1
|
Chen T, Wang Y, Chi X, Xiong L, Lu P, Wang X, Chen Y, Luo Q, Shen P, Xiao Y. Genetic, virulence, and antimicrobial resistance characteristics associated with distinct morphotypes in ST11 carbapenem-resistant Klebsiella pneumoniae. Virulence 2024; 15:2349768. [PMID: 38736039 PMCID: PMC11093053 DOI: 10.1080/21505594.2024.2349768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
ST11 is the most common lineage among carbapenem-resistant Klebsiella pneumoniae (CRKP) infections in Asia. Diverse morphotypes resulting from genetic mutations are associated with significant differences in microbial characteristics among K. pneumoniae isolates. Here, we investigated the genetic determinants and critical characteristics associated with distinct morphotypes of ST11 CRKP. An ST11-KL47 CRKP isolate carrying a pLVPK-like virulence plasmid was isolated from a patient with a bloodstream infection; the isolate had the "mcsw" morphotype. Two distinct morphotypes ("ntrd" and "msdw") were derived from this strain during in vitro passage. Whole genome sequencing was used to identify mutations that cause the distinct morphotypes of ST11 CRKP. Transmission electron microscopy, antimicrobial susceptibility tests, growth assays, biofilm formation, virulence assays, membrane permeability assays, and RNA-seq analysis were used to investigate the specific characteristics associated with different morphotypes of ST11 CRKP. Compared with the parental mcsw morphotype, the ntrd morphotype resulted from mutation of genes involved in capsular polysaccharide biosynthesis (wza, wzc, and wbaP), a result validated by gene knockout experiments. This morphotype showed capsule deficiency and lower virulence potential, but higher biofilm production. By contrast, the msdw morphotype displayed competition deficiency and increased susceptibility to chlorhexidine and polymyxin B. Further analyses indicated that these characteristics were caused by interruption of the sigma factor gene rpoN by insertion mutations and deletion of the rpoN gene, which attenuated membrane integrity presumably by downregulating the phage shock protein operon. These data expand current understanding of genetic, virulence, and antimicrobial resistance characteristics associated with distinct morphotypes in ST11 CRKP.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohui Chi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Luying Xiong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ping Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| |
Collapse
|
2
|
Sattler J, Ernst CM, Zweigner J, Hamprecht A. High frequency of acquired virulence factors in carbapenemase-producing Klebsiella pneumoniae isolates from a large German university hospital, 2013-2021. Antimicrob Agents Chemother 2024; 68:e0060224. [PMID: 39365038 PMCID: PMC11539210 DOI: 10.1128/aac.00602-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024] Open
Abstract
Carbapenemase-producing Klebsiella pneumoniae (CP-Kp) isolates are a public health concern as they can cause severe hospital-acquired infections that are difficult to treat. It has recently been shown that CP-Kp can take up virulence factors from hypervirulent K. pneumoniae lineages. In this study, 109 clinical CP-Kp isolates from the University Hospital Cologne were examined for the presence of acquired virulence factors using whole-genome sequencing and phenotypic tests, and results were linked to clinical data. The virulence factor iuc was present in 18/109 of the CP-Kp isolates. Other acquired virulence factors, such as ybt, cbt, iro, rmpA/rmpA2, peg-344, and hypervirulence-associated capsule types were detected in various combinations among these isolates. The iuc-positive isolates produced OXA-232 (n = 7), OXA-48 (n = 6), OXA-48+NDM (n = 3), NDM, and KPC (each n = 1), and 7/18 isolates were resistant to ceftazidime-avibactam, colistin, and/or cefiderocol. Four isolates carried hybrid plasmids that harbored acquired virulence factors alongside the carbapenemase genes blaNDM-1/5 or blaOXA-48. In 15/18 patients, iuc-positive CP-Kp were isolated from a clinically manifest infection site. Among these, four patients had osteomyelitis, and four patients died from pneumonia with OXA-232-producing ST231 isolates, three of them as part of an outbreak. In conclusion, acquired virulence factors are frequently detected in various combinations in carbapenemase-producing K. pneumoniae isolates in Germany, warranting continuous monitoring of infections caused by these strains.
Collapse
Affiliation(s)
- Janko Sattler
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute of Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- German Center for Infection Research (DZIF), Cologne, Germany
| | - Christoph M. Ernst
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Cologne, Germany
| | - Janine Zweigner
- Department of Infection Control and Hospital Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Axel Hamprecht
- Institute of Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- German Center for Infection Research (DZIF), Cologne, Germany
| |
Collapse
|
3
|
Gao Y, Chen L, Wen Z, Jiang H, Feng J. Risk Factors for Multidrug Resistance in Patients Infected with Carbapenem-Resistant Klebsiella pneumoniae: A Nomogram. Infect Drug Resist 2024; 17:4833-4841. [PMID: 39498412 PMCID: PMC11534326 DOI: 10.2147/idr.s479374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose Our aim was to determine the risk factors for multidrug resistance in patients with carbapenem-resistant Klebsiella pneumoniae (CRKP). Methods The information of 196 patients with Klebsiella pneumoniae infection was collected. The patients were subsequently assigned to the carbapenem-resistant, multidrug-resistant, and non-multidrug-resistant groups. The risk factors for multidrug resistance in CRKP patients were assessed via least absolute shrinkage and selection operator and logistic regression analyses. Moreover, a nomogram was constructed dependent on the identified risk factors, and calibration and decision curves were plotted to detect its accuracy. Results Length of stay (LOS) [odds ratio (OR) and 95% confidence interval (CI): 4.558 (1.157-17.961), P = 0.030], intensive care unit (ICU) stay within 30 days [OR and 95% CI: 12.643 (3.780-42.293), P < 0.001], Glasgow Coma Scale (GCS) score [OR and 95% CI: 13.569 (2.738-67.236), P = 0.001], fungal infection [OR and 95% CI: 6.398 (1.969-20.785), P = 0.002], and cardiovascular disease (CVD) [OR and 95% CI: 3.871 (1.293-11.592), P = 0.016] were identified as risk factors for multidrug resistance in CRKP patients. The concordance index (C-index) of the constructed nomogram was 0.950 (95% CI: 0.945-0.955). Moreover, decision curve analysis elucidated the nomogram utilization across a wide range of probability thresholds, ranging from 1% to 100%. Finally, internal validation using random data validated the robustness of the predictive model, yielding a C-index of 0.937. Conclusion The LOS, ICU stay within 30 days, GCS score, fungal infection, and CVD were recognized as risk factors for multidrug resistance in CRKP patients. The constructed nomogram could accurately predict multidrug-resistant CRKP infections in patients.
Collapse
Affiliation(s)
- Yaning Gao
- Respiratory and Critical Care Medicine Department, Beijing Jingmei Group General Hospital, Beijing, People’s Republic of China
| | - Liang Chen
- Respiratory and Critical Care Medicine Department, Beijing Jingmei Group General Hospital, Beijing, People’s Republic of China
| | - Zhengjun Wen
- Respiratory and Critical Care Medicine Department, Beijing Jingmei Group General Hospital, Beijing, People’s Republic of China
| | - Huiying Jiang
- Respiratory and Critical Care Medicine Department, Beijing Jingmei Group General Hospital, Beijing, People’s Republic of China
| | - Jing Feng
- Respiratory and Critical Care Medicine Department, Beijing Jingmei Group General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Nguyen HK, Duke MM, Grayton QE, Broberg CA, Schoenfisch MH. Impact of nitric oxide donors on capsule, biofilm and resistance profiles of Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107339. [PMID: 39304122 PMCID: PMC11540743 DOI: 10.1016/j.ijantimicag.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Klebsiella pneumoniae is considered to be a critical public health threat due to its ability to cause fatal, multi-drug-resistant infections in the bloodstream and key organs. The polysaccharide-based capsule layer that shields K. pneumoniae from clearance via innate immunity is a prominent virulence factor. K. pneumoniae also forms biofilms on biotic and abiotic surfaces. These biofilms significantly reduce penetration by, and antibacterial activity from, traditional antibiotics. Nitric oxide (NO), an endogenous molecule involved in the innate immune system, is equally effective at eradicating bacteria but without engendering resistance. This study investigated the effects of NO-releasing small molecules capable of diverse release kinetics on the capsule and biofilm formation characteristics of multiple K. pneumoniae strains. The use of NO donors with moderate and extended NO-release properties (i.e., half-life >1.8 h) inhibited bacterial growth. Additionally, treatment with NO decreased capsule mucoviscosity in K. pneumoniae strains that normally exhibit hypermucoviscosity. The NO donors were also effective against K. pneumoniae biofilms at the same minimum biocidal concentrations that eliminated planktonic bacteria, while meropenem showed little antibacterial action in the same experiments. These results represent the first account of exogenous NO affecting biomarkers involved in K. pneumoniae infections, and may therefore inform future development of NO-based therapeutics for treating such infections.
Collapse
Affiliation(s)
- Huan K Nguyen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Magdalena M Duke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Quincy E Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Straub J, Baertl S, Verheul M, Walter N, Wong RMY, Alt V, Rupp M. Antimicrobial resistance: Biofilms, small colony variants, and intracellular bacteria. Injury 2024; 55 Suppl 6:111638. [PMID: 39482024 DOI: 10.1016/j.injury.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 11/03/2024]
Abstract
Soft tissue and bone infections continue to be a serious complication in orthopedic and trauma surgery. Both can lead to a high burden for the patients and the healthcare system. Musculoskeletal infections can be induced by intraoperative contamination, bacterial contamination of open wounds or hematogenous bacterial spread. During the recent decades, advances were achieved in the understanding of pathogenesis and antibiotic resistance. Despite some progress in the diagnosis and advancing of therapeutic concepts, groundbreaking successful improvement of treatment concepts is still missing. Current therapy concepts are based on the two pillars consisting of surgical debridement with joint or bone reconstruction as well as prolonged antibiotic therapy. An improved understanding of both host and pathogen-related factors leading to treatment failure is essential in musculoskeletal infections. Therefore, this review aims to give an overview of pathogen-related pathophysiology in musculoskeletal infections. It describes defense strategies of pathogens such as (1) biofilm, its development, characteristics, and treatment options. In addition, (2) characteristics of small colony variants and (3) intracellular bacteria are highlighted. Lastly (4) an outlook for potential and promising future therapeutic strategies is provided.
Collapse
Affiliation(s)
- Josina Straub
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Susanne Baertl
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Marielle Verheul
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Nike Walter
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
6
|
Guo Y, Wang J, Yao L, Wang Y, Zhang Y, Zhuo C, Yang X, Li F, Li J, Liu B, He N, Chen J, Xiao S, Lin Z, Zhuo C. Ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae accompanied hypermucoviscosity acquisition. BMC Microbiol 2024; 24:439. [PMID: 39468460 PMCID: PMC11514958 DOI: 10.1186/s12866-024-03508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Antimicrobial resistance and bacterial hypermucoviscosity, associated with escalating production of capsules, constitute major challenges for the clinical management of Klebsiella pneumoniae (K. pneumoniae) infections. This study investigates the association and underlying mechanism between ceftazidime-avibactam (CAZ-AVI) resistance and bacterial hypermucoviscosity in Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp). RESULTS The proportion of CAZ-AVI-sensitive clinical isolates exhibiting the hypermucoviscous phenotype was significantly lower than that of the resistant strains (5.6% vs. 46.7%, P < 0.001). To further verify the correlation and molecular mechanism between CAZ-AVI resistance and hypermucoviscosity, 10 CAZ-AVI-resistant isolates were generated through in vitro resistance selection from CAZ-AVI-sensitive KPC-Kp. The results showed the same association as it showed in the clinical isolates, with four out of ten induced CAZ-AVI-resistant isolates transitioning from negative to positive in the string tests. Comparative genomic analysis identified diverse mutations in the wzc gene, crucial for capsule polysaccharide (CPS) synthesis, in all four CAZ-AVI-resistant hypermucoviscous KPC-Kp strains compared to the parent strains. However, these mutations were absent in the other six KPC-Kp strains that did not exhibit induced hypermucoviscosity. Cloning of the wzc gene variants and their expression in wild-type strains confirmed that mutations in the wzc gene can induce bacterial hypermucoviscosity and heightened virulence, however, they do not confer resistance to CAZ-AVI. CONCLUSIONS These results indicated that resistance to CAZ-AVI in KPC-Kp isolates may be accompanied by the acquisition of hypermucoviscosity, with mutations in the wzc gene often involving in this process.
Collapse
Affiliation(s)
- Yingyi Guo
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiong Wang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Likang Yao
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yijing Wang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Zhang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuyue Zhuo
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xu Yang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Feifeng Li
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahui Li
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Baomo Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nanhao He
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiakang Chen
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shunian Xiao
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiwei Lin
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong, China.
| | - Chao Zhuo
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Zhang R, Liu Y, Wang S, Kang J, Song Y, Yin D, Wang S, Li B, Zhao X, Duan J. Anti-bacteria, anti-biofilm, and anti-virulence activity of the synthetic compound MTEBT-3 against carbapenem-resistant Klebsiella pneumoniae strains ST3984. Microb Pathog 2024; 197:107068. [PMID: 39490595 DOI: 10.1016/j.micpath.2024.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE The rise of carbapenem-resistant Klebsiella pneumoniae (CRKP) has led to increased morbidity and mortality in clinical patients, highlighting the urgent need for effective antibacterial agents. METHODS We obtained a synthetic compound, MTEBT-3, using hydrophobic triphenylamine as the skeleton and hydrophilic ammonium salts. We determined the MIC of MTEBT-3 using the macro-broth susceptibility testing method. We isolated a clinical CRKP strain ST3984 and performed synergistic antibiotic sensitivity tests, time-kill assays, and resistance evolution studies. Biofilm formation under sub-MIC conditions was evaluated using crystal violet staining and CLSM. Additionally, biofilm proteins and polysaccharides were quantified. We assessed the bactericidal mechanism of MTEBT-3 by examining the integrity of CRKP bacterial cell membranes and analyzing the transcription of virulence-regulating genes via quantitative real-time PCR. RESULTS MTEBT-3 exhibited broad-spectrum antibacterial activity with a low resistance rate, achieving an MIC of 8 μg/mL. The compound displayed additive effects with meropenem and imipenem and synergistic effects with tigecycline. It maintained its efficacy over multiple bacterial generations, with no significant increase in resistance observed. Under sub-MIC conditions, the biomass of biofilms was significantly reduced, and the levels of proteins and polysaccharides within the biofilms were markedly lowered in a concentration-dependent manner. The bactericidal mechanism of MTEBT-3 involved disrupting the integrity of CRKP bacterial cell membranes, leading to increased permeability. Quantitative real-time PCR results showed that MTEBT-3 effectively suppressed the expression of key virulence genes, including fimH, wbbM, rmpA, and rmpA2, which are associated with biofilm formation and bacterial adhesion. CONCLUSION The significant antimicrobial activity of MTEBT-3 against clinically isolated CRKP, along with its synergistic or additive effects with commonly used antibiotics, positions it as a promising candidate for treatment. Its ability to disrupt biofilm formation and reduce virulence factor expression further underscores its potential in managing CRKP infections.
Collapse
Affiliation(s)
- Rui Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease , Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yujie Liu
- Department of Pharmacy, The Affiliated Tianfu Hospital of Southwest Medical University, Meishan, Sichuan, China
| | - Shiyu Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease , Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Jianbang Kang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Binbin Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease , Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoman Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease , Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Jinju Duan
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
8
|
Jin L, Ye T, Pan X. A novel sequence type of carbapenem-resistant hypervirulent Klebsiella pneumoniae strains from a county-level tertiary hospital in Southeastern China. Medicine (Baltimore) 2024; 103:e40120. [PMID: 39432660 PMCID: PMC11495780 DOI: 10.1097/md.0000000000040120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
The whole-genome sequencing of carbapenem-resistant Klebsiella pneumoniae (CRKP) strains is required for investigating the molecular epidemiology because of their diverse molecular types across geographical regions. CRKP strains were collected from a tertiary hospital in Southeastern China from January 2017 to December 2020. Following species identification, drug susceptibility phenotypes were determined based on minimum inhibitory concentrations using the VITEK 2 Compact system. In addition, whole-genome sequencing was performed to identify the resistance genes and high virulence genes (rmpA, rmpA2, iucA, iroB, and peg-344). Finally, a phylogenetic tree was constructed based on the core genes. Forty CRKP strains were identified, and 25% of the involved patients (n = 10) died during hospitalization. The dominant sequence type (ST) was ST11 (65%), followed by ST290 (n = 4, 10%) and a novel ST (n = 4, assigned as ST6242, 10%). CRKP strains with this new ST were resistant to amikacin but susceptible to sulfamethoxazole-trimethoprim, and the phylogenetic tree indicated that they were derived from ST11 strains. All ST6242 strains were classified as the hypervirulent type (positive for rmpA, rmpA2, iucA, and peg-344). CRKP strains with this novel ST harbored highly virulent genes and a unique resistance phenotype. Thus, they should be epidemiologically monitored.
Collapse
Affiliation(s)
- Lulu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Tinghua Ye
- Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Xinling Pan
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| |
Collapse
|
9
|
Chen L, Xiang H, Yang H, Zhang J, Huang B, Tan Z, Wang Y, Ma H. Inhibition of porcine origin Klebsiella pneumoniae capsular polysaccharide and immune escape by BY3 compounded traditional Chinese medicine residue fermentation broth. Microb Pathog 2024; 195:106853. [PMID: 39147214 DOI: 10.1016/j.micpath.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a gram-negative conditionally pathogenic bacterium that causes disease primarily in immunocompromised individuals. Recently, highly virulent K. pneumoniae strains have caused severe disease in healthy individuals, posing significant challenges to global infection control. Capsular polysaccharide (CPS), a major virulence determinant of K. pneumoniae, protects the bacteria from being killed by the host immune system, suggesting an urgent need for the development of drugs to prevent or treat K. pneumoniae infections. In this study, BY3 compounded traditional Chinese medicine residue (TCMR) was carried out using Lactobacillus rhamnosus as a fermentation strain, and BY3 compounded TCMR fermentation broth (BY3 fermentation broth) was obtained. The transcription of K. pneumoniae CPS-related biosynthesis genes after treatment with BY3 fermentation broth was detected using quantitative real-time polymerase chain reaction. The effects of BY3 fermentation broth on K. pneumoniae serum killing, macrophage phagocytosis, complement deposition and human β-defensin transcription were investigated. The therapeutic effect of BY3 fermentation broth on K. pneumoniae-infected mice was also observed, and the major active components of BY3 fermentation broth were analysed via LC‒MS analysis, network pharmacology, and molecular docking. The results showed that BY3 fermentation broth inhibited K. pneumoniae CPS production and downregulated transcription of CPS-related biosynthesis genes, which weakened bacterial resistance to serum killing and phagocytosis, while promoting bacterial surface complement C3 deposition and human β-defensin expression. BY3 fermentation broth demonstrated safety and therapeutic effects in vivo and in vitro, restoring body weight and visceral indices, significantly reducing the organ bacterial load and serum cytokine levels, and alleviating pathological organ damage in mice. In addition, three natural compounds-oleanolic acid, quercetin, and palmitoleic acid-were identified as the major active components in the BY3 fermentation broth. Therefore, BY3 fermentation broth may be a promising strategy for the prevention or treatment of K. pneumoniae infections.
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Hua Xiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Yang
- Jilin Province Wanbang Goose Technical Service Company, Changchun, 130000, China
| | - Jiabin Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Bowen Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Zining Tan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Yiming Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China.
| | - Hongxia Ma
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
10
|
Rotman E, McClure S, Glazier J, Fuerte-Stone J, Foldi J, Erani A, McGann R, Arnold J, Lin H, Valaitis S, Mimee M. Rapid design of bacteriophage cocktails to suppress the burden and virulence of gut-resident carbapenem-resistant Klebsiella pneumoniae. Cell Host Microbe 2024:S1931-3128(24)00348-2. [PMID: 39368473 DOI: 10.1016/j.chom.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Antibiotic use can lead to the expansion of multi-drug-resistant pathobionts within the gut microbiome that can cause life-threatening infections. Selective alternatives to conventional antibiotics are in dire need. Here, we describe a Klebsiella PhageBank for the tailored design of bacteriophage cocktails to treat multi-drug-resistant Klebsiella pneumoniae. Using a transposon library in carbapenem-resistant K. pneumoniae, we identify host factors required for phage infection in major Klebsiella phage families. Leveraging the diversity of the PhageBank, we formulate phage combinations that eliminate K. pneumoniae with minimal phage resistance. Optimized cocktails selectively suppress the burden of K. pneumoniae in the mouse gut and drive the loss of key virulence factors that act as phage receptors. Phage-mediated diversification of bacterial populations in the gut leads to co-evolution of phage variants with higher virulence and broader host range. Altogether, the Klebsiella PhageBank charts a roadmap for phage therapy against a critical multidrug-resistant human pathogen.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sandra McClure
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - Joshua Glazier
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jay Fuerte-Stone
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Jonathan Foldi
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Ali Erani
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Rory McGann
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jack Arnold
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sandra Valaitis
- Department of Obstetrics and Gynecology, Section of Urogynecology, University of Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Capitani V, Arcari G, Ambrosi C, Scribano D, Ceparano M, Polani R, De Francesco A, Raponi G, Ceccarelli G, Villari P, Palamara AT, Marzuillo C, Carattoli A. In vivo evolution to hypermucoviscosity and ceftazidime/avibactam resistance in a liver abscess caused by Klebsiella pneumoniae sequence type 512. mSphere 2024; 9:e0042324. [PMID: 39171923 PMCID: PMC11423586 DOI: 10.1128/msphere.00423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Carbapenemase-producing Klebsiella pneumoniae represents a major public health issue globally. Isolates with resistance to the newest drugs, like ceftazidime/avibactam (CZA), are increasingly reported. In this study, we analyzed the evolution of KPC-3-producing sequence type (ST) 512 K. pneumoniae strains isolated at three different times (hospitalization days 45, 56, and 78) from the same patient, two of which were observed in a pericholecystic liver abscess. The three K. pneumoniae isolates (295Kp, 304Kp, and hmv-318Kp) from the same patient were subjected to antimicrobial susceptibility testing, whole-genome sequencing, sedimentation assay, biofilm measurement, serum resistance assay, macrophage phagocytosis, and adhesion assays. KPC-producing isolate hmv-318Kp exhibited carbapenem susceptibility, hypermucoviscous (hmv) colony phenotype and CZA resistance. Virulence markers of hypervirulent Klebsiella were absent. Two non-synonymous mutations were identified in the hmv-318Kp genome comparing with isogenic strains: a single-nucleotide polymorphism (SNP) occurred in the pKpQIL plasmid, changing blaKPC-3 in the blaKPC-31 gene variant, conferring CZA resistance; and a second SNP occurred in the wzc gene of the capsular biosynthesis cluster, encoding a tyrosine kinase, resulting in the F557S Wzc protein mutation. The Klebsiella pneumoniae strain exhibiting an hmv phenotype (hmv-Kp) phenotype has been previously associated with amino acid substitutions occurring in the Wzc tyrosin kinase protein. We observed in vivo evolution of the ST512 strain to CZA resistance and acquisition of hypermucoviscosity. The pathogenetic role of the detected Wzc substitution is not fully elucidated, but other Wzc mutations were previously reported in hmv K. pneumoniae. Wzc mutants may be more frequent than expected and an underreported cause of hypermucoviscosity in K. pneumoniae clinical isolates. IMPORTANCE Here we describe the evolution of KPC-3-producing ST512 K. pneumoniae isolated at three different times from the same patient of which the last one, from a biliary abscess, showed CZA resistance by KPC-31 production and manifested hmv colony phenotype. Hypervirulent Klebsiella pneumoniae (hv-Kp) isolates are increasingly reported worldwide. Their hypervirulent traits are associated with the presence of rmpA/A2 genes and an hmv. In this study, we identified an hmv-Kp that lacked the rmpA-D cluster but showed an amino acid substitution in the Wzc tyrosin kinase protein, involved in the capsular biosynthesis. This hmv-Kp strain emerged in vivo and evolved resistance to ceftazidime/avibactam resistance in a liver abscess of a patient. Our findings suggest that wzc mutations may be underreported, making it challenging to distinguish hv-Kp from "classic" K. pneumoniae with an hmv phenotype.
Collapse
Affiliation(s)
- Valerio Capitani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cecilia Ambrosi
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele University, Rome, Italy
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Mariateresa Ceparano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Riccardo Polani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alice De Francesco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giammarco Raponi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Clinical Microbiology Unit, University Hospital, Policlinico Umberto I, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Clinical Microbiology Unit, University Hospital, Policlinico Umberto I, Rome, Italy
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Rome, Italy
| | - Carolina Marzuillo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
12
|
Tu Y, Gao H, Zhao R, Yan J, Wu D. Analysis of the Association Between Antimicrobial Resistance Genes and Virulence Factors in ST11 and Non-ST11 CR-KP Bloodstream Infections in the Intensive Care Unit. Infect Drug Resist 2024; 17:4011-4022. [PMID: 39309066 PMCID: PMC11415610 DOI: 10.2147/idr.s478156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Objective This study aims to investigate the association between antimicrobial resistance genes and virulence factors in ST11 and non-ST11 types of CR-KP in bloodstream infections in the intensive care unit, providing a theoretical basis for infection control and clinical diagnosis and treatment. Methods From January 2021 to June 2023, samples of Klebsiella pneumoniae from bloodstream infections were collected at our hospital, focusing on those resistant to carbapenems. The resistance genes, housekeeping genes, and virulence genes were identified through PCR and analyzed using the GrapeTree software to perform MLST-based minimum spanning tree typing. Results Among the 85 CR-KP cases, 61.18% were of the ST11 type, predominantly of the KL64 capsular type; non-ST11 types were mainly ST15, accounting for 25.88%, predominantly of the KL5 capsular type. The carriage rates of virulence genes such as rmpA2, entB, silS, kpn, iucA, peg-344, and terB were significantly higher in the ST11 group than in the non-ST11 group. The primary carbapenemase identified was class A enzyme bla KPC-2, with a higher carriage rate in the ST11 group. Drug susceptibility tests showed that the resistance rates for cefepime, ertapenem, nitrofurantoin, amikacin, and gentamicin were also higher in the ST11 group, consistent with the resistance genotype findings. Conclusion The study reveals that ST11 type CR-KP in intensive care unit bloodstream infections exhibits stronger resistance and higher virulence compared to non-ST11 types, posing significant challenges to clinical treatment. Thus, strict control over the use of carbapenem antibiotics is essential to prevent the spread of resistant plasmids.
Collapse
Affiliation(s)
- Yanye Tu
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Hui Gao
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Rongqing Zhao
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Jiliang Yan
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Diyu Wu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
13
|
Han X, Yao J, He J, Liu H, Jiang Y, Zhao D, Shi Q, Zhou J, Hu H, Lan P, Zhou H, Li X. Clinical and laboratory insights into the threat of hypervirulent Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107275. [PMID: 39002700 DOI: 10.1016/j.ijantimicag.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) typically causes severe invasive infections affecting multiple sites in healthy individuals. In the past, hvKP was characterized by a hypermucoviscosity phenotype, susceptibility to antimicrobial agents, and its tendency to cause invasive infections in healthy individuals within the community. However, there has been an alarming increase in reports of multidrug-resistant hvKP, particularly carbapenem-resistant strains, causing nosocomial infections in critically ill or immunocompromised patients. This presents a significant challenge for clinical treatment. Early identification of hvKP is crucial for timely infection control. Notably, identifying hvKP has become confusing due to its prevalence in nosocomial settings and the limited predictive specificity of the hypermucoviscosity phenotype. Novel virulence predictors for hvKP have been discovered through animal models or machine learning algorithms, while standardization of identification criteria is still necessary. Timely source control and antibiotic therapy have been widely employed for the treatment of hvKP infections. Additionally, phage therapy is a promising alternative approach due to escalating antibiotic resistance. In summary, this narrative review highlights the latest research progress in the development, virulence factors, identification, epidemiology of hvKP, and treatment options available for hvKP infection.
Collapse
Affiliation(s)
- Xinhong Han
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jiayao Yao
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyang Liu
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongdong Zhao
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huangdu Hu
- Department of Infectious Diseases, Centre for General Practice Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peng Lan
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
El-Demerdash AS, Alfaraj R, Farid FA, Yassin MH, Saleh AM, Dawwam GE. Essential oils as capsule disruptors: enhancing antibiotic efficacy against multidrug-resistant Klebsiella pneumoniae. Front Microbiol 2024; 15:1467460. [PMID: 39282565 PMCID: PMC11392748 DOI: 10.3389/fmicb.2024.1467460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Background Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a significant global health threat due to its involvement in severe infections and high mortality rates. The emergence of MDR strains necessitates the exploration of alternative therapeutic strategies. Methods K. pneumoniae isolates were obtained from human and animal sources. Antibacterial susceptibility testing was performed, followed by the evaluation of essential oil activity through inhibition zone, MIC, and MBC determinations. Checkerboard assays were conducted to assess synergistic effects with amikacin. Gene expression analysis and transmission electron microscopy were employed to elucidate the mechanisms of action. Molecular docking studies were performed to identify potential binding targets of bioactive compounds. Results Klebsiella pneumoniae was isolated from 25 of the100 samples examined, representing a prevalence rate of 25%. All isolates were found to be multidrug-resistant. Tea tree and thyme essential oils exhibited potent antibacterial activity and synergistic effects with amikacin. Notably, these combinations significantly downregulated the expression of key capsule virulence genes (wcaG, rmpA, magA, uge, and wabG), suggesting a novel mechanism for enhancing amikacin efficacy. Transmission electron microscopy revealed disrupted cell integrity in MDR-KP cells treated with the combinations. Molecular docking analysis identified Terpinen-4-ol, Farnesol, 1,4-Dihydroxy-p-menth-2-ene, and 7-Oxabicyclo [4.1.0] heptane as potential bioactive compounds responsible for the observed effects. Conclusion By effectively combating MDR-KP, this research holds promise for reducing antibiotic resistance, improving treatment outcomes, and ultimately enhancing potential care.
Collapse
Affiliation(s)
- Azza SalahEldin El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faten A Farid
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mohamed H Yassin
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Epidemiological Surveillance Unit, Aweash El-Hagar Family Medicine Center, MOHP, Mansoura, Egypt
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
15
|
Song S, Yang S, Zheng R, Yin D, Cao Y, Wang Y, Qiao L, Bai R, Wang S, Yin W, Dong Y, Bai L, Yang H, Shen J, Wu C, Hu F, Wang Y. Adaptive evolution of carbapenem-resistant hypervirulent Klebsiella pneumoniae in the urinary tract of a single patient. Proc Natl Acad Sci U S A 2024; 121:e2400446121. [PMID: 39150777 PMCID: PMC11363291 DOI: 10.1073/pnas.2400446121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 08/18/2024] Open
Abstract
The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) is a growing concern due to its high mortality and limited treatment options. Although hypermucoviscosity is crucial for CR-hvKp infection, the role of changes in bacterial mucoviscosity in the host colonization and persistence of CR-hvKp is not clearly defined. Herein, we observed a phenotypic switch of CR-hvKp from a hypermucoviscous to a hypomucoviscous state in a patient with scrotal abscess and urinary tract infection (UTI). This switch was attributed to decreased expression of rmpADC, the regulator of mucoid phenotype, caused by deletion of the upstream insertion sequence ISKpn26. Postswitching, the hypomucoid variant showed a 9.0-fold decrease in mice sepsis mortality, a >170.0-fold reduction in the ability to evade macrophage phagocytosis in vitro, and an 11.2- to 40.9-fold drop in growth rate in normal mouse serum. Conversely, it exhibited an increased residence time in the mouse urinary tract (21 vs. 6 d), as well as a 216.4-fold boost in adhesion to bladder epithelial cells and a 48.7% enhancement in biofilm production. Notably, the CR-hvKp mucoid switch was reproduced in an antibiotic-free mouse UTI model. The in vivo generation of hypomucoid variants was primarily associated with defective or low expression of rmpADC or capsule synthesis gene wcaJ, mediated by ISKpn26 insertion/deletion or base-pair insertion. The spontaneous hypomucoid variants also outcompeted hypermucoid bacteria in the mouse urinary tract. Collectively, the ISKpn26-associated mucoid switch in CR-hvKp signifies the antibiotic-independent host adaptive evolution, providing insights into the role of mucoid switch in the persistence of CR-hvKp.
Collapse
Affiliation(s)
- Shikai Song
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
- Poultry Research Institute, Shandong Academy of Agricultural Science, Jinan250100, Shandong, China
| | - Shixin Yang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Ruicheng Zheng
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai200433, China
| | - Yue Cao
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yao Wang
- Shandong Animal Disease Prevention and Control Center, Jinan250100, Shandong, China
| | - Lu Qiao
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Rina Bai
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Shuge Wang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Wenjuan Yin
- Department of Microbiology and Immunology, College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases of Hebei Province, Hebei University, Baoding071002, China
| | - Yanjun Dong
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Li Bai
- National Center for Food Safety Risk Assessment, Beijing100022, China
| | - Hui Yang
- National Center for Food Safety Risk Assessment, Beijing100022, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai200433, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|
16
|
Goh KJ, Altuvia Y, Argaman L, Raz Y, Bar A, Lithgow T, Margalit H, Gan YH. RIL-seq reveals extensive involvement of small RNAs in virulence and capsule regulation in hypervirulent Klebsiella pneumoniae. Nucleic Acids Res 2024; 52:9119-9138. [PMID: 38804271 PMCID: PMC11347178 DOI: 10.1093/nar/gkae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) can infect healthy individuals, in contrast to classical strains that commonly cause nosocomial infections. The recent convergence of hypervirulence with carbapenem-resistance in K. pneumoniae can potentially create 'superbugs' that are challenging to treat. Understanding virulence regulation of hvKp is thus critical. Accumulating evidence suggest that posttranscriptional regulation by small RNAs (sRNAs) plays a role in bacterial virulence, but it has hardly been studied in K. pneumoniae. We applied RIL-seq to a prototypical clinical isolate of hvKp to unravel the Hfq-dependent RNA-RNA interaction (RRI) network. The RRI network is dominated by sRNAs, including predicted novel sRNAs, three of which we validated experimentally. We constructed a stringent subnetwork composed of RRIs that involve at least one hvKp virulence-associated gene and identified the capsule gene loci as a hub target where multiple sRNAs interact. We found that the sRNA OmrB suppressed both capsule production and hypermucoviscosity when overexpressed. Furthermore, OmrB base-pairs within kvrA coding region and partially suppresses translation of the capsule regulator KvrA. This agrees with current understanding of capsule as a major virulence and fitness factor. It emphasizes the intricate regulatory control of bacterial phenotypes by sRNAs, particularly of genes critical to bacterial physiology and virulence.
Collapse
Affiliation(s)
- Kwok Jian Goh
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yair Raz
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
17
|
Wu K, Lin X, Lu Y, Dong R, Jiang H, Svensson SL, Zheng J, Shen N, Camilli A, Chao Y. RNA interactome of hypervirulent Klebsiella pneumoniae reveals a small RNA inhibitor of capsular mucoviscosity and virulence. Nat Commun 2024; 15:6946. [PMID: 39138169 PMCID: PMC11322559 DOI: 10.1038/s41467-024-51213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (HvKP) is an emerging bacterial pathogen causing invasive infection in immune-competent humans. The hypervirulence is strongly linked to the overproduction of hypermucoviscous capsule, but the underlying regulatory mechanisms of hypermucoviscosity (HMV) have been elusive, especially at the post-transcriptional level mediated by small noncoding RNAs (sRNAs). Using a recently developed RNA interactome profiling approach iRIL-seq, we interrogate the Hfq-associated sRNA regulatory network and establish an intracellular RNA-RNA interactome in HvKP. Our data reveal numerous interactions between sRNAs and HMV-related mRNAs, and identify a plethora of sRNAs that repress or promote HMV. One of the strongest HMV repressors is ArcZ, which is activated by the catabolite regulator CRP and targets many HMV-related genes including mlaA and fbp. We discover that MlaA and its function in phospholipid transport is crucial for capsule retention and HMV, inactivation of which abolishes Klebsiella virulence in mice. ArcZ overexpression drastically reduces bacterial burden in mice and reduces HMV in multiple hypervirulent and carbapenem-resistant clinical isolates, indicating ArcZ is a potent RNA inhibitor of bacterial pneumonia with therapeutic potential. Our work unravels a novel CRP-ArcZ-MlaA regulatory circuit of HMV and provides mechanistic insights into the posttranscriptional virulence control in a superbug of global concern.
Collapse
Affiliation(s)
- Kejing Wu
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Xingyu Lin
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujie Lu
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Dong
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Hongnian Jiang
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sarah L Svensson
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jiajia Zheng
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Yanjie Chao
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of RNA Innovation, Science and Engineering (RISE), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
18
|
Hu Y, Wang W, Nguyen SV, Macori G, Li F, Fanning S. Editorial: High-level antimicrobial resistance or hypervirulence in emerging and re-emerging "super-bug" foodborne pathogens: detection, mechanism, and dissemination from omics insights. Front Microbiol 2024; 15:1459601. [PMID: 39184029 PMCID: PMC11344267 DOI: 10.3389/fmicb.2024.1459601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Affiliation(s)
- Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Scott Van Nguyen
- Sequencing and Bioinformatics Center, American Type Culture Collection, Washington, DC, United States
| | - Guerrino Macori
- School of Biology and Environmental Science, University College Dublin, Belfield, Ireland
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Ireland
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Séamus Fanning
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing, China
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
19
|
Sun W, Rong C, Chen L, Li J, An Z, Yue J, Wei H, Han K, Hua M, Zeng H, Chen C. Microaerobic-mediated suppression of Klebsiella pneumoniae mucoviscosity is restored by rmpD overexpression. J Appl Microbiol 2024; 135:lxae192. [PMID: 39090973 DOI: 10.1093/jambio/lxae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
AIMS Hypervirulent Klebsiella pneumoniae (hvKp) causes invasive community-acquired infections in healthy individuals, and hypermucoviscosity (HMV) is the main phenotype associated with hvKp. This study investigates the impact of microaerobic environment availability on the mucoviscosity of K. pneumoniae. METHODS AND RESULTS By culturing 25 clinical strains under microaerobic and aerobic environments, we observed a notable reduction in mucoviscosity in microaerobic environments. RNA sequencing and qRT-PCR revealed downregulated expressions of capsule synthesis genes (galf, orf2, wzi, wza, wzb, wzc, wcaj, manC, manB, and ugd) and regulatory genes (rmpA, rmpD, and rmpC) under microaerobic conditions. Transmission electron microscopy and Indian ink staining analysis were performed, revealing that the capsular thickness of K. pneumoniae decreased by half in microaerobic conditions compared to aerobic conditions. Deletion of rmpD and rmpC caused the loss of the HMV phenotype in both aerobic and microaerobic conditions. However, compared to wild-type strain in microaerobic condition, only rmpD overexpression strain, and not rmpC overexpression strain, displayed a significant increase in capsule thickness in microaerobic conditions. CONCLUSIONS Microaerobic conditions can suppress the mucoviscosity of K. pneumoniae, but this suppression can be overcome by altering the expression of rmpD, indicating a specific function for rmpD in the oxygen environmental adaptation of K. pneumoniae.
Collapse
Affiliation(s)
- Wangnan Sun
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Chengbo Rong
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Liang Chen
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Jiarui Li
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zhijing An
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Jinglin Yue
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Hengkun Wei
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Kai Han
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Mingxi Hua
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Hui Zeng
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Chen Chen
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
20
|
Bain W, Ahn B, Peñaloza HF, McElheny CL, Tolman N, van der Geest R, Gonzalez-Ferrer S, Chen N, An X, Hosuru R, Tabary M, Papke E, Kohli N, Farooq N, Bachman W, Olonisakin TF, Xiong Z, Griffith MP, Sullivan M, Franks J, Mustapha MM, Iovleva A, Suber T, Shanks RQ, Ferreira VP, Stolz DB, Van Tyne D, Doi Y, Lee JS. In Vivo Evolution of a Klebsiella pneumoniae Capsule Defect With wcaJ Mutation Promotes Complement-Mediated Opsonophagocytosis During Recurrent Infection. J Infect Dis 2024; 230:209-220. [PMID: 39052750 PMCID: PMC11272070 DOI: 10.1093/infdis/jiae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae carbapenemase-producing K pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct enzyme-linked immunosorbent assay, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In 5 genetically related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsonophagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS Loss of function in wcaJ led to increased complement resistance, complement binding, and opsonophagocytosis, which may promote KPC-Kp persistence by enabling coexistence of increased bloodstream fitness and reduced tissue virulence.
Collapse
Affiliation(s)
- William Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Brian Ahn
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Denver
| | - Hernán F Peñaloza
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | | | - Nathanial Tolman
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Rick van der Geest
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Shekina Gonzalez-Ferrer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Nathalie Chen
- Division of Infectious Diseases, Department of Medicine
| | - Xiaojing An
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Ria Hosuru
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Mohammadreza Tabary
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Erin Papke
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Naina Kohli
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | | | | | - Tolani F Olonisakin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Zeyu Xiong
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | | | - Mara Sullivan
- Center for Biologic Imaging, Department of Cell Biology
| | | | | | - Alina Iovleva
- Division of Infectious Diseases, Department of Medicine
| | - Tomeka Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Robert Q Shanks
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Ohio
| | - Donna B Stolz
- Center for Biologic Imaging, Department of Cell Biology
| | | | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine
| | - Janet S Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
- Division of Pulmonary and Critical Care Medicine, Washington University in St Louis, Missouri
| |
Collapse
|
21
|
Liang Q, Chen N, Wang W, Zhang B, Luo J, Zhong Y, Zhang F, Zhang Z, Martín–Rodríguez AJ, Wang Y, Xiang L, Xiong X, Hu R, Zhou Y. Co-occurrence of ST412 Klebsiella pneumoniae isolates with hypermucoviscous and non-mucoviscous phenotypes in a short-term hospitalized patient. mSystems 2024; 9:e0026224. [PMID: 38904378 PMCID: PMC11265266 DOI: 10.1128/msystems.00262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Hypermucoviscosity (HMV) is a phenotype that is commonly associated with hypervirulence in Klebsiella pneumoniae. The factors that contribute to the emergence of HMV subpopulations remain unclear. In this study, eight K. pneumoniae strains were recovered from an inpatient who had been hospitalized for 20 days. Three of the isolates exhibited a non-HMV phenotype, which was concomitant with higher biofilm formation than the other five HMV isolates. All eight isolates were highly susceptible to serum killing, albeit HMV strains were remarkably more infective than non-HMV counterparts in a mouse model of infection. Whole genome sequencing (WGS) showed that the eight isolates belonged to the K57-ST412 lineage. Average nucleotide identity (FastANIb) analysis indicated that eight isolates share 99.96% to 99.99% similarity and were confirmed to be the same clone. Through comparative genomics analysis, 12 non-synonymous mutations were found among these isolates, eight of which in the non-HMV variants, including rmpA (c.285delG) and wbaP (c.1305T > A), which are assumed to be associated with the non-HMV phenotype. Mutations in manB (c.1318G > A), dmsB (c.577C > T) and tkt (c.1928C > A) occurred in HMV isolates only. RNA-Seq revealed transcripts of genes involved in energy metabolism, carbohydrate metabolism and membrane transport, including cysP, cydA, narK, tktA, pduQ, aceB, metN, and lsrA, to be significantly dysregulated in the non-HMV strains, suggesting a contribution to HMV phenotype development. This study suggests that co-occurrence of HMV and non-HMV phenotypes in the same clonal population may be mediated by mutational mechanisms as well as by certain genes involved in membrane transport and central metabolism. IMPORTANCE K. pneumoniae with a hypermucoviscosity (HMV) phenotype is a community-acquired pathogen that is associated with increased invasiveness and pathogenicity, and underlying diseases are the most common comorbid risk factors inducing metastatic complications. HMV was earlier attributed to the overproduction of capsular polysaccharide, and more data point to the possibility of several causes contributing to this bacterial phenotype. Here, we describe a unique event in which the same clonal population showed both HMV and non-HMV characteristics. Studies have demonstrated that this process is influenced by mutational processes and genes related to transport and central metabolism. These findings provide fresh insight into the mechanisms behind co-occurrence of HMV and non-HMV phenotypes in monoclonal populations as well as potentially being critical in developing strategies to control the further spread of HMV K. pneumoniae.
Collapse
Affiliation(s)
- Qinghua Liang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, Yilong County People’s Hospital, Nanchong, China
| | - Nan Chen
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Biying Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Jinjing Luo
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Ying Zhong
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Feiyang Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Alberto J. Martín–Rodríguez
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ying Wang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital,Southwest Medical University, Luzhou, China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medicine University, Luzhou, China
| |
Collapse
|
22
|
Yu W, Huang C, Lian X, Jinag L, Li H, Shen P, Xiao Y. Genomic and immunocyte characterisation of bloodstream infection caused by Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob 2024; 23:56. [PMID: 38902832 PMCID: PMC11191348 DOI: 10.1186/s12941-024-00721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the characteristics of immunocyte associated with bloodstream infection (BSI) caused by Klebsiella pneumoniae (Kpn). METHODS Patients with BSI-Kpn were included from 2015 to 2022 in our hospital. Immunocyte subpopulations of enrolled BSI-Kpn patients were tested on the same day of blood culture using multicolor flow cytometry analysis. Antibiotic susceptibility test was determined by agar dilution or broth dilution method. All included isolates were subjected to whole genome sequencing and comparative genomics analysis. Clinical and genetic data were integrated to investigate the risk factors associated with clinical outcome. RESULTS There were 173 patients with non-duplicate BSI-Kpn, including 81 carbapenem-resistant Kpn (CRKP), 30 extended-spectrum β-lactamases producing Kpn (ESBL-Kpn), 62 none CRKP or ESBL-Kpn (S-Kpn). Among 68 ST11-CRKP isolates, ST11-O2v1:KL64 was the most common serotypes cluster (77.9%, 53/68), followed by ST11-OL101: KL47 (13.2%, 9/68). Compared with CSKP group, subpopulations of immunocyte in patients with CRKP were significantly lower (P < 0.01). In patients with ST11-O2v1:KL64 BSI-Kpn, the level of cytotoxic T lymphocytes (CD3 + CD8 +) is the highest, while the B lymphocytes (CD3-CD19 +) was the least. In addition, the level of immunocyte in patients with Kpn co-harbored clpV-ybtQ-qacE were lower than that in patients with Kpn harbored one of clpV, ybtQ or qacE and without these three genes. Furthermore, co-existence of clpV-ybtQ-qacE was independently associated with a higher risk for 30-day mortality. CONCLUSIONS The results demonstrate that patients with BSI-CRKP, especially for ST11-O2v1:KL64, exhibit lower leukomonocyte counts. In addition, BSI-Kpn co-harbored clpV-ybtQ-qacE is correlated to higher 30-day mortality.
Collapse
Affiliation(s)
- Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Huang
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Xiang Lian
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Lushun Jinag
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Li
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Xiangshan First People's Hospital Medical and Health Group, Ningbo Fourth Hospital, Ningbo, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
23
|
Lee GY, Song J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. Nat Commun 2024; 15:5258. [PMID: 38898034 PMCID: PMC11187135 DOI: 10.1038/s41467-024-49590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S. Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control Vi polymerization or acetylation is enough to result in different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper Vi capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo Vi capsule variants have primarily been identified in Africa, whereas the hyper Vi capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.
Collapse
Affiliation(s)
- Gi Young Lee
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA.
| |
Collapse
|
24
|
Teng G, Zhang M, Fu Y, Yang X, Kang Y, Qin Q, Jin Y, Huang M, Xu Y. Adaptive attenuation of virulence in hypervirulent carbapenem-resistant Klebsiella pneumoniae. mSystems 2024; 9:e0136323. [PMID: 38752758 PMCID: PMC11237801 DOI: 10.1128/msystems.01363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/17/2024] [Indexed: 06/19/2024] Open
Abstract
The emergence of nosocomial infections caused by hypervirulent and carbapenem-resistant K. pneumoniae (hv-CRKP) has become a significant public health challenge. The genetic traits of virulence and resistance plasmids in hv-CRKP have been extensively studied; however, research on the adaptive evolution strategies of clinical strains inside the host was scarce. This study aimed to understand the effects of antibiotic treatment on the phenotype and genotype characteristics of hv-CRKP. We investigated the evolution of hv-CRKP strains isolated from the same patient to elucidate the transition between hospital invasion and colonization. A comparative genomics analysis was performed to identify single nucleotide polymorphisms in the rmpA promoter. Subsequent validation through RNA-seq and gene deletion confirmed that distinct rmpA promoter sequences exert control over the mucoid phenotype. Additionally, biofilm experiments, cell adhesion assays, and animal infection models were conducted to illuminate the influence of rmpA promoter diversity on virulence changes. We demonstrated that the P12T and P11T promoters of rmpA possess strong activity, which leads to the evolution of CRKP into infectious and virulent strains. Meanwhile, the specific sequence of polyT motifs in the rmpA promoter led to a decrease in the lethality of hv-CRKP and enhanced cell adhesion and colonization. To summarize, the rmpA promoter of hv-CRKP is utilized to control capsule production, thereby modifying pathogenicity to better suit the host's ecological environment.IMPORTANCEThe prevalence of hospital-acquired illness caused by hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) is significant, leading to prolonged antibiotic treatment. However, there are few reports on the phenotypic changes of hv-CRKP in patients undergoing antibiotic treatment. We performed a comprehensive examination of the genetic evolutionary traits of hv-CRKP obtained from the same patient and observed variations in the promoter sequences of the virulence factor rmpA. The strong activity of the promoter sequences P11T and P12T enhances the consistent production of capsule polysaccharides, resulting in an invasive strain. Conversely, weak promoter activity of P9T and P10T is advantageous for exposing pili, hence improving bacterial cell attachment ability and facilitating bacterial colonization. This finding also explains the confusion of some clinical strains carrying wild-type rmpA but exhibiting a low mucoid phenotype. This adaptive alteration facilitates the dissemination of K. pneumoniae within the hospital setting.
Collapse
Affiliation(s)
- Gaoqin Teng
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Multiple Organ Failure, Ministry of Education, Hangzhou, China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - YingYing Fu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoqiang Yang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yanhua Kang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiuying Qin
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ye Jin
- Key Laboratory of Multiple Organ Failure, Ministry of Education, Hangzhou, China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Key Laboratory of Multiple Organ Failure, Ministry of Education, Hangzhou, China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchang Xu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
25
|
Yin L, Lu L, He L, Wang L, Lu G, Cao Y, Zhai X, Wang C. Shift in the dominant sequence type of carbapenem-resistant Klebsiella pneumonia infection from ST278-NDM-1 to ST11-KPC-2 in neonatal patients in a children's hospital in Shanghai, China, 2017-2021. Int Microbiol 2024; 27:871-881. [PMID: 37857932 DOI: 10.1007/s10123-023-00436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES To investigate the clinical characteristics and molecular epidemiology of CRKP infection in neonatal patients in a children's hospital in China from 2017 to 2021. METHODS Species identification and antibiotic susceptibilities were tested with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and VITEK 2 systems. The clinical data were collected from medical records. Carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates were investigated by antimicrobial susceptibility testing, carbapenemase genes and multilocus sequence typing. RESULTS Six kinds of resistant genes and 23 STs were detected. BlaNDM-1 (n=83, 55.3%) was the predominant carbapenemase gene, followed by blaKPC-2 (n=45, 30.0%), blaNDM-5 (n=7, 4.7%), blaIMP-38 (n=6, 4.0%). BlaNDM-1 was predominant in 2017 and 2018, whereas blaKPC-2 increased in 2019 and became the predominant gene from 2020 to 2021. ST11 accounted for most infections (n=35, 23.3%), followed by ST278 (n=23, 15.3%), ST17 (n=17, 11. 3%) and ST2735 (n=16, 10.7%). ST278 and ST17 were predominant in 2017 and 2018, whereas ST11 increased in 2019 and became the predominant sequence type from 2020 to 2021. Compared with blaNDM-1, the CRKP strains producing blaKPC-2 were characterized by high resistance to gentamicin, amikacin and levofloxacin and the change trend of drug resistance rate before and after COVID-19 was consistent with that of blaNDM-1 and blaKPC-2. CONCLUSIONS The main sequence type of CRKP infection changed dynamically from ST278-NDM-1 to ST11-KPC-2 during the years 2017-2021 in the newborns. Antibiotic exposure and the prevalence of COVID-19 since 2020 may have led to changes in hospital population and lead to the changes.
Collapse
Affiliation(s)
- Lijun Yin
- Department of Nosocomial Infection Control, Children's Hospital of Fudan University, Shanghai, China
| | - Lu Lu
- Department of Nosocomial Infection Control, Children's Hospital of Fudan University, Shanghai, China
| | - Leiyan He
- The Clinical Microbiology Laboratory, Children's Hospital of Fudan University, Shanghai, China
| | - Laishuan Wang
- Department of Neonatal Room, Children's Hospital of Fudan University, Shanghai, China
| | - Guoping Lu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, Shanghai, China
| | - Yun Cao
- Department of Neonatal Intensive Care Unit, Children's Hospital of Fudan University, Shanghai, China.
| | - Xiaowen Zhai
- Department of Hematology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 200032, Shanghai, China.
| | - Chuanqing Wang
- Department of Nosocomial Infection Control and the Clinical Microbiology Laboratory, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Hwang W, Wantuch PL, Bernshtein B, Zhiteneva J, Slater D, Vater KH, Sridhar S, Oliver E, Roach DJ, Rao S, Turbett SE, Knoot CJ, Harding CM, Amin MN, Cross AS, LaRocque RC, Rosen DA, Harris JB. Antibody responses in Klebsiella pneumoniae bloodstream infection: a cohort study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591958. [PMID: 38746292 PMCID: PMC11092611 DOI: 10.1101/2024.05.01.591958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Klebsiella pneumonia (Kpn) is the fourth leading cause of infection-related deaths globally, yet little is known about human antibody responses to invasive Kpn. In this study, we sought to determine whether the O-specific polysaccharide (OPS) antigen, a vaccine candidate, is immunogenic in humans with Kpn bloodstream infection (BSI). We also sought to define the cross-reactivity of human antibody responses among structurally related Kpn OPS subtypes and to assess the impact of capsule production on OPS-targeted antibody binding and function. Methods We measured plasma antibody responses to OPS (and MrkA, a fimbrial protein) in a cohort of patients with Kpn BSI and compared these with controls, including a cohort of healthy individuals and a cohort of individuals with Enterococcus BSI. We performed flow cytometry to measure the impact of Kpn capsule production on whole cell antibody binding and complement deposition, utilizing patient isolates with variable levels of capsule production and isogenic capsule-deficient strains derived from these isolates. Findings We enrolled 69 patients with Kpn BSI. Common OPS serotypes accounted for 57/69 (83%) of infections. OPS was highly immunogenic in patients with Kpn BSI, and peak OPS-IgG antibody responses in patients were 10 to 30-fold higher than antibody levels detected in healthy controls, depending on the serotype. There was significant cross-reactivity among structurally similar OPS subtypes, including the O1v1/O1v2, O2v1/O2v2 and O3/O3b subtypes. Physiological amounts of capsule produced by both hyperencapsulated and non-hyperencapsulated Kpn significantly inhibited OPS-targeted antibody binding and function. Interpretation OPS was highly immunogenic in patients with Kpn BSI, supporting its potential as a candidate vaccine antigen. The strong cross-reactivity observed between similar OPS subtypes in humans with Kpn BSI suggests that it may not be necessary to include all subtypes in an OPS-based vaccine. However, these observations are tempered by the fact that capsule production, even in non-highly encapsulated strains, has the potential to interfere with OPS antibody binding. This may limit the effectiveness of vaccines that exclusively target OPS. Funding National Institute of Allergy and Infectious Diseases at the National Institutes of Health. Research in Context Evidence before this study: Despite the potential of O-specific polysaccharide (OPS) as a vaccine antigen against Klebsiella pneumoniae (Kpn), the immunogenicity of OPS in humans remains largely unstudied, creating a significant knowledge gap with regard to vaccine development. A search of PubMed for publications up to March 18, 2024, using the terms " Klebsiella pneumoniae " and "O-specific polysaccharide" or "O-antigen" or "lipopolysaccharide" revealed no prior studies addressing OPS antibody responses in humans with Kpn bloodstream infections (BSI). One prior study 1 evaluated antibody response to a single lipopolysaccharide (which contains one subtype of OPS) in humans with invasive Kpn infection; however, in this study OPS typing of the infecting strains and target antigen were not described. Added value of this study: Our investigation into OPS immunogenicity in a human cohort marks a significant advance. Analyzing plasma antibody responses in 69 patients with Kpn BSI, we found OPS to be broadly immunogenic across all the types and subtypes examined, and there was significant cross-reactivity among structurally related OPS antigens. We also demonstrated that Kpn capsule production inhibit OPS antibody binding and the activation of complement on the bacterial surface, even in classical Kpn strains expressing lower levels of capsule.Implications of all the available evidence: While the immunogenicity and broad cross-reactivity of OPS in humans with Kpn BSI suggests it is a promising vaccine candidate, the obstruction of OPS antibody binding and engagement by physiologic levels of Kpn capsule underscores the potential limitations of an exclusively OPS-antigen based vaccine for Kpn. Our study provides insights for the strategic development of vaccines aimed at combating Kpn infections, an important antimicrobial resistant pathogen.
Collapse
|
27
|
Zhu J, Wang G, Li M. Outbreak of NDM-5-producing Klebsiella pneumoniae ST307: an emerging high-risk antimicrobial resistance clone in Shanghai, China. mSystems 2024; 9:e0136923. [PMID: 38506533 PMCID: PMC11019902 DOI: 10.1128/msystems.01369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024] Open
Abstract
The high-risk clone Klebsiella pneumoniae ST307, associated with various carbapenem resistance genes, exhibits a global distribution and prevalence. However, in China, it has remained sporadic and has rarely been detected. In this study, we reported an outbreak caused by nine ST307 CRKP isolates harboring blaNDM-5 in Shanghai, China, in 2022. We employed antimicrobial susceptibility testing, conjugation assay, whole-genome sequencing (WGS) and comparative genomics, phylogenetic analysis, and fitness and virulence comparison to further characterize the isolates causing the outbreak. Besides blaNDM-5, these nine isolates co-carried blaCTX-M-15 and blaDHA-1, exhibiting nearly identical resistance profiles with high-level resistance to carbapenems and ceftazidime/avibactam, while showing susceptibility to colistin and tigecycline. blaNDM-5 was located on an IncX3 plasmid of 45,403 bp with a high frequency of conjugative ability. Phylogenetic and single-nucleotide polymorphism (SNP) analysis indicated the nature of clonal transmission with a maximum of five SNPs between these nine isolates, and they were closely related to strains obtained from the United States. ST307 isolates in our study showed a relatively lower virulence but higher growth rates and certain adaptability compared with ST11 isolates. Clinical investigation revealed that shared nursing staff in a mixed emergency intensive care unit ward and doctors' movement between wards might be responsible for the outbreak. The nonexistence before and sudden emergence of ST307 suggested that the currently circulating ST307 clone was a newly introduced superbug in our hospital. In conclusion, we revealed that blaNDM-5-producing ST307 CRKP isolates, a globally significant high-risk clone, are spreading in China, posing a substantial threat to public health.IMPORTANCEThe high-risk clone ST307, associated with various carbapenemases, including KPC, NDM, and OXA, has a global distribution. However, it is rarely reported in China, let alone causing outbreaks. Here, we found an outbreak caused by the clonal transmission of nine ST307 CRKP isolates. Clinical investigation revealed that shared nurses in a mixed emergency intensive care unit ward and doctors' movement between wards might be responsible for the outbreak. In our study, the nine NDM-5-producing ST307 isolates exhibited high-level resistance to carbapenems and ceftazidime-avibactam, high conjugative ability to Escherichia coli J53, and certain adaptability to environment, phylogenetically closet to the United States. All these features make ST307 clone the next successful clone comparable to ST11 clone in China. Therefore, it is imperative for us to vigilantly monitor the prevalence of carbapenem-resistant Klebsiella pneumoniae and promptly implement measures to control the spread of K. pneumoniae ST307 in China.
Collapse
Affiliation(s)
- Junying Zhu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangyu Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Zhang W, He M, Kong N, Niu Y, Li A, Yan Y. Study on the inhibition activity and mechanism of Tanreqing against Klebsiella pneumoniae biofilm formation in vitro and in vivo. Front Cell Infect Microbiol 2024; 14:1368450. [PMID: 38638833 PMCID: PMC11024231 DOI: 10.3389/fcimb.2024.1368450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Objective To evaluate the antibacterial effect of Tanreqing (TRQ) against K. pneumoniae and its inhibition activity on bacterial biofilm formation in vitro and in vivo, and to explore the mechanism of the inhibitory effects of TRQ on K. pneumoniae biofilm formation. Methods An in vitro biofilm model of K. pneumoniae was established, and the impact of TRQ on biofilm formation was evaluated using crystal violet staining and scanning electron microscopy (SEM). Furthermore, the clearance effect of TRQ against K. pneumoniae in the biofilm was assessed using the viable plate counting method; q-RT PCR was used to evaluate the inhibitory effect of different concentrations of TRQ on the expression of biofilm-related genes in Klebsiella pneumoniae; The activity of quorum sensing signal molecule AI-2 was detected by Vibrio harveyi bioluminescence assay; Meanwhile, a guinea pig lung infection model of Klebsiella pneumoniae was constructed, and after treated with drugs, pathological analysis of lung tissue and determination of bacterial load in lung tissue were performed. The treatment groups included TRQ group, imipenem(IPM) group, TRQ+IPM group, and sterile saline group as the control. Results The formation of K. pneumoniae biofilm was significantly inhibited by TRQ in vitro experiments. Furthermore, when combined with IPM, the clearance of K. pneumoniae in the biofilm was notably increased compared to the TRQ group and IPM group alone. q-RT PCR analysis revealed that TRQ down-regulated the expression of genes related to biofilm formation in K. pneumoniae, specifically luxS, wbbm, wzm, and lsrK, and also inhibited the activity of AI-2 molecules in the bacterium. In vivo experiments demonstrated that TRQ effectively treated guinea pig lung infections, resulting in reduced lung inflammation. Additionally, when combined with IPM, there was a significant reduction in the bacterial load in lung tissue. Conclusion TRQ as a potential therapeutic agent plays a great role in the treatment of K. pneumoniae infections, particularly in combination with conventional antibiotics. And TRQ can enhanced the clearance effect on the bacterium by inhibiting the K. pneumoniae biofilm formation, which provided experimental evidence in support of clinical treatment of TRQ against K. pneumoniae infections.
Collapse
Affiliation(s)
- Wenxia Zhang
- Department of Laboratory Medicine, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Clinical Research Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min He
- Clinical Research Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nana Kong
- Department of Clinical Laboratory, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuxiao Niu
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Anhong Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuzhong Yan
- Department of Laboratory Medicine, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
29
|
Doğan E, Sydow K, Heiden SE, Eger E, Wassilew G, Proctor RA, Bohnert JA, Idelevich EA, Schaufler K, Becker K. Klebsiella pneumoniae exhibiting a phenotypic hyper-splitting phenomenon including the formation of small colony variants. Front Cell Infect Microbiol 2024; 14:1372704. [PMID: 38601740 PMCID: PMC11004228 DOI: 10.3389/fcimb.2024.1372704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
In this study, we characterized a Klebsiella pneumoniae strain in a patient with shrapnel hip injury, which resulted in multiple phenotypic changes, including the formation of a small colony variant (SCV) phenotype. Although already described since the 1960s, there is little knowledge about SCV phenotypes in Enterobacteriaceae. The formation of SCVs has been recognized as a bacterial strategy to evade host immune responses and compromise the efficacy of antimicrobial therapies, leading to persistent and recurrent courses of infections. In this case, 14 isolates with different resisto- and morpho-types were distinguished from the patient's urine and tissue samples. Whole genome sequencing revealed that all isolates were clonally identical belonging to the K. pneumoniae high-risk sequence type 147. Subculturing the SCV colonies consistently resulted in the reappearance of the initial SCV phenotype and three stable normal-sized phenotypes with distinct morphological characteristics. Additionally, an increase in resistance was observed over time in isolates that shared the same colony appearance. Our findings highlight the complexity of bacterial behavior by revealing a case of phenotypic "hyper-splitting" in a K. pneumoniae SCV and its potential clinical significance.
Collapse
Affiliation(s)
- Eyüp Doğan
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Sydow
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Stefan E. Heiden
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Elias Eger
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Georgi Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jürgen A. Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Evgeny A. Idelevich
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Katharina Schaufler
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
- University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
30
|
Sid Ahmed MA, Hamid JM, Hassan AMM, Abu Jarir S, Bashir Ibrahim E, Abdel Hadi H. Phenotypic and Genotypic Characterization of Pan-Drug-Resistant Klebsiella pneumoniae Isolated in Qatar. Antibiotics (Basel) 2024; 13:275. [PMID: 38534710 DOI: 10.3390/antibiotics13030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
In secondary healthcare, carbapenem-resistant Enterobacterales (CREs), such as those observed in Klebsiella pneumoniae, are a global public health priority with significant clinical outcomes. In this study, we described the clinical, phenotypic, and genotypic characteristics of three pan-drug-resistant (PDR) isolates that demonstrated extended resistance to conventional and novel antimicrobials. All patients had risk factors for the acquisition of multidrug-resistant organisms, while microbiological susceptibility testing showed resistance to all conventional antimicrobials. Advanced susceptibility testing demonstrated resistance to broad agents, such as ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam. Nevertheless, all isolates were susceptible to cefiderocol, suggested as one of the novel antimicrobials that demonstrated potent in vitro activity against resistant Gram-negative bacteria, including CREs, pointing toward its potential therapeutic role for PDR pathogens. Expanded genomic studies revealed multiple antimicrobial-resistant genes (ARGs), including blaNMD-5 and blaOXA derivative types, as well as a mutated outer membrane porin protein (OmpK37).
Collapse
Affiliation(s)
- Mazen A Sid Ahmed
- Laboratory Services, Department of Public Health, Philadelphia, PA 19146, USA
| | - Jemal M Hamid
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Ahmed M M Hassan
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Sulieman Abu Jarir
- Division of Infectious Diseases, Communicable Diseases Centre, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Emad Bashir Ibrahim
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hamad Abdel Hadi
- Division of Infectious Diseases, Communicable Diseases Centre, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| |
Collapse
|
31
|
Mulla Y, Bollenbach T. Invade to evade: E. coli's gutsy survival strategies. Cell Host Microbe 2024; 32:300-301. [PMID: 38484709 DOI: 10.1016/j.chom.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Antibiotic resistance is often studied in vitro, limiting the understanding of in vivo mechanisms that affect antibiotic treatment. In this issue of Cell Host & Microbe, Rodrigues et al. show that specific mutations allow bacteria to invade intestinal cells in a mouse model, thereby evading antibiotic treatment.
Collapse
Affiliation(s)
- Yuval Mulla
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany; Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, 1081BT Amsterdam, The Netherlands
| | - Tobias Bollenbach
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany; Center for Data and Simulation Science, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
32
|
Rodrigues M, Sabaeifard P, Yildiz MS, Lyon A, Coughlin L, Ahmed S, Poulides N, Toprak AC, Behrendt C, Wang X, Monogue M, Kim J, Gan S, Zhan X, Filkins L, Williams NS, Hooper LV, Koh AY, Toprak E. Susceptible bacteria can survive antibiotic treatment in the mammalian gastrointestinal tract without evolving resistance. Cell Host Microbe 2024; 32:396-410.e6. [PMID: 38359828 PMCID: PMC10942764 DOI: 10.1016/j.chom.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Antibiotic resistance and evasion are incompletely understood and complicated by the fact that murine interval dosing models do not fully recapitulate antibiotic pharmacokinetics in humans. To better understand how gastrointestinal bacteria respond to antibiotics, we colonized germ-free mice with a pan-susceptible genetically barcoded Escherichia coli clinical isolate and administered the antibiotic cefepime via programmable subcutaneous pumps, allowing closer emulation of human parenteral antibiotic dynamics. E. coli was only recovered from intestinal tissue, where cefepime concentrations were still inhibitory. Strikingly, "some" E. coli isolates were not cefepime resistant but acquired mutations in genes involved in polysaccharide capsular synthesis increasing their invasion and survival within human intestinal cells. Deleting wbaP involved in capsular polysaccharide synthesis mimicked this phenotype, allowing increased invasion of colonocytes where cefepime concentrations were reduced. Additionally, "some" mutant strains exhibited a persister phenotype upon further cefepime exposure. This work uncovers a mechanism allowing "select" gastrointestinal bacteria to evade antibiotic treatment.
Collapse
Affiliation(s)
- Marinelle Rodrigues
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Parastoo Sabaeifard
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Muhammed Sadik Yildiz
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Lyon
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Coughlin
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Ahmed
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicole Poulides
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ahmet C Toprak
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie Behrendt
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoyu Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marguerite Monogue
- Department of Pharmacy, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuheng Gan
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaowei Zhan
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Filkins
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Y Koh
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Erdal Toprak
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes 2024; 10:21. [PMID: 38480745 PMCID: PMC10937973 DOI: 10.1038/s41522-024-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
In environments characterized by extended multi-stress conditions, pathogens develop a variety of immune escape mechanisms to enhance their ability to infect the host. The capsules, polymers that bacteria secrete near their cell wall, participates in numerous bacterial life processes and plays a crucial role in resisting host immune attacks and adapting to their niche. Here, we discuss the relationship between capsules and bacterial virulence, summarizing the molecular mechanisms of capsular regulation and pathogenesis to provide new insights into the research on the pathogenesis of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
34
|
Rodríguez-Medina N, Rodríguez-Santiago J, Alvarado-Delgado A, Sagal-Prado A, Silva-Sánchez J, De la Cruz MA, Ares MA, Sánchez-Arias M, Morfín-Otero R, Hernández-Castro R, Cornejo-Juárez P, Jiménez-Villanueva E, Sánchez-Francia D, Garza-Ramos U. Comprehensive study reveals phenotypic heterogeneity in Klebsiella pneumoniae species complex isolates. Sci Rep 2024; 14:5876. [PMID: 38467675 PMCID: PMC10928225 DOI: 10.1038/s41598-024-55546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/25/2024] [Indexed: 03/13/2024] Open
Abstract
Here, we conducted a comprehensive analysis of 356 Klebsiella pneumoniae species complex (KpSC) isolates that were classified as classical (cl), presumptive hypervirulent (p-hv) and hypermucoviscous-like (hmv-like). Overall, K. pneumoniae (82.3%), K. variicola (2.5%) and K. quasipneumoniae (2.5%) were identified. These isolates comprised 321 cl-KpSC, 7 p-hv-KpSC and 18 hmv-like-KpSC. A large proportion of cl-KpSC isolates were extended-spectrum-β-lactamases (ESBLs)-producers (64.4%) and 3.4% of isolates were colistin-resistant carrying carbapenemase and ESBL genes. All p-hv-KpSC showed an antibiotic susceptible phenotype and hmv-like isolates were found to be ESBL-producers (8/18). Assays for capsule production and capsule-dependent virulence phenotypes and whole-genome sequencing (WGS) were performed in a subset of isolates. Capsule amount differed in all p-hv strains and hmv-like produced higher capsule amounts than cl strains; these variations had important implications in phagocytosis and virulence. Murine sepsis model showed that most cl strains were nonlethal and the hmv-like caused 100% mortality with 3 × 108 CFUs. Unexpectedly, 3/7 (42.9%) of p-hv strains required 108 CFUs to cause 100% mortality (atypical hypervirulent), and 4/7 (57.1%) strains were considered truly hypervirulent (hv). Genomic analyses confirmed the diverse population, including isolates belonging to hv clonal groups (CG) CG23, CG86, CG380 and CG25 (this corresponded to the ST3999 a novel hv clone) and MDR clones such as CG258 and CG147 (ST392) among others. We noted that the hmv-like and hv-ST3999 isolates showed a close phylogenetic relationship with cl-MDR K. pneumoniae. The information collected here is important to understand the evolution of clinically important phenotypes such as hypervirulent and ESBL-producing-hypermucoviscous-like amongst the KpSC in Mexican healthcare settings. Likewise, this study shows that mgrB inactivation is the main mechanism of colistin resistance in K. pneumoniae isolates from Mexico.
Collapse
Affiliation(s)
- Nadia Rodríguez-Medina
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Jonathan Rodríguez-Santiago
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Alejandro Alvarado-Delgado
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Alan Sagal-Prado
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Jesús Silva-Sánchez
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Miguel A De la Cruz
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel Angel Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Margarita Sánchez-Arias
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara "Fray Antonio Alcalde", Instituto de Patología Infecciosa y Experimental, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | | | | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
35
|
Kwon RS, Lee GY, Lee S, Song J. Antimicrobial properties of tomato juice and peptides against typhoidal Salmonella. Microbiol Spectr 2024; 12:e0310223. [PMID: 38289090 PMCID: PMC10913428 DOI: 10.1128/spectrum.03102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 03/06/2024] Open
Abstract
Tomatoes are readily available and affordable vegetables that offer a range of health benefits due to their bioactive molecules, such as antioxidants and antimicrobials. In contrast to the widely recognized antioxidant properties of tomatoes, their antimicrobial properties remain largely unexplored. Here, we present our findings on the antimicrobial properties of tomato juice and peptides, namely, tomato-derived antimicrobial peptides (tdAMPs), in relation to their effectiveness against typhoidal Salmonella. Our research has revealed that tomato juice demonstrates significant antimicrobial properties against Salmonella Typhi, a pathogen that specifically affects humans and is responsible for causing typhoid fever. By employing computational analysis of the tomato genome sequence, conducting molecular dynamics simulation, and performing functional analyses, we have successfully identified two tdAMPs, namely, tdAMP-1 and tdAMP-2. These tdAMPs have demonstrated potent antimicrobial properties by effectively disrupting bacterial membranes. The efficacy of tdAMP-2 is shown to be more effective than tdAMP-1. The efficacy of tdAMP-1 and tdAMP-2 has been demonstrated against drug-resistant S. Typhi, as well as hyper-capsular S. Typhi variants that possess hypervirulent characteristics, which are presently circulating in countries with endemicity. Tomato juice, along with the two tdAMPs, has demonstrated effectiveness against uropathogenic Escherichia coli as well. This underscores their potential as viable agents in combating certain Gram-negative pathogens. This study provides valuable insights into the development of effective and sustainable public health strategies that utilize tomato and its derivatives as lifestyle interventions.IMPORTANCEIn this study, we investigate the antimicrobial properties of tomato juice, the most widely consumed affordable vegetables, as well as tomato-derived antimicrobial peptides, in relation to their effectiveness against foodborne pathogens with an emphasis on Salmonella Typhi, a deadly human-specific pathogen.
Collapse
Affiliation(s)
- Ryan S. Kwon
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Gi Young Lee
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Sohyoung Lee
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
36
|
Hu F, Pan Y, Li H, Han R, Liu X, Ma R, Wu Y, Lun H, Qin X, Li J, Wang A, Zhou M, Liu B, Zhou Z, He P. Carbapenem-resistant Klebsiella pneumoniae capsular types, antibiotic resistance and virulence factors in China: a longitudinal, multi-centre study. Nat Microbiol 2024; 9:814-829. [PMID: 38424289 PMCID: PMC10914598 DOI: 10.1038/s41564-024-01612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Epidemiological knowledge of circulating carbapenem-resistant Klebsiella pneumoniae (CRKP) is needed to develop effective strategies against this public health threat. Here we present a longitudinal analysis of 1,017 CRKP isolates recovered from patients from 40 hospitals across China between 2016 and 2020. Virulence gene and capsule typing revealed expansion of CRKP capsule type KL64 (59.5%) alongside decreases in KL47 prevalence. Hypervirulent CRKP increased in prevalence from 28.2% in 2016 to 45.7% in 2020. Phylogenetic and spatiotemporal analysis revealed Beijing and Shanghai as transmission hubs accounting for differential geographical prevalence of KL47 and KL64 strains across China. Moderate frequency capsule or O-antigen loss was also detected among isolates. Non-capsular CRKP were more susceptible to phagocytosis, attenuated during mouse infections, but showed increased serum resistance and biofilm formation. These findings give insight into CRKP serotype prevalence and dynamics, revealing the importance of monitoring serotype shifts for the future development of immunological strategies against CRKP infections.
Collapse
Affiliation(s)
- Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuqing Pan
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Li
- Key Laboratory of Alkene-carbon Fibers-based Technology & Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- Key Laboratory of Alkene-carbon Fibers-based Technology & Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China
| | - Ruijing Ma
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqin Wu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heyuan Lun
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Qin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayin Li
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aixi Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhemin Zhou
- Key Laboratory of Alkene-carbon Fibers-based Technology & Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China.
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Ping He
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
37
|
Yang X, Man MY, Heng H, Chan BKW, Hu Q, Chan EWC, Shum HP, Chen S. Molecular epidemiology and clinical impact of Klebsiella spp. causing bloodstream infections in Hong Kong. EBioMedicine 2024; 101:104998. [PMID: 38340556 PMCID: PMC10869758 DOI: 10.1016/j.ebiom.2024.104998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The epidemiological features of the Klebsiella pneumoniae causing bloodstream infections in Hong Kong and their potential threats to human health remained unknown. METHODS K. pneumoniae strains collected from four hospitals in Hong Kong during the period of 2009-2018 were subjected to molecular typing, string test, antimicrobial susceptibility testing, whole genome sequencing and analysis. Clinical data of patients from whom these strains were isolated were analyzed retrospectively using univariate and multivariate logistic regression approaches. FINDINGS The 240 Klebsiella spp. strains belonged to 123 different STs and 63 different capsule loci (KLs), with KL1 and KL2 being the major type. 86 out of 212 BSI-KP (40.6%) carried at least one of the virulence genes iuc, iro, rmpA or rmpA2. Virulence plasmid correlated well with the string test positive result, yet 8 strains without rmp genes were also hypermucoviscous, which was due to wzc mutation. The mortality rate of bloodstream infection patients was 43.0%. Univariant analysis showed that factors including renal replacement therapy (FDR adjusted p = 0.0007), mechanical ventilation (FDR adjusted p < 0.0001) and respiratory sepsis (FDR adjusted p < 0.0001) were found to pose the highest risk of death upon infection by Klebsiella spp. INTERPRETATION This study revealed the high mortality rate and risk factors associated with bloodstream infections caused by K. pneumoniae in Hong Kong, which warrants immediate action to develop effective solution to tackle this problem. FUNDING Theme Based Research Scheme (T11-104/22-R), Research Impact Fund (R5011-18 F) and Postdoctoral Fellowship (PDFS2223-1S09).
Collapse
Affiliation(s)
- Xuemei Yang
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Man-Yee Man
- Department of Intensive Care, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong SAR, China
| | - Heng Heng
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Bill Kwan-Wai Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Qiao Hu
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Hoi-Ping Shum
- Department of Intensive Care, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong SAR, China.
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
38
|
Lahij HF, Almeani SAL. Multidrug-resistant clinical K. pneumoniae ST16, ST218, and ST283 and emergence of pandrug-resistant KPC-positive ST6434/K2 lineage in Iraq. Braz J Microbiol 2024; 55:375-382. [PMID: 38091237 PMCID: PMC10920612 DOI: 10.1007/s42770-023-01205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND AND AIM The increasing incidence of Klebsiella pneumoniae infections, both in the community and in hospitals, is a huge health problem. This is due to the increasing resistance of the bacteria to antibiotics and biofilm formation, as well as the presence of a capsule. This study focuses on two main objectives: to survey the most common capsular types in local isolates for the first time in Anbar, Iraq, on molecular level and to distinguish between infectious pathogen strains using multilocus sequence typing (MLST) for more efficient epidemiological and surveillance analysis, in order to determine the source of these strains (invasive or purebred). METHODOLOGY Multidrug-resistant (MDR) isolates adapted to genomic extraction and molecular screening of capsular type and MLST, and then to data processing by Pasteur Institut. RESULTS For the first time, one isolate was registered as a new strain in the world with ST 6434; the other strains demonstrated as preregistered with ST16, ST218, and ST283. 33% of MDR isolates belonged to the capsular K2 type. CONCLUSION The study's findings were not aligned with the global knowledge base about the distribution of capsular type in Asia. To prevent the spread of highly resistant strains, careful monitoring of virulence determinants is necessary in addition to the observation of antibiotic resistance.
Collapse
Affiliation(s)
- Hasan Falah Lahij
- Department of Biology, Collage of Sciences, University of Anbar, Ramadi, Anbar, Iraq.
- Medical Laboratory Technology, Almaarif University College, Ramadi, 31001, Iraq.
| | | |
Collapse
|
39
|
Li H, Duan S, Li L, Zhao G, Wei L, Zhang B, Ma Y, Wu MX, Mao Y, Lu M. Bio-Responsive Sliver Peroxide-Nanocarrier Serves as Broad-Spectrum Metallo-β-lactamase Inhibitor for Combating Severe Pneumonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310532. [PMID: 38095435 DOI: 10.1002/adma.202310532] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Metallo-β-lactamases (MBLs) represent a prevalent resistance mechanism in Gram-negative bacteria, rendering last-line carbapenem-related antibiotics ineffective. Here, a bioresponsive sliver peroxide (Ag2 O2 )-based nanovesicle, named Ag2 O2 @BP-MT@MM, is developed as a broad-spectrum MBL inhibitor for combating MBL-producing bacterial pneumonia. Ag2 O2 nanoparticle is first orderly modified with bovine serum albumin and polydopamine to co-load meropenem (MER) and [5-(p-fluorophenyl)-2-ureido]-thiophene-3-carboxamide (TPCA-1) and then encapsulated with macrophage membrane (MM) aimed to target inflammatory lung tissue specifically. The resultant Ag2 O2 @BP-MT@MM effectively abrogates MBL activity by displacing the Zn2+ cofactor in MBLs with Ag+ and displays potent bactericidal and anti-inflammatory properties, specific targeting abilities, and great bioresponsive characteristics. After intravenous injection, the nanoparticles accumulate prominently at infection sites through MM-mediated targeting . Ag+ released from Ag2 O2 decomposition at the infection sites effectively inhibits MBL activity and overcomes the resistance of MBL-producing bacteria to MER, resulting in synergistic elimination of bacteria in conjunction with MER. In two murine infection models of NDM-1+ Klebsiella pneumoniae-induced severe pneumonia and NDM-1+ Escherichia coli-induced sepsis-related bacterial pneumonia, the nanoparticles significantly reduce bacterial loading, pro-inflammatory cytokine levels locally and systemically, and the recruitment and activation of neutrophils and macrophages. This innovative approach presents a promising new strategy for combating infections caused by MBL-producing carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Hanqing Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuxian Duan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lixia Li
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bohan Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yingying Ma
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
40
|
Guo W, Lian X, Li H, Jiang L, Chen Y, Shen P, Yu W. Characteristics of Immunocytes and Cytokines in Patients with Bloodstream Infections Caused by Carbapenem-Resistant Klebsiella pneumoniae in China. Infect Drug Resist 2024; 17:719-725. [PMID: 38410794 PMCID: PMC10896100 DOI: 10.2147/idr.s431207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Objective To evaluate the characteristics of immunocytes and cytokines associated with bloodstream infections (BSIs) caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). Methods Patients with BSIs K. pneumoniae (BSIs-Kpn) were enrolled in our hospital between 2015 and 2022. Whole blood and serum samples were collected on the first day after diagnosis. Immunocytes and cytokines profiles were assessed using multicolor flow cytometry and multiplex immunoassays, respectively. The test cytokines included interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-2, IL-4, IL-6, IL-10, and IL-17A. Results A total of 313 patients had BSIs-Kpn, including 145 with CRKP, 43 with extended-spectrum β-lactamases (ESBL) producing Kpn (ESBL-Kpn) and 125 with non-CRKP or non-ESBL-Kpn (susceptible Kpn, S-Kpn). Absolute number of leukomonocyte (CD45+) in CRKP, ESBL-Kpn and S-Kpn were 280.0 (138.0-523.0) cells/μL, 354.5 (150.3-737.3) cells/μL, and 637.0 (245.0-996.5) cells/μL, respectively. Compared with S-Kpn group, the absolute numbers of leukomonocyte (including T lymphocytes, B lymphocytes and natural killer cells) in patients with CRKP were significantly lower than that in patients with S-Kpn (P < 0.01). The levels of cytokines IL-2 and IL-17A were significantly higher in patients with S-Kpn than in those patients with CRKP (P<0.05). The area under receiver operating curve (AUC) of IL-2, IL-4, and IL-17A for S-Kpn was 0.576, 0.513, and 0.561, respectively, whereas that for the combination of these three cytokines with immunocytes was 0.804. Conclusion Patients with BSIs-CRKP had lower leukomonocyte counts. High levels of IL-2 and IL-17A combined with immunocyte subpopulations showed relatively high diagnostic value for BSIs-S-Kpn from BSIs-CRKP.
Collapse
Affiliation(s)
- Wenhui Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiang Lian
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University; Xiangshan First People’s Hospital Medical and Health Group; Ningbo Fourth Hospital, Ningbo, People’s Republic of China
| | - Hong Li
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University; Xiangshan First People’s Hospital Medical and Health Group; Ningbo Fourth Hospital, Ningbo, People’s Republic of China
| | - Lushun Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yingsha Chen
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
41
|
Novais Â, Gonçalves AB, Ribeiro TG, Freitas AR, Méndez G, Mancera L, Read A, Alves V, López-Cerero L, Rodríguez-Baño J, Pascual Á, Peixe L. Development and validation of a quick, automated, and reproducible ATR FT-IR spectroscopy machine-learning model for Klebsiella pneumoniae typing. J Clin Microbiol 2024; 62:e0121123. [PMID: 38284762 PMCID: PMC10865814 DOI: 10.1128/jcm.01211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
The reliability of Fourier-transform infrared (FT-IR) spectroscopy for Klebsiella pneumoniae typing and outbreak control has been previously assessed, but issues remain in standardization and reproducibility. We developed and validated a reproducible FT-IR with attenuated total reflectance (ATR) workflow for the identification of K. pneumoniae lineages. We used 293 isolates representing multidrug-resistant K. pneumoniae lineages causing outbreaks worldwide (2002-2021) to train a random forest classification (RF) model based on capsular (KL)-type discrimination. This model was validated with 280 contemporaneous isolates (2021-2022), using wzi sequencing and whole-genome sequencing as references. Repeatability and reproducibility were tested in different culture media and instruments throughout time. Our RF model allowed the classification of 33 capsular (KL)-types and up to 36 clinically relevant K. pneumoniae lineages based on the discrimination of specific KL- and O-type combinations. We obtained high rates of accuracy (89%), sensitivity (88%), and specificity (92%), including from cultures obtained directly from the clinical sample, allowing to obtain typing information the same day bacteria are identified. The workflow was reproducible in different instruments throughout time (>98% correct predictions). Direct colony application, spectral acquisition, and automated KL prediction through Clover MS Data analysis software allow a short time-to-result (5 min/isolate). We demonstrated that FT-IR ATR spectroscopy provides meaningful, reproducible, and accurate information at a very early stage (as soon as bacterial identification) to support infection control and public health surveillance. The high robustness together with automated and flexible workflows for data analysis provide opportunities to consolidate real-time applications at a global level. IMPORTANCE We created and validated an automated and simple workflow for the identification of clinically relevant Klebsiella pneumoniae lineages by FT-IR spectroscopy and machine-learning, a method that can be extremely useful to provide quick and reliable typing information to support real-time decisions of outbreak management and infection control. This method and workflow is of interest to support clinical microbiology diagnostics and to aid public health surveillance.
Collapse
Affiliation(s)
- Ângela Novais
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana Beatriz Gonçalves
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Teresa G. Ribeiro
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CCP, Culture Collection of Porto, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana R. Freitas
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Gema Méndez
- CLOVER Bioanalytical Software, Granada, Spain
| | | | - Antónia Read
- Clinical Microbiology Laboratory, Local Healthcare Unit, Matosinhos, Portugal
| | - Valquíria Alves
- Clinical Microbiology Laboratory, Local Healthcare Unit, Matosinhos, Portugal
| | - Lorena López-Cerero
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Vírgen Macarena, Instituto de Biomedicina de Sevilla (IBIS; CSIC/Hospital Virgen Macarena/Universidad de Sevilla), Sevilla, Spain
- Departamentos de Microbiología y Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Jesús Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Vírgen Macarena, Instituto de Biomedicina de Sevilla (IBIS; CSIC/Hospital Virgen Macarena/Universidad de Sevilla), Sevilla, Spain
- Departamentos de Microbiología y Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Álvaro Pascual
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Vírgen Macarena, Instituto de Biomedicina de Sevilla (IBIS; CSIC/Hospital Virgen Macarena/Universidad de Sevilla), Sevilla, Spain
- Departamentos de Microbiología y Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Luísa Peixe
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CCP, Culture Collection of Porto, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
42
|
Poret AJ, Schaefers M, Merakou C, Mansour KE, Lagoudas GK, Cross AR, Goldberg JB, Kishony R, Uluer AZ, McAdam AJ, Blainey PC, Vargas SO, Lieberman TD, Priebe GP. De novo mutations mediate phenotypic switching in an opportunistic human lung pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579193. [PMID: 38370793 PMCID: PMC10871308 DOI: 10.1101/2024.02.06.579193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Bacteria evolving within human hosts encounter selective tradeoffs that render mutations adaptive in one context and deleterious in another. Here, we report that the cystic fibrosis-associated pathogen Burkholderia dolosa overcomes in-human selective tradeoffs by acquiring successive point mutations that alternate phenotypes. We sequenced the whole genomes of 931 respiratory isolates from two recently infected patients and an epidemiologically-linked, chronically-infected patient. These isolates are contextualized using 112 historical genomes from the same outbreak strain. Within both newly infected patients, diverse parallel mutations that disrupt O-antigen expression quickly arose, comprising 29% and 63% of their B. dolosa communities by 3 years. The selection for loss of O-antigen starkly contrasts with our previous observation of parallel O-antigen-restoring mutations after many years of chronic infection in the historical outbreak. Experimental characterization revealed that O-antigen loss increases uptake in immune cells while decreasing competitiveness in the mouse lung. We propose that the balance of these pressures, and thus whether O-antigen expression is advantageous, depends on tissue localization and infection duration. These results suggest that mutation-driven alternation during infection may be more frequent than appreciated and is underestimated without dense temporal sampling.
Collapse
Affiliation(s)
- Alexandra J. Poret
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology
- Department of Biological Engineering, Massachusetts Institute of Technology
| | - Matthew Schaefers
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Christina Merakou
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Kathryn E. Mansour
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
| | - Georgia K. Lagoudas
- Department of Biological Engineering, Massachusetts Institute of Technology
- Broad Institute of MIT and Harvard
| | - Ashley R. Cross
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine
| | - Roy Kishony
- Faculty of Biology and Faculty of Computer Science, Technion Israel
| | - Ahmet Z. Uluer
- Department of Pediatrics, Division of Respiratory Diseases, Boston Children’s Hospital
- Adult CF Program, Brigham and Women’s Hospital
- Department of Pediatrics, Harvard Medical School
| | - Alexander J. McAdam
- Department of Laboratory Medicine, Boston Children’s Hospital
- Department of Pathology, Harvard Medical School
| | - Paul C. Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology
- Broad Institute of MIT and Harvard
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Sara O. Vargas
- Department of Pathology, Harvard Medical School
- Department of Pathology, Boston Children’s Hospital
| | - Tami D. Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
| | - Gregory P. Priebe
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard
- Department of Pediatrics, Division of Infectious Diseases, Boston Children’s Hospital
| |
Collapse
|
43
|
Wang X, Li S, Du M, Liu N, Shan Q, Zou Y, Wang J, Zhu Y. A novel glycine-rich peptide from Zophobas atratus, coleoptericin B, targets bacterial membrane and protects against Klebsiella pneumoniae-induced mastitis in mice. J Antimicrob Chemother 2024; 79:417-428. [PMID: 38267384 DOI: 10.1093/jac/dkad397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024] Open
Abstract
OBJECTIVES The growing occurrence of bacterial resistance has spawned the development of novel antimicrobial agents. Antimicrobial peptides, a class of small molecules with antimicrobial activity, have been regarded as the ideal alternatives to antibiotics. METHODS In this study, we amplified a new type of Zophobas atratus coleoptericin (denoted coleoptericin B) through rapid amplification of cDNA ends (RACE) PCR and expressed recombinant Z. atratus coleoptericin B (rZA-col B) by prokaryotic expression. Subsequently, we evaluated the antimicrobial effect and biocompatibility of rZA-col B in vivo, investigated its antimicrobial mechanism, and assessed its therapeutic effect in a murine model of mastitis caused by MDR Klebsiella pneumoniae. RESULTS The in vivo studies demonstrated that rZA-col B possesses broad-spectrum antimicrobial activity against both Gram-positive and Gram-negative bacteria. It exhibited less than 1.5% haemolysis and 10% cytotoxicity, even at a concentration of 128 μM. Additionally, rZA-col B had a minimal risk of inducing drug resistance. Furthermore, rZA-col B could disrupt the integrity of bacterial membranes, induce membrane permeabilization and ultimately lead to bacterial death. Importantly, rZA-col B also alleviated mastitis caused by MDR K. pneumoniae in a murine model by enhancing bacterial clearance, reducing neutrophil infiltration, decreasing TNF-α and IL-1β expression, and protecting the mammary barrier. CONCLUSIONS rZA-col B may be a promising antibacterial agent to combat MDR bacterial infection.
Collapse
Affiliation(s)
- Xue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| | - Shuxian Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| | - Mengze Du
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Ning Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Shan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| | - Yunjing Zou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| |
Collapse
|
44
|
Ilyas M, Purkait D, Atmakuri K. Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens. Brief Funct Genomics 2024; 23:55-68. [PMID: 36528816 DOI: 10.1093/bfgp/elac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.
Collapse
Affiliation(s)
- Mohd Ilyas
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Dyuti Purkait
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
45
|
Fang J, Wang G, Kang X, Pan Z, Mei Y, Chen H, Liu Y, Xiang T. Analysis of the hypovirulent Klebsiella pneumoniae with the NDM-5 gene on IncN plasmids. Microbiol Spectr 2024; 12:e0344323. [PMID: 38019003 PMCID: PMC10783101 DOI: 10.1128/spectrum.03443-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE It is crucial to strengthen the ongoing clinical surveillance of non-highly virulent, multi-resistant Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Jianhua Fang
- Department of Infectious disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Infectious disease, Nanchang University, Nanchang, China
| | - Guoyu Wang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuhua Kang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhui Pan
- Department of Pediatrics, Nanchang University, Nanchang, China
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanfang Mei
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huade Chen
- Department of Infectious disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Infectious disease, Nanchang University, Nanchang, China
| | - Yang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tianxin Xiang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, China
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
46
|
Lee GY, Song J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573590. [PMID: 38260632 PMCID: PMC10802248 DOI: 10.1101/2023.12.28.573590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S . Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control the length or acetylation of Vi is enough to create different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper-capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo-capsule variants have primarily been identified in Africa, whereas the hyper-capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.
Collapse
|
47
|
Kochan TJ, Nozick SH, Valdes A, Mitra SD, Cheung BH, Lebrun-Corbin M, Medernach RL, Vessely MB, Mills JO, Axline CMR, Nelson JA, VanGosen EM, Ward TJ, Ozer EA, van Duin D, Chen L, Kreiswirth BN, Long SW, Musser JM, Bulman ZP, Wunderink RG, Hauser AR. Klebsiella pneumoniae clinical isolates with features of both multidrug-resistance and hypervirulence have unexpectedly low virulence. Nat Commun 2023; 14:7962. [PMID: 38042959 PMCID: PMC10693551 DOI: 10.1038/s41467-023-43802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Klebsiella pneumoniae has been classified into two types, classical K. pneumoniae (cKP) and hypervirulent K. pneumoniae (hvKP). cKP isolates are highly diverse and important causes of nosocomial infections; they include globally disseminated antibiotic-resistant clones. hvKP isolates are sensitive to most antibiotics but are highly virulent, causing community-acquired infections in healthy individuals. The virulence phenotype of hvKP is associated with pathogenicity loci responsible for siderophore and hypermucoid capsule production. Recently, convergent strains of K. pneumoniae, which possess features of both cKP and hvKP, have emerged and are cause of much concern. Here, we screen the genomes of 2,608 multidrug-resistant K. pneumoniae isolates from the United States and identify 47 convergent isolates. We perform phenotypic and genomic characterization of 12 representative isolates. These 12 convergent isolates contain a variety of antimicrobial resistance plasmids and virulence plasmids. Most convergent isolates contain aerobactin biosynthesis genes and produce more siderophores than cKP isolates but not more capsule. Unexpectedly, only 1 of the 12 tested convergent isolates has a level of virulence consistent with hvKP isolates in a murine pneumonia model. These findings suggest that additional studies should be performed to clarify whether convergent strains are indeed more virulent than cKP in mouse and human infections.
Collapse
Affiliation(s)
- Travis J Kochan
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Sophia H Nozick
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aliki Valdes
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sumitra D Mitra
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bettina H Cheung
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marine Lebrun-Corbin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rachel L Medernach
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madeleine B Vessely
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jori O Mills
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christopher M R Axline
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Julia A Nelson
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ethan M VanGosen
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Timothy J Ward
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - S Wesley Long
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - James M Musser
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - Zackery P Bulman
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alan R Hauser
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
48
|
Zhang J, Xu Y, Wang M, Li X, Liu Z, Kuang D, Deng Z, Ou HY, Qu J. Mobilizable plasmids drive the spread of antimicrobial resistance genes and virulence genes in Klebsiella pneumoniae. Genome Med 2023; 15:106. [PMID: 38041146 PMCID: PMC10691111 DOI: 10.1186/s13073-023-01260-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a notorious clinical pathogen and frequently carries various plasmids, which are the main carriers of antimicrobial resistance and virulence genes. In comparison to self-transmissible conjugative plasmids, mobilizable plasmids have received much less attention due to their defects in conjugative elements. However, the contribution of mobilizable plasmids to the horizontal transfer of antimicrobial resistance genes and virulence genes of K. pneumoniae remains unclear. In this study, the transfer, stability, and cargo genes of the mobilizable plasmids of K. pneumoniae were examined via genetic experiments and genomic analysis. METHODS Carbapenem-resistant (CR) plasmid pHSKP2 and multidrug-resistant (MDR) plasmid pHSKP3 of K. pneumoniae HS11286, virulence plasmid pRJF293 of K. pneumoniae RJF293 were employed in conjugation assays to assess the transfer ability of mobilizable plasmids. Mimic mobilizable plasmids and genetically modified plasmids were constructed to confirm the cotransfer models. The plasmid morphology was evaluated through XbaI and S1 nuclease pulsed-field gel electrophoresis and/or complete genome sequencing. Mobilizable plasmid stability in transconjugants was analyzed via serial passage culture. In addition, in silico genome analysis of 3923 plasmids of 1194 completely sequenced K. pneumoniae was performed to investigate the distribution of the conjugative elements, the cargo genes, and the targets of the CRISPR-Cas system. The mobilizable MDR plasmid and virulence plasmid of K. pneumoniae were investigated, which carry oriT but lack other conjugative elements. RESULTS Our results showed that mobilizable MDR and virulence plasmids carrying oriT but lacking the relaxase gene were able to cotransfer with a helper conjugative CR plasmid across various Klebsiella and Escherichia coli strains. The transfer and stability of mobilizable plasmids rather than conjugative plasmids were not interfered with by the CRISPR-Cas system of recipient strains. According to the in silico analysis, the mobilizable plasmids carry about twenty percent of acquired antimicrobial resistance genes and more than seventy-five percent of virulence genes in K. pneumoniae. CONCLUSIONS Our work observed that a mobilizable MDR or virulence plasmid that carries oriT but lacks the relaxase genes transferred with the helper CR conjugative plasmid and mobilizable plasmids escaped from CRISPR-Cas defence and remained stable in recipients. These results highlight the threats of mobilizable plasmids as vital vehicles in the dissemination of antibiotic resistance and virulence genes in K. pneumoniae.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanping Xu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaobin Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, 519000, China
| | - Zhiyuan Liu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Dai Kuang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- National Health Commission (NHC) Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
49
|
Huang Z, Yu K, Lan R, Glenn Morris J, Xiao Y, Ye J, Zhang L, Luo L, Gao H, Bai X, Wang D. Vibrio metschnikovii as an emergent pathogen: analyses of phylogeny and O-antigen and identification of possible virulence characteristics. Emerg Microbes Infect 2023; 12:2252522. [PMID: 37616379 PMCID: PMC10484048 DOI: 10.1080/22221751.2023.2252522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
Vibrio metschnikovii is an emergent pathogen that causes human infections which may be fatal. However, the phylogenetic characteristics and pathogenicity determinants of V. metschnikovii are poorly understood. Here, the whole-genome features of 103 V. metschnikovii strains isolated from different sources are described. On phylogenetic analysis V. metschnikovii populations could be divided into two major lineages, defined as lineage 1 (L1) and 2 (L2), of which L1 was more likely to be associated with human activity. Meanwhile, we defined 29 V. metschnikovii O-genotypes (VMOg, named VMOg1-VMOg29) by analysis of the O-antigen biosynthesis gene clusters (O-AGCs). Most VMOgs (VMOg1 to VMOg28) were assembled by the Wzx/Wzy pathway, while only VMOg29 used the ABC transporter pathway. Based on the sequence variation of the wzx and wzt genes, an in silico O-genotyping system for V. metschnikovii was developed. Furthermore, nineteen virulence-associated factors involving 161 genes were identified within the V. metschnikovii genomes, including genes encoding motility, adherence, toxins, and secretion systems. In particular, V. metschnikovii was found to promote a high level of cytotoxicity through the synergistic action of the lateral flagella and T6SS. The lateral flagellar-associated flhA gene played an important role in the adhesion and colonization of V. metschnikovii during the early stages of infection. Overall, this study provides an enhanced understanding of the genomic evolution, O-AGCs diversity, and potential pathogenic features of V. metschnikovii.
Collapse
Affiliation(s)
- Zhenzhou Huang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
- Hangzhou Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Keyi Yu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Yue Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| | - Julian Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Leyi Zhang
- Wenzhou Center for Disease Control and Prevention, Wenzhou, People’s Republic of China
| | - Longze Luo
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, People’s Republic of China
| | - He Gao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| | - Xuemei Bai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| |
Collapse
|
50
|
Khadka S, Ring BE, Walker RS, Krzeminski LR, Pariseau DA, Hathaway M, Mobley HLT, Mike LA. Urine-mediated suppression of Klebsiella pneumoniae mucoidy is counteracted by spontaneous Wzc variants altering capsule chain length. mSphere 2023; 8:e0028823. [PMID: 37610214 PMCID: PMC10597399 DOI: 10.1128/msphere.00288-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 08/24/2023] Open
Abstract
Klebsiella pneumoniae is a hospital-associated pathogen primarily causing urinary tract infections (UTIs), pneumonia, and septicemia. Two challenging lineages include the hypervirulent strains, causing invasive community-acquired infections, and the carbapenem-resistant classical strains, most frequently isolated from UTIs. While hypervirulent strains are often characterized by a hypermucoid phenotype, classical strains usually present with low mucoidy. Since clinical UTI isolates tend to exhibit limited mucoidy, we hypothesized that environmental conditions may drive K. pneumoniae adaptation to the urinary tract and select against mucoid isolates. We found that both hypervirulent K. pneumoniae and classical Klebsiella UTI isolates significantly suppressed mucoidy when cultured in urine without reducing capsule abundance. A genetic screen identified secondary mutations in the wzc tyrosine kinase that overcome urine-suppressed mucoidy. Over-expressing Wzc variants in trans was sufficient to boost mucoidy in both hypervirulent and classical Klebsiella UTI isolates. Wzc is a bacterial tyrosine kinase that regulates capsule polymerization and extrusion. Although some Wzc variants reduced Wzc phospho-status, urine did not alter Wzc phospho-status. Urine does, however, increase K. pneumoniae capsule chain length diversity and enhance cell-surface attachment. The identified Wzc variants counteract urine-mediated effects on capsule chain length and cell attachment. Combined, these data indicate that capsule chain length correlates with K. pneumoniae mucoidy and that this extracellular feature can be fine-tuned by spontaneous Wzc mutations, which alter host interactions. Spontaneous Wzc mutation represents a global mechanism that could fine-tune K. pneumoniae niche-specific fitness in both classical and hypervirulent isolates. IMPORTANCE Klebsiella pneumoniae is high-priority pathogen causing both hospital-associated infections, such as urinary tract infections, and community-acquired infections. Clinical isolates from community-acquired infection are often characterized by a tacky, hypermucoid phenotype, while urinary tract isolates are usually not mucoid. Historically, mucoidy was attributed to capsule overproduction; however, recent reports have demonstrated that K. pneumoniae capsule abundance and mucoidy are not always correlated. Here, we report that human urine suppresses K. pneumoniae mucoidy, diversifies capsule polysaccharide chain length, and increases cell surface association. Moreover, specific mutations in the capsule biosynthesis gene, wzc, are sufficient to overcome urine-mediated suppression of mucoidy. These Wzc variants cause constitutive production of more uniform capsular polysaccharide chains and increased release of capsule from the cell surface, even in urine. These data demonstrate that K. pneumoniae regulates capsule chain length and cell surface attachment in response host cues, which can alter bacteria-host interactions.
Collapse
Affiliation(s)
- Saroj Khadka
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| | - Brooke E Ring
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| | - Ryan S Walker
- Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan, USA
| | | | - Drew A Pariseau
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| | - Matthew Hathaway
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| | - Harry L T Mobley
- Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan, USA
| | - Laura A Mike
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| |
Collapse
|