cao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Urology, and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kaifu Chen
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Sjöström M, Zhao SG, Levy S, Zhang M, Ning Y, Shrestha R, Lundberg A, Herberts C, Foye A, Aggarwal R, Hua JT, Li H, Bergamaschi A, Maurice-Dror C, Maheshwari A, Chen S, Ng SWS, Ye W, Petricca J, Fraser M, Chesner L, Perry MD, Moreno-Rodriguez T, Chen WS, Alumkal JJ, Chou J, Morgans AK, Beer TM, Thomas GV, Gleave M, Lloyd P, Phillips T, McCarthy E, Haffner MC, Zoubeidi A, Annala M, Reiter RE, Rettig MB, Witte ON, Fong L, Bose R, Huang FW, Luo J, Bjartell A, Lang JM, Mahajan NP, Lara PN, Evans CP, Tran PT, Posadas EM, He C, Cui XL, Huang J, Zwart W, Gilbert LA, Maher CA, Boutros PC, Chi KN, Ashworth A, Small EJ, He HH, Wyatt AW, Quigley DA, Feng FY. The 5-Hydroxymethylcytosine Landscape of Prostate Cancer. Cancer Res 2022; 82:3888-3902. [PMID: 36251389 PMCID: PMC9627125 DOI: 10.1158/0008-5472.can-22-1123] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer. 5hmC is shown to mark activation of cancer drivers and downstream targets. Furthermore, 5hmC sequencing revealed profoundly altered cell states throughout the disease course, characterized by increased proliferation, oncogenic signaling, dedifferentiation, and lineage plasticity to neuroendocrine and gastrointestinal lineages. Finally, 5hmC sequencing of cell-free DNA from patients with metastatic disease proved useful as a prognostic biomarker able to identify an aggressive subtype of prostate cancer using the genes TOP2A and EZH2, previously only detectable by transcriptomic analysis of solid tumor biopsies. Overall, these findings reveal that 5hmC marks epigenomic activation in prostate cancer and identify hallmarks of prostate cancer progression with potential as biomarkers of aggressive disease. SIGNIFICANCE In prostate cancer, 5-hydroxymethylcytosine delineates oncogene activation and stage-specific cell states and can be analyzed in liquid biopsies to detect cancer phenotypes. See related article by Wu and Attard, p. 3880.
Collapse
Affiliation(s)
- Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
- Division of Oncology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans' Hospital, Madison, WI
| | | | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | | | - Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Arian Lundberg
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Junjie T Hua
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | | | - Corinne Maurice-Dror
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- BC Cancer, Vancouver, BC, Canada
| | - Ashutosh Maheshwari
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Sujun Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah W S Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wenbin Ye
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Automation, Xiamen University, Xiamen, Fujian, China
| | - Jessica Petricca
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Fraser
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Chesner
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Marc D Perry
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Thaidy Moreno-Rodriguez
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - William S Chen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Joshi J Alumkal
- Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Alicia K Morgans
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - George V Thomas
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
- Department of Pathology, Oregon Health & Science University, Portland, OR
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington, Seattle, WA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matti Annala
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Robert E Reiter
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Matthew B Rettig
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Lawrence Fong
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Rohit Bose
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Franklin W Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Anders Bjartell
- Department of Translational Medicine, Medical Faculty, Lund University, Malmö, Sweden
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | | | - Primo N Lara
- Division of Hematology Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA
| | - Christopher P Evans
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA
- Department of Urologic Surgery, University of California Davis, Sacramento, CA
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland, College Park, Baltimore, MD
| | - Edwin M Posadas
- Urologic Oncology Program & Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL
| | - Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC
| | - Wilbert Zwart
- Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Luke A Gilbert
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
- Arc Institute, Palo Alto, CA
| | - Christopher A Maher
- Siteman Cancer Center, Washington University, St. Louis, MO
- McDonnell Genome Institute, Washington University, St. Louis, MO
- Department of Internal Medicine, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Human Genetics, Institute for Precision Health, UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, Departments of Human Genetics and Urology, University of California Los Angeles, Los Angeles, CA
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Housheng H He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
22
|
The cell-free DNA methylome captures distinctions between localized and metastatic prostate tumors. Nat Commun 2022; 13:6467. [PMID: 36309516 PMCID: PMC9617856 DOI: 10.1038/s41467-022-34012-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
Metastatic prostate cancer remains a major clinical challenge and metastatic lesions are highly heterogeneous and difficult to biopsy. Liquid biopsy provides opportunities to gain insights into the underlying biology. Here, using the highly sensitive enrichment-based sequencing technology, we provide analysis of 60 and 175 plasma DNA methylomes from patients with localized and metastatic prostate cancer, respectively. We show that the cell-free DNA methylome can capture variations beyond the tumor. A global hypermethylation in metastatic samples is observed, coupled with hypomethylation in the pericentromeric regions. Hypermethylation at the promoter of a glucocorticoid receptor gene NR3C1 is associated with a decreased immune signature. The cell-free DNA methylome is reflective of clinical outcomes and can distinguish different disease types with 0.989 prediction accuracy. Finally, we show the ability of predicting copy number alterations from the data, providing opportunities for joint genetic and epigenetic analysis on limited biological samples.
Collapse
|
23
|
Liang Y, Chiu PKF, Zhu Y, Wong CYP, Xiong Q, Wang L, Teoh JYC, Cao Q, Wei Y, Ye DW, Tsui SKW, Ng CF. Whole-exome sequencing reveals a comprehensive germline mutation landscape and identifies twelve novel predisposition genes in Chinese prostate cancer patients. PLoS Genet 2022; 18:e1010373. [PMID: 36095024 PMCID: PMC9499300 DOI: 10.1371/journal.pgen.1010373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is the most inheritable cancer with approximately 42% of disease risk attributed to inherited factors by studies of twins, indicating the importance of additional genetic screening to identify predisposition variants. However, only DNA damage repair (DDR) genes have been investigated thoroughly in prostate cancer. To determine the comprehensive germline mutation landscape in Chinese prostate cancer patients, we performed whole exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious germline mutations. A total of 36 deleterious germline variants in 25 genes were identified in 29% patients. Variants were found in eight pathways, including DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-variant-containing genes were found in discovery cohort (7/25, 28%) and validation cohort (7/28, 25%) with three genes not described before (LDLR, MYH7 and SUGCT) and four genes previously reported (FANCI, ITGA6, PABPC1 and RAD54B). When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel potential predisposition genes (ADGRG1, CHD4, DNMT3A, ERBB3, GRHL1, HMBS, LDLR, MYH7, MYO6, NT5C2, NUP98 and SUGCT) were identified using the discovery and validation cohorts, which have not been previously reported in prostate cancer patients in all ethnic groups. Taken together, this study reveals a comprehensive germline mutation landscape in Chinese prostate cancer patients and discovers 12 novel non-DDR predisposition genes to lay the groundwork for the optimization of genetic screening. Prostate cancer is the most inheritable cancer with about 42% of disease risk attributed to inherited factors, indicating the importance of additional genetic screening to identify predisposition variants. However, only DNA damage repair (DDR) genes have been studied thoroughly in prostate cancer. To determine the comprehensive germline mutation landscape in Chinese prostate cancer patients, we performed whole exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious germline mutations. A total of 36 deleterious germline variants in 25 genes were identified in 29% patients. Variants were found in eight pathways, including DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-variant-containing genes were found in discovery cohort and validation cohort with three genes not described before (LDLR, MYH7 and SUGCT) and four genes previously reported. When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel potential predisposition genes were identified using the discovery and validation cohorts, which have not been previously reported in prostate cancer patients in all ethnic groups.
Collapse
Affiliation(s)
- Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Peter Ka-Fung Chiu
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Christine Yim-Ping Wong
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SK-WT); (C-FN)
| | - Chi-Fai Ng
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SK-WT); (C-FN)
| |
Collapse
|
24
|
Akhoundova D, Rubin MA. Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future. Cancer Cell 2022; 40:920-938. [PMID: 36055231 DOI: 10.1016/j.ccell.2022.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/22/2022] [Accepted: 08/11/2022] [Indexed: 12/17/2022]
Abstract
Next-generation DNA sequencing technology has dramatically advanced clinical oncology through the identification of therapeutic targets and molecular biomarkers, leading to the personalization of cancer treatment with significantly improved outcomes for many common and rare tumor entities. More recent developments in advanced tumor profiling now enable dissection of tumor molecular architecture and the functional phenotype at cellular and subcellular resolution. Clinical translation of high-resolution tumor profiling and integration of multi-omics data into precision treatment, however, pose significant challenges at the level of prospective validation and clinical implementation. In this review, we summarize the latest advances in multi-omics tumor profiling, focusing on spatial genomics and chromatin organization, spatial transcriptomics and proteomics, liquid biopsy, and ex vivo modeling of drug response. We analyze the current stages of translational validation of these technologies and discuss future perspectives for their integration into precision treatment.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Medical Oncology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
25
|
Wang X, Jordahl KM, Zhu C, Livingstone J, Rhie SK, Wright JL, Grady WM, Boutros PC, Stanford JL, Dai JY. Methylation Subtypes of Primary Prostate Cancer Predict Poor Prognosis. Cancer Epidemiol Biomarkers Prev 2022; 31:1473-1482. [PMID: 35437583 PMCID: PMC9250603 DOI: 10.1158/1055-9965.epi-22-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Patients with prostate cancer experience heterogeneous outcomes after radical prostatectomy. Genomic studies including The Cancer Genome Atlas (TCGA) have reported molecular signatures of prostate cancer, but few studies have assessed the prognostic effects of DNA methylation profiles. METHODS We conducted the largest methylome subtyping analysis for primary prostate tumors to date, using methylome data from three patient populations: TCGA, a prostate cancer cohort study conducted at the Fred Hutchinson Cancer Research Center (FH; Seattle, WA), and the Canadian International Cancer Genome Consortium (ICGC) cohort. Four subtypes were detected in the TCGA dataset, then independently assigned to FH and ICGC cohort data. The identified methylation subtypes were assessed for association with cancer prognosis in the above three patient populations. RESULTS Using a set of hypermethylated CpG sites, four methylation subtypes were identified in TCGA. Compared with subtype 1, subtype 4 had an HR of 2.09 (P = 0.029) for biochemical recurrence (BCR) in TCGA patients. HRs of 2.76 (P = 0.002) for recurrence and 9.73 (P = 0.002) for metastatic-lethal (metastasis or prostate cancer-specific death) outcomes were observed in the FH cohort. A similar pattern of association was noted in the Canadian ICGC cohort, though HRs were not statistically significant. CONCLUSIONS A hypermethylated subtype was associated with an increased hazard of recurrence and mortality in three studies with prostate tumor methylome data. Further molecular work is needed to understand the effect of methylation subtypes on cancer prognosis. IMPACT This study identified a DNA methylation subtype that was associated with worse prostate cancer prognosis after radical prostatectomy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kristina M. Jordahl
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Chenghao Zhu
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - Julie Livingstone
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - Suhn K. Rhie
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan L. Wright
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - William M. Grady
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - James Y. Dai
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
27
|
Classon J, Zamboni M, Engblom C, Alkass K, Mantovani G, Pou C, Nkulikiyimfura D, Brodin P, Druid H, Mold J, Frisén J. Prostate cancer disease recurrence after radical prostatectomy is associated with HLA type and local cytomegalovirus immunity. Mol Oncol 2022; 16:3452-3464. [PMID: 35712787 PMCID: PMC9533687 DOI: 10.1002/1878-0261.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022] Open
Abstract
Prostate cancer is a heterogeneous disease with a need for new prognostic biomarkers. Human leukocyte antigen (HLA) genes are highly polymorphic genes central to antigen presentation to T‐cells. Two alleles, HLA‐A*02:01 and HLA‐A*24:02, have been associated with prognosis in patients diagnosed with de novo metastatic prostate cancer. We leveraged the next‐generation sequenced cohorts CPC‐GENE and TCGA‐PRAD to examine HLA alleles, antiviral T‐cell receptors and prostate cancer disease recurrence after prostatectomy. Carrying HLA‐A*02:01 (111/229; 48% of patients) was independently associated with disease recurrence in patients with low‐intermediate risk prostate cancer. HLA‐A*11 (carried by 42/441; 10% of patients) was independently associated with rapid disease recurrence in patients with high‐risk prostate cancer. Moreover, HLA‐A*02:01 carriers in which anti‐cytomegalovirus T‐cell receptors (CMV‐TCR) were identified in tumors (13/144; 10% of all patients in the cohort) had a higher risk of disease recurrence than CMV‐TCR‐negative patients. These findings suggest that HLA‐type and CMV immunity may be valuable biomarkers for prostate cancer progression.
Collapse
Affiliation(s)
- Johanna Classon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Margherita Zamboni
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Engblom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kanar Alkass
- Department of Pathology and Oncology, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Mantovani
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Dieudonné Nkulikiyimfura
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Druid
- Department of Pathology and Oncology, Karolinska Institutet, Stockholm, Sweden
| | - Jeff Mold
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
29
|
Grishin D, Gusev A. Allelic imbalance of chromatin accessibility in cancer identifies candidate causal risk variants and their mechanisms. Nat Genet 2022; 54:837-849. [PMID: 35697866 PMCID: PMC9886437 DOI: 10.1038/s41588-022-01075-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/08/2022] [Indexed: 02/02/2023]
Abstract
While many germline cancer risk variants have been identified through genome-wide association studies (GWAS), the mechanisms by which these variants operate remain largely unknown. Here we used 406 cancer ATAC-Seq samples across 23 cancer types to identify 7,262 germline allele-specific accessibility QTLs (as-aQTLs). Cancer as-aQTLs had stronger enrichment for cancer risk heritability (up to 145 fold) than any other functional annotation across seven cancer GWAS. Most cancer as-aQTLs directly altered transcription factor (TF) motifs and exhibited differential TF binding and gene expression in functional screens. To connect as-aQTLs to putative risk mechanisms, we introduced the regulome-wide associations study (RWAS). RWAS identified genetically associated accessible peaks at >70% of known breast and prostate loci and discovered new risk loci in all examined cancer types. Integrating as-aQTL discovery, motif analysis and RWAS identified candidate causal regulatory elements and their probable upstream regulators. Our work establishes cancer as-aQTLs and RWAS analysis as powerful tools to study the genetic architecture of cancer risk.
Collapse
Affiliation(s)
- Dennis Grishin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,The Eli and Edythe L. Broad Institute, Cambridge, MA, USA. .,Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
30
|
Li QK, Lih TSM, Wang Y, Hu Y, Höti N, Chan DW, Zhang H. Improving the detection of aggressive prostate cancer using immunohistochemical staining of protein marker panels. Am J Cancer Res 2022; 12:1323-1336. [PMID: 35411226 PMCID: PMC8984898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023] Open
Abstract
Prostate cancer (PCa) is a heterogeneous group of tumors, including non-aggressive (NAG) and aggressive (AG) cancer, with variable clinical outcomes. Clinically, in order to assess the aggressiveness of a PCa, a core needle biopsy of a tumor is usually obtained to evaluate the Gleason pattern and score of the tumor. However, it may be difficult to assign on a small biopsy sample using histology. Therefore, additional tool is needed to aid in the assessment. We studied the diagnostic utility of 12 protein markers to identify AG tumors using immunohistochemistry (IHC) and tumor tissue microarray (TMA), including 215 cores of PCa and 111 cores of tumor-matched normal adjacent tissue (NAT). Protein markers were evaluated for their potential utility as single or combined panels for identification of AG. Of 12 proteins, PSMA, phospho-EGFR, AR and P16 were over-expressed in AG. Galectin-3, DPP4 and MAN1B1 revealed stronger staining patterns in NAG. The sensitivity and specificity of individual marker varied widely. Based on AUC values of individual marker, we constructed two- and three-marker panels. In two-marker panels, especially in the panel of DPP4 and PSMA, the AUC value reached 0.83 (ranging from 0.76 to 0.83). In three-marker panels, containing both DPP4 and PSMA with either Galectin-3 or phospho-EGFR, the AUC value reached 0.86 (ranging from 0.83 to 0.86). The specificities at 95% sensitivity of three-marker panels were also significantly improved. In addition to Gleason score, our IHC panels provide a practical tool to assess the aggressiveness of PCa.
Collapse
Affiliation(s)
- Qing Kay Li
- Department of Pathology, Johns Hopkins UniversityBaltimore, MD 21287, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical InstitutionsBaltimore, MD 21287, USA
| | | | - Yuefan Wang
- Department of Pathology, Johns Hopkins UniversityBaltimore, MD 21287, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins UniversityBaltimore, MD 21287, USA
| | - Naseruddin Höti
- Department of Pathology, Johns Hopkins UniversityBaltimore, MD 21287, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins UniversityBaltimore, MD 21287, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical InstitutionsBaltimore, MD 21287, USA
- Department of Urology, Sidney Kimmel Cancer Center, Johns Hopkins Medical InstitutionsBaltimore, MD 21287, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins UniversityBaltimore, MD 21287, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical InstitutionsBaltimore, MD 21287, USA
- Department of Urology, Sidney Kimmel Cancer Center, Johns Hopkins Medical InstitutionsBaltimore, MD 21287, USA
| |
Collapse
|
31
|
Cailleteau A, Sargos P, Saad F, Latorzeff I, Supiot S. Drug Intensification in Future Postoperative Radiotherapy Practice in Biochemically-Relapsing Prostate Cancer Patients. Front Oncol 2021; 11:780507. [PMID: 35004302 PMCID: PMC8739777 DOI: 10.3389/fonc.2021.780507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Although salvage prostate bed radiotherapy is highly effective in biochemically-relapsing prostate cancer patients following prostatectomy, relapses remain frequent and improvements are needed. Randomized phase 3 trials have shown the benefit of adding androgen-depriving therapy to irradiation, but not all patients benefit from this combination. Preclinical studies have shown that novel agents targeting the androgen receptor, DNA repair, PI3K/AKT/mTOR pathways, or the hypoxic microenvironment may help increase the response to prostate bed irradiation while minimizing potential side effects. This perspective review focuses on the most relevant molecules that may have an impact when combined with salvage radiotherapy, and underlines the strategies that need to be developed to increase the efficacy of salvage post-prostatectomy radiotherapy in prostate cancer patients.
Collapse
Affiliation(s)
- Axel Cailleteau
- Department of Radiation Oncology, Institut de Cancérologie de l’Ouest, Nantes Saint-Herblain, France
| | - Paul Sargos
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | - Fred Saad
- Department of Urology, Université de Montréal, Montreal, QC, Canada
| | - Igor Latorzeff
- Department of Radiation Oncology, Oncorad Clinique Pasteur, Toulouse, France
| | - Stéphane Supiot
- Department of Radiation Oncology, Institut de Cancérologie de l’Ouest, Nantes Saint-Herblain, France
- University of Nantes, CRCINA (CNRS, Inserm), Nantes, France
| |
Collapse
|
32
|
Tian P, Zhong M, Wei GH. Mechanistic insights into genetic susceptibility to prostate cancer. Cancer Lett 2021; 522:155-163. [PMID: 34560228 DOI: 10.1016/j.canlet.2021.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is the second most common cancer in men and is a highly heritable disease that affects millions of individuals worldwide. Genome-wide association studies have to date discovered nearly 270 genetic loci harboring hundreds of single nucleotide polymorphisms (SNPs) that are associated with PCa susceptibility. In contrast, the functional characterization of the mechanisms underlying PCa risk association is still growing. Given that PCa risk-associated SNPs are highly enriched in noncoding cis-regulatory genomic regions, accumulating evidence suggests a widespread modulation of transcription factor chromatin binding and allelic enhancer activity by these noncoding SNPs, thereby dysregulating gene expression. Emerging studies have shown that a proportion of noncoding variants can modulate the formation of transcription factor complexes at enhancers and CTCF-mediated 3D genome architecture. Interestingly, DNA methylation-regulated CTCF binding could orchestrate a long-range chromatin interaction between PCa risk enhancer and causative genes. Additionally, one-causal-variant-two-risk genes or multiple-risk-variant-multiple-genes are prevalent in some PCa risk-associated loci. In this review, we will discuss the current understanding of the general principles of SNP-mediated gene regulation, experimental advances, and functional evidence supporting the mechanistic roles of several PCa genetic loci with potential clinical impact on disease prevention and treatment.
Collapse
Affiliation(s)
- Pan Tian
- Fudan University Shanghai Cancer Center; Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Mengjie Zhong
- Fudan University Shanghai Cancer Center; Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center; Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
Shetty A, Seo JH, Bell CA, O’Connor EP, Pomerantz MM, Freedman ML, Gusev A. Allele-specific epigenetic activity in prostate cancer and normal prostate tissue implicates prostate cancer risk mechanisms. Am J Hum Genet 2021; 108:2071-2085. [PMID: 34699744 DOI: 10.1016/j.ajhg.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
Genome-wide association studies (GWASs) of prostate cancer have identified >250 significant risk loci, but the causal variants and mechanisms for these loci remain largely unknown. Here, we sought to identify and characterize risk-harboring regulatory elements by integrating epigenomes from primary prostate tumor and normal tissues of 27 individuals across the H3K27ac, H3K4me3, and H3K4me2 histone marks and FOXA1 and HOXB13 transcription factors. We identified 7,371 peaks with significant allele specificity (allele-specific quantitative trait locus [asQTL] peaks). Showcasing their relevance to prostate cancer risk, H3K27ac T-asQTL peaks were the single annotation most enriched for prostate cancer GWAS heritability (40×), significantly higher than corresponding non-asQTL H3K27ac peaks (14×) or coding regions (14×). Surprisingly, fine-mapped GWAS risk variants were most significantly enriched for asQTL peaks observed in tumors, including asQTL peaks that were differentially imbalanced with respect to tumor-normal states. These data pinpointed putative causal regulatory elements at 20 GWAS loci, of which 11 were detected only in the tumor samples. More broadly, tumor-specific asQTLs were enriched for expression QTLs in benign tissues as well as accessible regions found in stem cells, supporting a hypothesis where some germline variants become reactivated during or after transformation and can be captured by epigenomic profiling of the tumor. Our study demonstrates the power of allele specificity in chromatin signals to uncover GWAS mechanisms, highlights the relevance of tumor-specific regulation in the context of cancer risk, and prioritizes multiple loci for experimental follow-up.
Collapse
|
34
|
Fraser M, Livingstone J, Wrana JL, Finelli A, He HH, van der Kwast T, Zlotta AR, Bristow RG, Boutros PC. Somatic driver mutation prevalence in 1844 prostate cancers identifies ZNRF3 loss as a predictor of metastatic relapse. Nat Commun 2021; 12:6248. [PMID: 34716314 PMCID: PMC8556363 DOI: 10.1038/s41467-021-26489-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Driver gene mutations that are more prevalent in metastatic, castration-resistant prostate cancer (mCRPC) than localized disease represent candidate prognostic biomarkers. We analyze 1,844 localized (1,289) or mCRPC (555) tumors and quantify the prevalence of 113 somatic driver single nucleotide variants (SNVs), copy number aberrations (CNAs), and structural variants (SVs) in each state. One-third are significantly more prevalent in mCRPC than expected while a quarter are less prevalent. Mutations in AR and its enhancer are more prevalent in mCRPC, as are those in TP53, MYC, ZNRF3 and PRKDC. ZNRF3 loss is associated with decreased ZNRF3 mRNA abundance, WNT, cell cycle & PRC1/2 activity, and genomic instability. ZNRF3 loss, RNA downregulation and hypermethylation are prognostic of metastasis and overall survival, independent of clinical and pathologic indices. These data demonstrate a strategy for identifying biomarkers of localized cancer aggression, with ZNRF3 loss as a predictor of metastasis in prostate cancer.
Collapse
Affiliation(s)
- Michael Fraser
- grid.17063.330000 0001 2157 2938Department of Surgery, Division of Urology, University of Toronto, Toronto, ON Canada ,grid.415224.40000 0001 2150 066XDepartment of Surgical Oncology, Genitourinary Site Group, Princess Margaret Cancer Centre, Toronto, ON Canada ,grid.419890.d0000 0004 0626 690XOntario Institute for Cancer Research, Toronto, ON Canada
| | - Julie Livingstone
- grid.19006.3e0000 0000 9632 6718Department of Human Genetics, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Urology, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Institute for Precision Health, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA USA
| | - Jeffrey L. Wrana
- grid.416166.20000 0004 0473 9881Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON Canada ,grid.492573.eMount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Antonio Finelli
- grid.17063.330000 0001 2157 2938Department of Surgery, Division of Urology, University of Toronto, Toronto, ON Canada ,grid.415224.40000 0001 2150 066XDepartment of Surgical Oncology, Genitourinary Site Group, Princess Margaret Cancer Centre, Toronto, ON Canada ,grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, Toronto, ON Canada
| | - Housheng Hansen He
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Theodorus van der Kwast
- grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Laboratory Medicine Program, University Health Network, Toronto, ON Canada
| | - Alexandre R. Zlotta
- grid.17063.330000 0001 2157 2938Department of Surgery, Division of Urology, University of Toronto, Toronto, ON Canada ,grid.415224.40000 0001 2150 066XDepartment of Surgical Oncology, Genitourinary Site Group, Princess Margaret Cancer Centre, Toronto, ON Canada ,grid.416166.20000 0004 0473 9881Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON Canada ,grid.492573.eMount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Robert G. Bristow
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada ,Manchester Cancer Research Centre, Manchester, UK ,grid.5379.80000000121662407University of Manchester, Manchester, UK
| | - Paul C. Boutros
- grid.19006.3e0000 0000 9632 6718Department of Human Genetics, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Urology, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Institute for Precision Health, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA USA ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
35
|
Li QK, Chen J, Hu Y, Höti N, Lih TSM, Thomas SN, Chen L, Roy S, Meeker A, Shah P, Chen L, Bova GS, Zhang B, Zhang H. Proteomic characterization of primary and metastatic prostate cancer reveals reduced proteinase activity in aggressive tumors. Sci Rep 2021; 11:18936. [PMID: 34556748 PMCID: PMC8460832 DOI: 10.1038/s41598-021-98410-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PCa) is a heterogeneous group of tumors with variable clinical courses. In order to improve patient outcomes, it is critical to clinically separate aggressive PCa (AG) from non-aggressive PCa (NAG). Although recent genomic studies have identified a spectrum of molecular abnormalities associated with aggressive PCa, it is still challenging to separate AG from NAG. To better understand the functional consequences of PCa progression and the unique features of the AG subtype, we studied the proteomic signatures of primary AG, NAG and metastatic PCa. 39 PCa and 10 benign prostate controls in a discovery cohort and 57 PCa in a validation cohort were analyzed using a data-independent acquisition (DIA) SWATH-MS platform. Proteins with the highest variances (top 500 proteins) were annotated for the pathway enrichment analysis. Functional analysis of differentially expressed proteins in NAG and AG was performed. Data was further validated using a validation cohort; and was also compared with a TCGA mRNA expression dataset and confirmed by immunohistochemistry (IHC) using PCa tissue microarray (TMA). 4,415 proteins were identified in the tumor and benign control tissues, including 158 up-regulated and 116 down-regulated proteins in AG tumors. A functional analysis of tumor-associated proteins revealed reduced expressions of several proteinases, including dipeptidyl peptidase 4 (DPP4), carboxypeptidase E (CPE) and prostate specific antigen (KLK3) in AG and metastatic PCa. A targeted analysis further identified that the reduced expression of DPP4 was associated with the accumulation of DPP4 substrates and the reduced ratio of DPP4 cleaved peptide to intact substrate peptide. Findings were further validated using an independently-collected tumor cohort, correlated with a TCGA mRNA dataset, and confirmed by immunohistochemical stains of PCa tumor microarray (TMA). Our study is the first large-scale proteomics analysis of PCa tissue using a DIA SWATH-MS platform. It provides not only an interrogative proteomic signature of PCa subtypes, but also indicates the critical roles played by certain proteinases during tumor progression. The spectrum map and protein profile generated in the study can be used to investigate potential biological mechanisms involved in PCa and for the development of a clinical assay to distinguish aggressive from indolent PCa.
Collapse
Affiliation(s)
- Qing Kay Li
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA.
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | - Jing Chen
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA
| | - Yingwei Hu
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA
| | - Naseruddin Höti
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA
| | - Tung-Shing Mamie Lih
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA
| | - Stefani N Thomas
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA
| | - Li Chen
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA
| | - Sujayita Roy
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA
| | - Alan Meeker
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA
| | - Punit Shah
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA
| | - Lijun Chen
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA
| | - G Steven Bova
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Bai Zhang
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA
| | - Hui Zhang
- Department of Pathology, The John Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, 21224, USA.
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
- Department of Urology, Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
- Johns Hopkins University, 400 N. Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21287, USA.
| |
Collapse
|
36
|
|
37
|
Freeland J, Crowell PD, Giafaglione JM, Boutros PC, Goldstein AS. Aging of the progenitor cells that initiate prostate cancer. Cancer Lett 2021; 515:28-35. [PMID: 34052326 PMCID: PMC8494000 DOI: 10.1016/j.canlet.2021.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
Many organs experience a loss of tissue mass and a decline in regenerative capacity during aging. In contrast, the prostate continues to grow in volume. In fact, age is the most important risk factor for prostate cancer. However, the age-related factors that influence the composition, morphology and molecular features of prostate epithelial progenitor cells, the cells-of-origin for prostate cancer, are poorly understood. Here, we review the evidence that prostate luminal progenitor cells are expanded with age. We explore the age-related changes to the microenvironment that may influence prostate epithelial cells and risk of transformation. Finally, we raise a series of questions about models of aging and regulators of prostate aging which need to be addressed. A fundamental understanding of aging in the prostate will yield critical insights into mechanisms that promote the development of age-related prostatic disease.
Collapse
Affiliation(s)
- Jack Freeland
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Paul C Boutros
- Departments of Human Genetics & Urology, Jonsson Comprehensive Cancer Center and Institute for Precision Health, University of California, Los Angeles, USA
| | - Andrew S Goldstein
- Departments of Molecular, Cell and Developmental Biology & Urology, Broad Stem Cell Research Center and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA.
| |
Collapse
|
38
|
Ren N, Liu Q, Yan L, Huang Q. Parallel Reporter Assays Identify Altered Regulatory Role of rs684232 in Leading to Prostate Cancer Predisposition. Int J Mol Sci 2021; 22:8792. [PMID: 34445492 PMCID: PMC8395720 DOI: 10.3390/ijms22168792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Functional characterization of cancer risk-associated single nucleotide polymorphism (SNP) identified by genome-wide association studies (GWAS) has become a big challenge. To identify the regulatory risk SNPs that can lead to transcriptional misregulation, we performed parallel reporter gene assays with both alleles of 213 prostate cancer risk-associated GWAS SNPs in 22Rv1 cells. We disclosed 32 regulatory SNPs that exhibited different regulatory activities with two alleles. For one of the regulatory SNPs, rs684232, we found that the variation altered chromatin binding of transcription factor FOXA1 on the DNA region and led to aberrant gene expression of VPS53, FAM57A, and GEMIN4, which play vital roles in prostate cancer malignancy. Our findings reveal the roles and underlying mechanism of rs684232 in prostate cancer progression and hold great promise in benefiting prostate cancer patients with prognostic prediction and target therapies.
Collapse
Affiliation(s)
| | | | | | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China; (N.R.); (Q.L.); (L.Y.)
| |
Collapse
|
39
|
Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet 2021; 37:1012-1027. [PMID: 34120771 DOI: 10.1016/j.tig.2021.05.002] [Citation(s) in RCA: 349] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential.
Collapse
Affiliation(s)
- Atsuya Nishiyama
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
40
|
Albawardi A, Livingstone J, Almarzooqi S, Palanisamy N, Houlahan KE, Awwad AAA, Abdelsalam RA, Boutros PC, Bismar TA. Copy Number Profiles of Prostate Cancer in Men of Middle Eastern Ancestry. Cancers (Basel) 2021; 13:cancers13102363. [PMID: 34068856 PMCID: PMC8153627 DOI: 10.3390/cancers13102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Prostate cancer is the most commonly diagnosed non-skin malignancy in men. Numerous studies have been undertaken to explore the role that genomics plays in prostate cancer initiation and progression. Most of this genomic data comes tumors arising in men with European or Asian ancestry, leaving other ancestry groups understudied. To fill this gap, we investigated the differences in copy number aberrations between prostate cancers arising in men of Middle Eastern ethnicity and those of European, African, or East Asian ethnicities in the hope of better understanding the incidence and risk of prostate cancer in different populations. We identified ancestry-specific gains and deletions, as well as differences in overall genomic instability between ancestry groups. This confirms that ancestry should be considered when investigating and characterizing biomarkers and molecular signatures relative to disease progression, prognosis, and potentially therapeutic targeting. Abstract Our knowledge of prostate cancer (PCa) genomics mainly reflects European (EUR) and Asian (ASN) populations. Our understanding of the influence of Middle Eastern (ME) and African (AFR) ancestry on the mutational profiles of prostate cancer is limited. To characterize genomic differences between ME, EUR, ASN, and AFR ancestry, fluorescent in situ hybridization (FISH) studies for NKX3-1 deletion and MYC amplification were carried out on 42 tumors arising in individuals of ME ancestry. These were supplemented by analysis of genome-wide copy number profiles of 401 tumors of all ancestries. FISH results of NKX3-1 and MYC were assessed in the ME cohort and compared to other ancestries. Gene level copy number aberrations (CNAs) for each sample were statistically compared between ancestry groups. NKX3-1 deletions by FISH were observed in 17/42 (17.5%) prostate tumors arising in men of ME ancestry, while MYC amplifications were only observed in 1/42 (2.3%). Using CNAs called from arrays, the incidence of NKX3-1 deletions was significantly lower in ME vs. other ancestries (20% vs. 52%; p = 2.3 × 10−3). Across the genome, tumors arising in men of ME ancestry had fewer CNAs than those in men of other ancestries (p = 0.014). Additionally, the somatic amplification of 21 specific genes was more frequent in tumors arising in men of ME vs. EUR ancestry (two-sided proportion test; Q < 0.05). Those included amplifications in the glutathione S-transferase family on chromosome 1 (GSTM1, GSTM2, GSTM5) and the IQ motif-containing family on chromosome 3 (IQCF1, IQCF2, IQCF13, IQCF4, IQCF5, IQCF6). Larger studies investigating ME populations are warranted to confirm these observations.
Collapse
Affiliation(s)
- Alia Albawardi
- Tawam Hospital, Abu Dhabi P.O. Box 15258, United Arab Emirates; (A.A.); (S.A.); (A.A.A.A.)
- Pathology College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Julie Livingstone
- Departments of Human Genetics, University of California, Los Angeles, CA 94607, USA; (J.L.); (K.E.H.); (P.C.B.)
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 94607, USA
- Institute for Precision Health, University of California, Los Angeles, CA 94607, USA
| | - Saeeda Almarzooqi
- Tawam Hospital, Abu Dhabi P.O. Box 15258, United Arab Emirates; (A.A.); (S.A.); (A.A.A.A.)
- Pathology College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System Detroit, Detroit, MI 48202, USA;
| | - Kathleen E. Houlahan
- Departments of Human Genetics, University of California, Los Angeles, CA 94607, USA; (J.L.); (K.E.H.); (P.C.B.)
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 94607, USA
- Institute for Precision Health, University of California, Los Angeles, CA 94607, USA
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | | | - Ramy A. Abdelsalam
- Department of Pathology and Laboratory Medicine, University of Calgary-Cumming School of Medicine and Alberta Precision Labs, Calgary, AB T2N 4N1, Canada;
- Department of Pathology, Mansoura University, Mansoura 35516, Egypt
| | - Paul C. Boutros
- Departments of Human Genetics, University of California, Los Angeles, CA 94607, USA; (J.L.); (K.E.H.); (P.C.B.)
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 94607, USA
- Institute for Precision Health, University of California, Los Angeles, CA 94607, USA
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Urology, University of California, Los Angeles, CA 94607, USA
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary-Cumming School of Medicine and Alberta Precision Labs, Calgary, AB T2N 4N1, Canada;
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary-Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
- Alberta Precision Labs, Rockyview Hospital Laboratory, Department of Pathology & Laboratory Medicine, University of Calgary Cumming School of Medicine, 7007-14th Street SW, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
41
|
Tseng CC, Wong MC, Liao WT, Chen CJ, Lee SC, Yen JH, Chang SJ. Genetic Variants in Transcription Factor Binding Sites in Humans: Triggered by Natural Selection and Triggers of Diseases. Int J Mol Sci 2021; 22:ijms22084187. [PMID: 33919522 PMCID: PMC8073710 DOI: 10.3390/ijms22084187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Variants of transcription factor binding sites (TFBSs) constitute an important part of the human genome. Current evidence demonstrates close links between nucleotides within TFBSs and gene expression. There are multiple pathways through which genomic sequences located in TFBSs regulate gene expression, and recent genome-wide association studies have shown the biological significance of TFBS variation in human phenotypes. However, numerous challenges remain in the study of TFBS polymorphisms. This article aims to cover the current state of understanding as regards the genomic features of TFBSs and TFBS variants; the mechanisms through which TFBS variants regulate gene expression; the approaches to studying the effects of nucleotide changes that create or disrupt TFBSs; the challenges faced in studies of TFBS sequence variations; the effects of natural selection on collections of TFBSs; in addition to the insights gained from the study of TFBS alleles related to gout, its associated comorbidities (increased body mass index, chronic kidney disease, diabetes, dyslipidemia, coronary artery disease, ischemic heart disease, hypertension, hyperuricemia, osteoporosis, and prostate cancer), and the treatment responses of patients.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (J.-H.Y.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Man-Chun Wong
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Correspondence: (W.-T.L.); (S.-J.C.); Tel.: +886-7-3121101 (W.-T.L.); +886-7-5916679 (S.-J.C.); Fax:+886-7-3125339 (W.-T.L.); +886-7-5919264 (S.-J.C.)
| | - Chung-Jen Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan;
| | - Su-Chen Lee
- Laboratory Diagnosis of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (J.-H.Y.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Biological Science and Technology, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung 81148, Taiwan
- Correspondence: (W.-T.L.); (S.-J.C.); Tel.: +886-7-3121101 (W.-T.L.); +886-7-5916679 (S.-J.C.); Fax:+886-7-3125339 (W.-T.L.); +886-7-5919264 (S.-J.C.)
| |
Collapse
|
42
|
Kumaraswamy A, Welker Leng KR, Westbrook TC, Yates JA, Zhao SG, Evans CP, Feng FY, Morgan TM, Alumkal JJ. Recent Advances in Epigenetic Biomarkers and Epigenetic Targeting in Prostate Cancer. Eur Urol 2021; 80:71-81. [PMID: 33785255 DOI: 10.1016/j.eururo.2021.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
CONTEXT In addition to genetic alterations, epigenetic alterations play a crucial role during prostate cancer progression. A better understanding of the epigenetic factors that promote prostate cancer progression may lead to the design of rational therapeutic strategies to target prostate cancer more effectively. OBJECTIVE To systematically review recent literature on the role of epigenetic factors in prostate cancer and highlight key preclinical and translational data with epigenetic therapies. EVIDENCE ACQUISITION We performed a systemic literature search in PubMed. At the request of the editors, we limited our search to articles published between January 2015 and August 2020 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Clinical trials targeting epigenetic factors were retrieved from clinicaltrials.gov. EVIDENCE SYNTHESIS We retrieved 1451 articles, and 62 were finally selected for review. Twelve additional foundational studies outside this time frame were also included. Findings from both preclinical and clinical studies were reviewed and summarized. We also discuss 12 ongoing clinical studies with epigenetic targeted therapies. CONCLUSIONS Epigenetic mechanisms impact prostate cancer progression. Understanding the role of specific epigenetic factors is critical to determine how we may improve prostate cancer treatment and modulate resistance to standard therapies. Recent preclinical studies and ongoing or completed clinical studies with epigenetic therapies provide a useful roadmap for how to best deploy epigenetic therapies clinically to target prostate cancer. PATIENT SUMMARY Epigenetics is a process by which gene expression is regulated without changes in the DNA sequence itself. Oftentimes, epigenetic changes influence cellular behavior and contribute to cancer development or progression. Understanding how epigenetic changes occur in prostate cancer is the first step toward therapeutic targeting in patients. Importantly, laboratory-based studies and recently completed and ongoing clinical trials suggest that drugs targeting epigenetic factors are promising. More work is necessary to determine whether this class of drugs will add to our existing treatment arsenal in prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Joel A Yates
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christopher P Evans
- Department of Urologic Surgery and UC Davis Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Todd M Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Joshi J Alumkal
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
43
|
Ahmed M, Soares F, Xia JH, Yang Y, Li J, Guo H, Su P, Tian Y, Lee HJ, Wang M, Akhtar N, Houlahan KE, Bosch A, Zhou S, Mazrooei P, Hua JT, Chen S, Petricca J, Zeng Y, Davies A, Fraser M, Quigley DA, Feng FY, Boutros PC, Lupien M, Zoubeidi A, Wang L, Walsh MJ, Wang T, Ren S, Wei GH, He HH. CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nat Commun 2021; 12:1781. [PMID: 33741908 PMCID: PMC7979745 DOI: 10.1038/s41467-021-21867-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) risk-associated SNPs are enriched in noncoding cis-regulatory elements (rCREs), yet their modi operandi and clinical impact remain elusive. Here, we perform CRISPRi screens of 260 rCREs in PCa cell lines. We find that rCREs harboring high risk SNPs are more essential for cell proliferation and H3K27ac occupancy is a strong indicator of essentiality. We also show that cell-line-specific essential rCREs are enriched in the 8q24.21 region, with the rs11986220-containing rCRE regulating MYC and PVT1 expression, cell proliferation and tumorigenesis in a cell-line-specific manner, depending on DNA methylation-orchestrated occupancy of a CTCF binding site in between this rCRE and the MYC promoter. We demonstrate that CTCF deposition at this site as measured by DNA methylation level is highly variable in prostate specimens, and observe the MYC eQTL in the 8q24.21 locus in individuals with low CTCF binding. Together our findings highlight a causal mechanism synergistically driven by a risk SNP and DNA methylation-mediated 3D genome architecture, advocating for the integration of genetics and epigenetics in assessing risks conferred by genetic predispositions.
Collapse
Affiliation(s)
- Musaddeque Ahmed
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Ji-Han Xia
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Yue Yang
- Changhai Hospital, Shanghai, China
| | - Jing Li
- Changhai Hospital, Shanghai, China
| | - Haiyang Guo
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Peiran Su
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yijun Tian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hyung Joo Lee
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Miranda Wang
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Nayeema Akhtar
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Kathleen E Houlahan
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Almudena Bosch
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stanley Zhou
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Parisa Mazrooei
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Junjie T Hua
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sujun Chen
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jessica Petricca
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yong Zeng
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Alastair Davies
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Michael Fraser
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
| | - Paul C Boutros
- Vector Institute, Toronto, ON, Canada
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mathieu Lupien
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ting Wang
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Gong-Hong Wei
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
- Fudan University Shanghai Cancer Center, School of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Housheng Hansen He
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
44
|
Xu C, Luo J, Wang M, Wang Y, Chen Z, Cao Y, Hong Y, Xu X, Yang J. Detection of tmprss2-erg and tmprss2-egr1 gene fusion in prostate cancer from a Chinese population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00092-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
TMPRSS2: ETS gene fusion occurs recurrently in a high proportion of prostate cancer (PCa) patients in Western countries. However, for Chinese PCa patients, no solid conclusion could be drawn from the present studies, as the results varied considerably between the limited reports.
Results
In this study, we evaluated the prevalence of such gene rearrangements in a small number of Chinese PCa patients and discovered that 6 out of 27 (22.2%) were found to harbor the TMPRSS2: ERG fusion, the ratio was much lower than that in Western countries. Furthermore, we first identified TMPRSS2: EGR1 gene fusion, suggesting other chromosome rearrangements besides ETS gene family harbor in prostate cancer. The hybrid transcript was predicted to encode a truncated EGR1 protein by ORF finder, which might play a key role in prostate cancer.
Conclusions
We reported that the total occurrence rate of TMPRSS2: ERG fusion gene in this small group of Chinese patients was lower than the reported frequencies in European descent patients but comparable to other reported frequencies in Asian populations. The occurrence of TMPRSS2: EGR1 gene fusion suggested other chromosome rearrangements in prostate cancer.
Collapse
|
45
|
Liss MA, Leach RJ, Sanda MG, Semmes OJ. Prostate Cancer Biomarker Development: National Cancer Institute's Early Detection Research Network Prostate Cancer Collaborative Group Review. Cancer Epidemiol Biomarkers Prev 2020; 29:2454-2462. [PMID: 33093161 PMCID: PMC7710596 DOI: 10.1158/1055-9965.epi-20-1104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer remains the most common non-skin cancer and second leading cause of death among men in the United States. Although progress has been made in diagnosis and risk assessment, many clinical questions remain regarding early identification of prostate cancer and management. The early detection of aggressive disease continues to provide high curative rates if diagnosed in a localized state. Unfortunately, prostate cancer displays significant heterogeneity within the prostate organ and between individual patients making detection and treatment strategies complex. Although prostate cancer is common among men, the majority will not die from prostate cancer, introducing the issue of overtreatment as a major concern in clinical management of the disease. The focus of the future is to identify those at highest risk for aggressive prostate cancer and to develop prevention and screening strategies, as well as discerning the difference in malignant potential of diagnosed tumors. The Prostate Cancer Research Group of the National Cancer Institute's Early Detection Research Network has contributed to the progress in addressing these concerns. This summary is an overview of the activities of the group.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Robin J Leach
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Martin G Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Oliver J Semmes
- The Leroy T. Canoles Jr. Cancer Research Center, Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia.
| |
Collapse
|
46
|
Tonry C, Finn S, Armstrong J, Pennington SR. Clinical proteomics for prostate cancer: understanding prostate cancer pathology and protein biomarkers for improved disease management. Clin Proteomics 2020; 17:41. [PMID: 33292167 PMCID: PMC7678104 DOI: 10.1186/s12014-020-09305-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Following the introduction of routine Prostate Specific Antigen (PSA) screening in the early 1990's, Prostate Cancer (PCa) is often detected at an early stage. There are also a growing number of treatment options available and so the associated mortality rate is generally low. However, PCa is an extremely complex and heterogenous disease and many patients suffer disease recurrence following initial therapy. Disease recurrence commonly results in metastasis and metastatic PCa has an average survival rate of just 3-5 years. A significant problem in the clinical management of PCa is being able to differentiate between patients who will respond to standard therapies and those who may benefit from more aggressive intervention at an earlier stage. It is also acknowledged that for many men the disease is not life threatenting. Hence, there is a growing desire to identify patients who can be spared the significant side effects associated with PCa treatment until such time (if ever) their disease progresses to the point where treatment is required. To these important clinical needs, current biomarkers and clinical methods for patient stratification and personlised treatment are insufficient. This review provides a comprehensive overview of the complexities of PCa pathology and disease management. In this context it is possible to review current biomarkers and proteomic technologies that will support development of biomarker-driven decision tools to meet current important clinical needs. With such an in-depth understanding of disease pathology, the development of novel clinical biomarkers can proceed in an efficient and effective manner, such that they have a better chance of improving patient outcomes.
Collapse
Affiliation(s)
- Claire Tonry
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
| | | | | |
Collapse
|
47
|
Otto JJ, Correll VL, Engstroem HA, Hitefield NL, Main BP, Albracht B, Johnson‐Pais T, Yang LF, Liss M, Boutros PC, Kislinger T, Leach RJ, Semmes OJ, Nyalwidhe JO. Targeted Mass Spectrometry of a Clinically Relevant PSA Variant from Post-DRE Urines for Quantitation and Genotype Determination. Proteomics Clin Appl 2020; 14:e2000012. [PMID: 32614141 PMCID: PMC7674190 DOI: 10.1002/prca.202000012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/08/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE The rs17632542 single nucleotide polymorphism (SNP) results in lower serum prostate specific antigen (PSA) levels which may further mitigate against its clinical utility as a prostate cancer biomarker. Post-digital rectal exam (post-DRE) urine is a minimally invasive fluid that is currently utilized in prostate cancer diagnosis. To detect and quantitate the variant protein in urine. EXPERIMENTAL DESIGN Fifty-three post-DRE urines from rs17632542 genotyped individuals processed and analyzed by liquid chromatography/mass spectrometry (LC-MS) in a double-blinded randomized study. The ability to distinguish between homozygous wild-type, heterozygous, or homozygous variant is examined before unblinding. RESULTS Stable-isotope labeled peptides are used in the detection and quantitation of three peptides of interest in each sample using parallel reaction monitoring (PRM). Using these data, groupings are predicted using hierarchical clustering in R. Accuracy of the predictions show 100% concordance across the 53 samples, including individuals homozygous and heterozygous for the SNP. CONCLUSIONS AND CLINICAL RELEVANCE The study demonstrates that MS based peptide variant quantitation in urine could be useful in determining patient genotype expression. This assay provides a tool to evaluate the utility of PSA variant (rs17632542) in parallel with current and forthcoming urine biomarker panels.
Collapse
Affiliation(s)
- Joseph J. Otto
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVA23507USA
| | - Vanessa L. Correll
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVA23507USA
| | - Hampus A. Engstroem
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVA23507USA
| | - Naomi L. Hitefield
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVA23507USA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVA23507USA
| | - Brian P. Main
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVA23507USA
| | - Brenna Albracht
- Department of UrologyThe University of Texas Health San AntonioSan AntonioTX78229USA
| | - Teresa Johnson‐Pais
- Department of UrologyThe University of Texas Health San AntonioSan AntonioTX78229USA
| | - Li Fang Yang
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVA23507USA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVA23507USA
| | - Michael Liss
- Department of UrologyThe University of Texas Health San AntonioSan AntonioTX78229USA
- Mays Cancer Center at UT Health San Antonio/MD AndersonSan AntonioTX78229USA
| | - Paul C. Boutros
- Departments of Human Genetics and UrologyJonsson Comprehensive Cancer CenterInstitute for Precision Health University of California Los AngelesLos AngelesCA90095USA
- University of TorontoDepartment of Medical BiophysicsTorontoON M5G 1L7Canada
| | - Thomas Kislinger
- University of TorontoDepartment of Medical BiophysicsTorontoON M5G 1L7Canada
| | - Robin J. Leach
- Department of UrologyThe University of Texas Health San AntonioSan AntonioTX78229USA
- Department of Cell Systems and AnatomyThe University of Texas Health San AntonioSan AntonioTX78229USA
| | - Oliver J. Semmes
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVA23507USA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVA23507USA
| | - Julius O. Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVA23507USA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVA23507USA
| |
Collapse
|
48
|
Resident Memory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1273:39-68. [PMID: 33119875 DOI: 10.1007/978-3-030-49270-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Tissue-resident memory T (TRM) cells are strategically positioned within the epithelial layers of many tissues to provide enduring site-specific immunological memory. This unique T-cell lineage is endowed with the capacity to rapidly respond to tissue perturbations and has a well-documented role in eradicating pathogens upon reexposure. Emerging evidence has highlighted a key role for TRM cells in cancer immunity. Single-cell approaches have identified TRM cells among other CD8+ tumor-infiltrating lymphocyte (TIL) subsets, and their presence is a positive indicator of clinical outcome in cancer patients. Furthermore, recent preclinical studies have elegantly demonstrated that TRM cells are a critical component of the antitumor immune response. Given their unique functional abilities, TRM cells have emerged as a potential immunotherapeutic target. Here, we discuss TRM cells in the framework of the cancer-immunity cycle and in the context of the T cell- and non-T cell-inflamed tumor microenvironments (TME). We highlight how their core features make TRM cells uniquely suited to function within the metabolically demanding TME. Finally, we consider potential therapeutic avenues that target TRM cells to augment the antitumor immune response.
Collapse
|
49
|
Germline genomes have a dominant-heritable contribution to cancer immune evasion and immunotherapy response. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Light A, Ahmed A, Dasgupta P, Elhage O. The genetic landscapes of urological cancers and their clinical implications in the era of high-throughput genome analysis. BJU Int 2020; 126:26-54. [PMID: 32306543 DOI: 10.1111/bju.15084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE With the advent of high-throughput genome analysis, we are increasingly able to sequence and hence understand the pathogenic processes underlying individual cancers. Recently, consortiums such as The Cancer Genome Atlas (TCGA) have performed large-scale projects to this end, providing significant amounts of information regarding the genetic landscapes of several cancers. PATIENTS AND METHODS We performed a narrative review of studies from the TCGA and other major studies. We aimed to summarise data exploring the clinical implications of specific genetic alterations, both prognostically and therapeutically, in four major urological cancers. These were renal cell carcinoma, muscle-invasive bladder cancer/carcinoma, prostate cancer, and testicular germ cell tumours. RESULTS With these four urological cancers, great strides have been made in the molecular characterisation of tumours. In particular, recent studies have focussed on identifying molecular subtypes of tumours with characteristic genetic alterations and differing prognoses. Other prognostic alterations have also recently been identified, including those pertaining to epigenetics and microRNAs. In regard to treatment, numerous options are emerging for patients with these cancers such as including immune checkpoint inhibition, epigenetic-based treatments, and agents targeting MAPK, PI3K, and DNA repair pathways. There are a multitude of trials underway investigating the effects of these novel agents, the results of which are eagerly awaited. CONCLUSIONS As medicine chases the era of personalised care, it is becoming increasingly important to provide individualised prognoses for patients. Understanding how specific genetic alterations affects prognosis is key for this. It will also be crucial to provide highly targeted treatments against the specific genetics of a patient's tumour. With work performed by the TCGA and other large consortiums, these aims are gradually being achieved. Our review provides a succinct overview of this exciting field that may underpin personalised medicine in urological oncology.
Collapse
Affiliation(s)
- Alexander Light
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, UK.,Bedford Hospital NHS Trust, Bedford Hospital, Bedford, UK
| | - Aamir Ahmed
- Centre for Stem Cell and Regenerative Medicine, King's College London, London, UK
| | - Prokar Dasgupta
- Department of Urology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Oussama Elhage
- Department of Urology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|