1
|
Casso-Chapa B, González NAV, Le NT, Palaskas NL, Nead KT, Eutsey LP, Samanthapudi VSK, Osborn AM, Lee J, Mejia G, Hoang O, Lin SH, Deswal A, Herrmann J, Wang G, Kirkland JL, Krishnan S, Wehrens XH, Chini EN, Yusuf SW, Iliescu CA, Jain A, Burks JK, Seeley E, Lorenzi PL, Chau KM, Mendoza KCO, Grumbach IM, Brookes PS, Hanssen NM, de Winther MP, Yvan-Charvet L, Kotla S, Schadler K, Abe JI. Reevaluating Anti-Inflammatory Therapy: Targeting Senescence to Balance Anti-Cancer Efficacy and Vascular Disease. Arterioscler Thromb Vasc Biol 2025; 45:372-385. [PMID: 39817327 PMCID: PMC11864897 DOI: 10.1161/atvbaha.124.319870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Modulating immune function is a critical strategy in cancer and atherosclerosis treatments. For cancer, boosting or maintaining the immune system is crucial to prevent tumor growth. However, in vascular disease, mitigating immune responses can decrease inflammation and slow atherosclerosis progression. Anti-inflammatory therapy, therefore, presents a unique dilemma for cancer survivors: while it may decrease cardiovascular risk, it might also promote cancer growth and metastasis by suppressing the immune response. Senescence presents a potentially targetable solution to this challenge; senescence increases the risk of both cancer therapy resistance and vascular disease. Exercise, notably, shows promise in delaying this premature senescence, potentially improving cancer outcomes and lowering vascular disease risk post-treatment. This review focuses on the long-term impact of cancer therapies on vascular health. We underscore the importance of modulating senescence to balance cancer treatment's effectiveness and its vascular impact, and we emphasize investigating the role of exercise-mediated suppression of senescence in improving cancer survivorship.
Collapse
Affiliation(s)
- Bernardo Casso-Chapa
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), 06204 Nice, France
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Norma Alicia Vazquez González
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), 06204 Nice, France
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kevin T. Nead
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lydia P. Eutsey
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Cancer Center Support Grant & Extramural Research Development, UT MD Anderson Cancer Center, Houston, TX
| | | | - Abigail M Osborn
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonghae Lee
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gilbert Mejia
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Oanh Hoang
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - James L. Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xander H.T. Wehrens
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cezar A. Iliescu
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jared K. Burks
- Department of Leukemia, Division of Center Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Erin Seeley
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khanh M. Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Keila Carolina Ostos Mendoza
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), 06204 Nice, France
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | | | - Paul S. Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Nordin M.J. Hanssen
- Department of (Experimental) Vascular and Internal Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Diabeter Centrum Amsterdam, Amsterdam, the Netherlands
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam Institute for Immunology and Infectious Diseases (AII), Inflammatory Diseases Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), 06204 Nice, France
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keri Schadler
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Buttigieg MM, Vlasschaert C, Bick AG, Vanner RJ, Rauh MJ. Inflammatory reprogramming of the solid tumor microenvironment by infiltrating clonal hematopoiesis is associated with adverse outcomes. Cell Rep Med 2025:101989. [PMID: 40037357 DOI: 10.1016/j.xcrm.2025.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/04/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Clonal hematopoiesis (CH)-the expansion of somatically mutated hematopoietic cells-is common in solid cancers. CH is associated with systemic inflammation, but its impact on tumor biology is underexplored. Here, we report the effects of CH on the tumor microenvironment (TME) using 1,550 treatment-naive patient samples from the Clinical Proteomics Tumor Analysis Consortium (CPTAC) cohort. CH is present in 18.3% of patients, with one-third of CH mutations also detectable in tumor-derived DNA from the same individual (CH-Tum), reflecting CH-mutant leukocyte infiltration. Across cancers, the presence of CH-Tum is associated with worse survival outcomes. Molecular analyses reveal an association between CH-Tum and an immune-rich, inflammatory TME that is notably distinct from age-related gene expression changes. These effects are most prominent in glioblastoma, where CH correlates with pronounced macrophage infiltration, inflammation, and an aggressive, mesenchymal phenotype. Our findings demonstrate that CH shapes the TME, with potential applications as a biomarker in precision oncology.
Collapse
Affiliation(s)
- Marco M Buttigieg
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, Canada
| | | | - Alexander G Bick
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA; Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J Vanner
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Michael J Rauh
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, Canada; Department of Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
3
|
Xi Z, Feng H, Chen K, Guo X, Zhu D, Zheng J, Li Y. Clonal hematopoiesis of indeterminate potential is a risk factor of gastric cancer: A Prospective Cohort in UK Biobank study. Transl Oncol 2025; 52:102242. [PMID: 39675251 PMCID: PMC11713744 DOI: 10.1016/j.tranon.2024.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/18/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024] Open
Abstract
IMPORTANCE Gastric cancer is often diagnosed at an advanced stage and at order age, identification of high-risk population is needed for detection of early-stage gastric cancer. OBJECTIVE To examine whether clonal hematopoiesis of indeterminate potential (CHIP) is a risk factor of gastric cancer. DESIGN This cohort study used data from the UK Biobank collected from baseline (2006-2010) to the end of follow-up in March 2024. SETTING Data on age, sex, race, alcohol consumption, smoking status and type 2 diabetes were collected at baseline interview. Previous and diagnosed cancer or diseases were collected from self-reported and in-hospital records. PARTICIPANTS Participants with no previous cancer or hematologic disorders were selected. Participants with gastric cancer cases were aged 60.7 (S.D. 6.62), 71.8 % male; controls were aged 56.1 (S.D. 8.11), 47.4 % male. EXPOSURES Whole-exome sequencing was performed on blood samples collected at baseline. A CHIP status was identified based on the mutations on 43 CHIP-related genes. MAIN OUTCOMES AND MEASURES Odds ratio (OR) of CHIP with gastric cancer risk was estimated using multivariable logistic regression models. Participants were grouped based on age and CHIP status to examine if there are differences in the cumulative incidence of gastric cancer. RESULTS Among 402,253 participants, 1,070 incident gastric cancer cases were identified (mean age, 60.7 ± 6.62 years). The prevalence of CHIP at baseline was associated with an increased risk of gastric cancer (cases: 6.54 % vs. controls 5.14 %; OR without adjustment, 1.29; 95 % CI, 1.004 to 1.63). The stratified OR (95 % CI) of individuals aged ≥ 57 was 1.33 (1.02 to 1.72) for overall CHIP, whereas the OR for younger individuals was 0.79 (0.37 to 1.44). CHIP involving DNMT3A (OR, 1.81; 95 % CI, 1.05 to 2.88; P = 0.0193) and ASXL1 (OR, 2.43; 95 % CI, 0.95 to 4.99; P = 0.032) was associated with an increased risk of gastric cancer. These positive associations remained significantly in sensitivity analyses adjusted by known risk factors. Compared to younger individuals and non-CHIP carriers, older participants with CHIP exhibited a significantly higher cumulative incidence of gastric cancer (P < 0.0001). CONCLUSIONS AND RELEVANCE CHIP is associated with gastric cancer in the elderly and contributes to the positive association between DNM3A and ASXL1 mutations and risk of gastric cancer.
Collapse
Affiliation(s)
- Zhihui Xi
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China; Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, PR China
| | - Huolun Feng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China; Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Kunling Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xin Guo
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, PR China
| | - Dandan Zhu
- Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Yong Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China; Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
4
|
Raparia C, Davidson A. Immune-stromal interplay shapes kidney function in health and disease. Nat Rev Nephrol 2025; 21:71-72. [PMID: 39609639 DOI: 10.1038/s41581-024-00911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Affiliation(s)
- Chirag Raparia
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, NY, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Northwell Health, Hempstead, NY, USA
| | - Anne Davidson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, NY, USA.
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Northwell Health, Hempstead, NY, USA.
| |
Collapse
|
5
|
Villaume MT, Savona MR. Pathogenesis and inflammaging in myelodysplastic syndrome. Haematologica 2025; 110:283-299. [PMID: 39445405 PMCID: PMC11788632 DOI: 10.3324/haematol.2023.284944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a genetically complex and phenotypically diverse set of clonal hematologic neoplasms that occur with increasing frequency with age. MDS has long been associated with systemic inflammatory conditions and disordered inflammatory signaling is implicated in MDS pathogenesis. A rise in sterile inflammation occurs with ageing and the term "inflammaging" has been coined by to describe this phenomenon. This distinct form of sterile inflammation has an unknown role in in the pathogenesis of myeloid malignancies despite shared correlations with age and ageing-related diseases. More recent is a discovery that many cases of MDS arise from clonal hematopoiesis of indeterminate potential (CHIP), an age associated, asymptomatic pre-disease state. The interrelationship between ageing, inflammation and clonal CHIP is complex and likely bidirectional with causality between inflammaging and CHIP potentially instrumental to understanding MDS pathogenesis. Here we review the concept of inflammaging and MDS pathogenesis and explore their causal relationship by introducing a novel framing mechanism of "pre-clonal inflammaging" and "clonal inflammaging". We aim to harmonize research on ageing, inflammation and MDS pathogenesis by contextualizing the current understanding of inflammaging and the ageing hematopoietic system with what is known about the etiology of MDS via its progression from CHIP.
Collapse
Affiliation(s)
- Matthew T Villaume
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Michael R Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; Vanderbilt-Ingram Cancer Center, Program in Cancer Biology, and Center for Immunobiology Nashville, TN 37232.
| |
Collapse
|
6
|
Kurts C, von Vietinghoff S, Krebs CF, Panzer U. Kidney immunology from pathophysiology to clinical translation. Nat Rev Immunol 2025:10.1038/s41577-025-01131-y. [PMID: 39885266 DOI: 10.1038/s41577-025-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Kidney diseases are widespread and represent a considerable medical, social and economic burden. However, there has been marked progress in understanding the immunological aspects of kidney disease. This includes the identification of distinct intrarenal immunological niches and characterization of kidney disease endotypes according to the underlying molecular immunopathology, as well as a better understanding of the pathological roles for T cells, mononuclear phagocytes and B cells and the renal elements they target. These insights have improved the diagnosis of kidney disease. Here, we discuss new developments in our understanding of kidney immunology, focusing on immune mechanisms of disease and their translational implications for the diagnosis and treatment of kidney disease. We also describe the immune-mediated crosstalk between the kidney and other organs that influences kidney disease and extrarenal inflammation.
Collapse
Affiliation(s)
- Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Hospital, Bonn, Germany.
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| | - Sibylle von Vietinghoff
- Nephrology Section, University Hospital Bonn, Medical Clinic and Polyclinic I, Bonn, Germany
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Krishnan T, Solar Vasconcelos JP, Titmuss E, Vanner RJ, Schaeffer DF, Karsan A, Lim H, Ho C, Gill S, Yip S, Chia SK, Kennecke HF, Jonker DJ, Chen EX, Renouf DJ, O’Callaghan CJ, Loree JM. Clonal Hematopoiesis of Indeterminate Potential and its Association with Treatment Outcomes and Adverse Events in Patients with Solid Tumors. CANCER RESEARCH COMMUNICATIONS 2025; 5:66-73. [PMID: 39636207 PMCID: PMC11713863 DOI: 10.1158/2767-9764.crc-24-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
SIGNIFICANCE Liquid biopsy is increasingly being used in oncology for tumor molecular characterization. CHIP is a common incidental finding in cfDNA, and its prevalence increases with age. This study builds on growing evidence of common CHIP variants in patients with solid tumors. The results suggest a possible clinical impact of CHIP on treatment outcomes from immunotherapy or chemotherapy. This may have implications for treatment selection for patients with solid tumors.
Collapse
Affiliation(s)
- Tharani Krishnan
- Medical Oncology Department, BC Cancer–Vancouver, Vancouver, Canada
| | | | - Emma Titmuss
- Medical Oncology Department, BC Cancer–Vancouver, Vancouver, Canada
| | - Robert J. Vanner
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Aly Karsan
- Department of Hematology, BC Cancer–Vancouver, Vancouver, Canada
| | - Howard Lim
- Medical Oncology Department, BC Cancer–Vancouver, Vancouver, Canada
| | - Cheryl Ho
- Medical Oncology Department, BC Cancer–Vancouver, Vancouver, Canada
| | - Sharlene Gill
- Medical Oncology Department, BC Cancer–Vancouver, Vancouver, Canada
| | - Stephen Yip
- Pathology Department, Vancouver General Hospital, Vancouver, Canada
| | - Stephen K. Chia
- Medical Oncology Department, BC Cancer–Vancouver, Vancouver, Canada
| | - Hagen F. Kennecke
- Medical Oncology Department, Providence Cancer Institute, Portland, Oregon
| | - Derek J. Jonker
- Medical Oncology Department, Ottawa Hospital Cancer Centre, Ottawa, Canada
| | - Eric X. Chen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Daniel J. Renouf
- Medical Oncology Department, BC Cancer–Vancouver, Vancouver, Canada
| | | | | |
Collapse
|
8
|
Zhang Q, Yim R, Lee P, Chin L, Li V, Gill H. Implications of Clonal Hematopoiesis in Hematological and Non-Hematological Disorders. Cancers (Basel) 2024; 16:4118. [PMID: 39682303 DOI: 10.3390/cancers16234118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Clonal hematopoiesis (CH) is associated with an increased risk of developing myeloid neoplasms (MNs) such as myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML). In general, CH comprises clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS). It is an age-related phenomenon characterized by the presence of somatic mutations in hematopoietic stem cells (HSCs) and hematopoietic stem and progenitor cells (HSPCs) that acquire a fitness advantage under selection pressure. Individuals with CHIP have an absolute risk of 0.5-1.0% per year for progressing to MDS or AML. Inflammation, smoking, cytotoxic therapy, and radiation can promote the process of clonal expansion and leukemic transformation. Of note, exposure to chemotherapy or radiation for patients with solid tumors or lymphomas can increase the risk of therapy-related MN. Beyond hematological malignancies, CH also serves as an independent risk factor for heart disease, stroke, chronic obstructive pulmonary disease, and chronic kidney disease. Prognostic models such as the CH risk score and MN-prediction models can provide a framework for risk stratification and clinical management of CHIP/CCUS and identify high-risk individuals who may benefit from close surveillance. For CH or related disorders, therapeutic strategies targeting specific CH-associated mutations and specific selection pressure may have a potential role in the future.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rita Yim
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lynn Chin
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vivian Li
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Zhang Y, Li J, Tan L, Xue J, Shi YG. Understanding the role of ten-eleven translocation family proteins in kidney diseases. Biochem Soc Trans 2024; 52:2203-2214. [PMID: 39377353 DOI: 10.1042/bst20240291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Epigenetic mechanisms play a critical role in the pathogenesis of human diseases including kidney disorders. As the erasers of DNA methylation, Ten-eleven translocation (TET) family proteins can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), thus leading to passive or active DNA demethylation. Similarly, TET family proteins can also catalyze the same reaction on RNA. In addition, TET family proteins can also regulate chromatin structure and gene expression in a catalytic activity-independent manner through recruiting the SIN3A/HDAC co-repressor complex. In 2012, we reported for the first time that the genomic 5-hydroxymethylcytosine level and the mRNA levels of Tet1 and Tet2 were significantly downregulated in murine kidneys upon ischemia and reperfusion injury. Since then, accumulating evidences have eventually established an indispensable role of TET family proteins in not only acute kidney injury but also chronic kidney disease. In this review, we summarize the upstream regulatory mechanisms and the pathophysiological role of TET family proteins in major types of kidney diseases and discuss their potential values in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuelin Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiahui Li
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Xue
- Department of Nephology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yujiang Geno Shi
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Verdonschot JAJ, Fuster JJ, Walsh K, Heymans SRB. The emerging role of clonal haematopoiesis in the pathogenesis of dilated cardiomyopathy. Eur Heart J 2024; 45:ehae682. [PMID: 39417710 PMCID: PMC11638724 DOI: 10.1093/eurheartj/ehae682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The increased sensitivity of novel DNA sequencing techniques has made it possible to identify somatic mutations in small circulating clones of haematopoietic stem cells. When the mutation affects a 'driver' gene, the mutant clone gains a competitive advantage and has the potential to expand over time, a phenomenon referred to as clonal haematopoiesis (CH), which is emerging as a new risk factor for various non-haematological conditions, most notably cardiovascular disease (e.g. heart failure). Dilated cardiomyopathy (DCM) is a form of non-ischaemic heart failure that is characterized by a heterogeneous aetiology. The first evidence is arising that CH plays an important role in the disease course in patients with DCM, and a strong association of CH with multiple aetiologies of DCM has been described (e.g. inflammation, chemotherapy, and atrial fibrillation). The myocardial inflammation induced by CH may be an important trigger for DCM development for an already susceptible heart, e.g. in the presence of genetic variants, environmental triggers, and comorbidities. Studies investigating the role of CH in the pathogenesis of DCM are expected to increase rapidly. To move the field forward, it will be important to report the methodology and results in a standardized manner, so results can be combined and compared. The accurate measurement of CH in patients with DCM can provide guidance of specific (anti-inflammatory) therapies, as mutations in the CH driver genes prime the inflammasome pathway.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jose J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Kenneth Walsh
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, Hematovascular Biology Center, University of Virginia School of Medicine, 415 Lane Rd, Suite 1010, PO Box 801394, Charlottesville, VA, USA
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
- Department of Cardiovascular Science, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
11
|
Vlasschaert C, Crowley SD, Bick AG. Salt and CHIP: Tet2-CH Aggravates Salt-Sensitive Hypertension in Mice. Circ Res 2024; 135:951-953. [PMID: 39388535 PMCID: PMC11512599 DOI: 10.1161/circresaha.124.325364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
| | - Steven D Crowley
- Division of Nephrology, Departments of Medicine, Durham VA and Duke University Medical Center, Durham, NC (S.D.C.)
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (A.G.B.)
| |
Collapse
|
12
|
Tiedje V, Vela PS, Yang JL, Untch BR, Boucai L, Stonestrom AJ, Costa AB, Expósito SF, Srivastava A, Kerpelev M, Greenberg J, Wereski M, Kulick A, Chen K, Qin T, Im SY, Krishnan A, Martinez Benitez AR, Pluvinet R, Sahin M, Menghrajani K, Krishnamoorthy GP, de Stanchina E, Zehir A, Satija R, Knauf J, Bowman RL, Esteller M, Devlin S, Berger MF, Koche RP, Fagin JA, Levine RL. Targetable treatment resistance in thyroid cancer with clonal hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617685. [PMID: 39415999 PMCID: PMC11483059 DOI: 10.1101/2024.10.10.617685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Anaplastic thyroid cancer (ATC) is a clinically aggressive malignancy with a dismal prognosis. Combined BRAF/MEK inhibition offers significant therapeutic benefit in patients with BRAF V600E -mutant ATCs. However, relapses are common and overall survival remains poor. Compared with differentiated thyroid cancer, a hallmark of ATCs is significant infiltration with myeloid cells, particularly macrophages. ATCs are most common in the aging population, which also has an increased incidence of TET2 -mutant clonal hematopoiesis (CH). CH-mutant macrophages have been shown to accelerate CH-associated pathophysiology including atherosclerosis. However, the clinical and mechanistic contribution of CH-mutant clones to solid tumour biology, prognosis and therapeutic response has not been elucidated. Here we show that TET2 -mutant CH is enriched in the tumour microenvironment of patients with solid tumours and associated with adverse prognosis in ATC patients. We find that Tet2 -mutant macrophages selectively infiltrate mouse Braf V600E -mutant ATC and that their overexpression of Tgfβ-family ligands mediates resistance to BRAF/MEK inhibition. Importantly, inhibition of Tgfβ signaling restores sensitivity to MAPK pathway inhibition, opening a path for synergistic strategies to improve outcomes of patients with ATCs and concurrent CH.
Collapse
|
13
|
Nead KT, Kim T, Joo L, McDowell TL, Wong JW, Chan ICC, Brock E, Zhao J, Xu T, Tang C, Lee CL, Abe JI, Bolton KL, Liao Z, Scheet PA, Lin SH. Impact of cancer therapy on clonal hematopoiesis mutations and subsequent clinical outcomes. Blood Adv 2024; 8:5215-5224. [PMID: 38830141 PMCID: PMC11530395 DOI: 10.1182/bloodadvances.2024012929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
ABSTRACT Exposure to cancer therapies is associated with an increased risk of clonal hematopoiesis (CH). The objective of our study was to investigate the genesis and evolution of CH after cancer therapy. In this prospective study, we undertook error-corrected duplex DNA sequencing in blood samples collected before and at 2 time points after chemoradiation in patients with esophageal or lung cancer recruited from 2013 to 2018. We applied a customized workflow to identify the earliest changes in CH mutation count and clone size and determine their association with clinical outcomes. Our study included 29 patients (87 samples). Their median age was 67 years, and 76% (n = 22) were male; the median follow-up period was 3.9 years. The most mutated genes were DNMT3A, TET2, TP53, and ASXL1. We observed a twofold increase in the number of mutations from before to after treatment in TP53, which differed from all other genes examined (P < .001). Among mutations detected before and after treatment, we observed an increased clone size in 38% and a decreased clone size in 5% of TP53 mutations (odds ratio, 3.7; 95% confidence interval [CI], 1.75-7.84; P < .001). Changes in mutation count and clone size were not observed in other genes. Individuals with an increase in the number of TP53 mutations after chemoradiation experienced shorter overall survival (hazard ratio, 7.07; 95% CI, 1.50-33.46; P = .014). In summary, we found an increase in the number and size of TP53 CH clones after chemoradiation that were associated with adverse clinical outcomes.
Collapse
Affiliation(s)
- Kevin T. Nead
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Taebeom Kim
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - LiJin Joo
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tina L. McDowell
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Justin W. Wong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Irenaeus C. C. Chan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Elizabeth Brock
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jing Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ting Xu
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chad Tang
- Department of Genitourinary Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chang-Lung Lee
- Departments of Radiation Oncology and Pathology, Duke University School of Medicine, Durham, NC
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kelly L. Bolton
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Zhongxing Liao
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paul A. Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steven H. Lin
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Díez-Díez M, Ramos-Neble BL, de la Barrera J, Silla-Castro JC, Quintas A, Vázquez E, Rey-Martín MA, Izzi B, Sánchez-García L, García-Lunar I, Mendieta G, Mass V, Gómez-López N, Espadas C, González G, Quesada AJ, García-Álvarez A, Fernández-Ortiz A, Lara-Pezzi E, Dopazo A, Sánchez-Cabo F, Ibáñez B, Andrés V, Fuster V, Fuster JJ. Unidirectional association of clonal hematopoiesis with atherosclerosis development. Nat Med 2024; 30:2857-2866. [PMID: 39215150 PMCID: PMC11485253 DOI: 10.1038/s41591-024-03213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Clonal hematopoiesis, a condition in which acquired somatic mutations in hematopoietic stem cells lead to the outgrowth of a mutant hematopoietic clone, is associated with a higher risk of hematological cancer and a growing list of nonhematological disorders, most notably atherosclerosis and associated cardiovascular disease. However, whether accelerated atherosclerosis is a cause or a consequence of clonal hematopoiesis remains a matter of debate. Some studies support a direct contribution of certain clonal hematopoiesis-related mutations to atherosclerosis via exacerbation of inflammatory responses, whereas others suggest that clonal hematopoiesis is a symptom rather than a cause of atherosclerosis, as atherosclerosis or related traits may accelerate the expansion of mutant hematopoietic clones. Here we combine high-sensitivity DNA sequencing in blood and noninvasive vascular imaging to investigate the interplay between clonal hematopoiesis and atherosclerosis in a longitudinal cohort of healthy middle-aged individuals. We found that the presence of a clonal hematopoiesis-related mutation confers an increased risk of developing de novo femoral atherosclerosis over a 6-year period, whereas neither the presence nor the extent of atherosclerosis affects mutant cell expansion during this timeframe. These findings indicate that clonal hematopoiesis unidirectionally promotes atherosclerosis, which should help translate the growing understanding of this condition into strategies for the prevention of atherosclerotic cardiovascular disease in individuals exhibiting clonal hematopoiesis.
Collapse
Affiliation(s)
- Miriam Díez-Díez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | - J C Silla-Castro
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Enrique Vázquez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Benedetta Izzi
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, University Hospital La Moraleja, Madrid, Spain
| | - Guiomar Mendieta
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Servicio de Cardiología, Institut Clínic Cardiovascular, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
| | - Virginia Mass
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Cristina Espadas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Gema González
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Servicio de Cardiología, Institut Clínic Cardiovascular, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Antonio Fernández-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Hospital Clínico San Carlos, Universidad Complutense, IdISSC, Madrid, Spain
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
| |
Collapse
|
15
|
Pan Y, Sun X, Kelly TN. Elucidating the role of clonal hematopoiesis in acute kidney injury. Kidney Int 2024; 106:554-556. [PMID: 39304268 DOI: 10.1016/j.kint.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Yang Pan
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Xiao Sun
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA.
| |
Collapse
|
16
|
Singh J, Li N, Ashrafi E, Thao LTP, Curtis DJ, Wood EM, McQuilten ZK. Clonal hematopoiesis of indeterminate potential as a prognostic factor: a systematic review and meta-analysis. Blood Adv 2024; 8:3771-3784. [PMID: 38838228 PMCID: PMC11298876 DOI: 10.1182/bloodadvances.2024013228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
ABSTRACT With advances in sequencing, individuals with clonal hematopoiesis of indeterminate potential (CHIP) are increasingly being identified, making it essential to understand its prognostic implications. We conducted a systematic review of studies comparing the risk of clinical outcomes in individuals with and without CHIP. We searched MEDLINE and EMBASE and included original research reporting an outcome risk measure in individuals with CHIP, adjusted for the effect of age. From the 3305 studies screened, we included 88 studies with 45 to 470 960 participants. Most studies had a low-to-moderate risk of bias in all domains of the Quality in Prognostic Factor Studies tool. Random-effects meta-analyses were performed for outcomes reported in at least 3 studies. CHIP conferred an increased risk of all-cause mortality (hazard ratio [HR], 1.34; 95% confidence interval, 1.19-1.50), cancer mortality (HR, 1.46; 1.13-1.88), composite cardiovascular events (HR, 1.40; 1.19-1.65), coronary heart disease (HR, 1.76; 1.27-2.44), stroke (HR, 1.16; 1.05-1.28), heart failure (HR, 1.27; 1.15-1.41), hematologic malignancy (HR, 4.28; 2.29-7.98), lung cancer (HR, 1.40; 1.27-1.54), renal impairment (HR, 1.25; 1.18-1.33) and severe COVID-19 (odds ratio [OR], 1.46; 1.18-1.80). CHIP was not associated with cardiovascular mortality (HR, 1.09; 0.97-1.22), except in the subgroup analysis restricted to larger clones (HR, 1.31; 1.12-1.54). Isolated DNMT3A mutations did not increase the risk of myeloid malignancy, all-cause mortality, or renal impairment. The reasons for heterogeneity between studies included differences in definitions and measurements of CHIP and the outcomes, and populations studied. In summary, CHIP is associated with diverse clinical outcomes, with clone size, specific gene, and inherent patient characteristics important mediators of risk.
Collapse
Affiliation(s)
- Jasmine Singh
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Haematology, Fiona Stanley Hospital, Perth, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Nancy Li
- Department of Haematology, Eastern Health, Melbourne, Australia
| | - Elham Ashrafi
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Le Thi Phuong Thao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - David J. Curtis
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, Alfred Health, Melbourne, Australia
| | - Erica M. Wood
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Haematology, Monash Health, Melbourne, Australia
| | - Zoe K. McQuilten
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Haematology, Monash Health, Melbourne, Australia
| |
Collapse
|
17
|
Chen C, Humphreys BD. Clonal Hematopoiesis and Acute Kidney Injury Risk: Inflammatory Macrophages Implicated. Am J Kidney Dis 2024:S0272-6386(24)00862-X. [PMID: 38992458 DOI: 10.1053/j.ajkd.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Changfeng Chen
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
18
|
Vlasschaert C, Pan Y, Chen J, Akwo E, Rao V, Hixson JE, Chong M, Uddin MM, Yu Z, Jiang M, Peng F, Cao S, Wang Y, Kim DK, Hung AM, He J, Tamura MK, Cohen DL, He J, Li C, Bhat Z, Rao P, Xie D, Bick AG, Kestenbaum B, Paré G, Rauh MJ, Levin A, Natarajan P, Lash JP, Zhang MZ, Harris RC, Robinson-Cohen C, Lanktree MB, Kelly TN. Clonal hematopoiesis of indeterminate potential contributes to accelerated chronic kidney disease progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.19.24309181. [PMID: 38946975 PMCID: PMC11213124 DOI: 10.1101/2024.06.19.24309181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Clonal hematopoiesis of indeterminate potential (CHIP) is a common inflammatory condition of aging that causes myriad end-organ damage. We have recently shown associations for CHIP with acute kidney injury and with kidney function decline in the general population, with stronger associations for CHIP driven by mutations in genes other than DNMT3A (non- DNMT3A CHIP). Longitudinal kidney function endpoints in individuals with pre-existing chronic kidney disease (CKD) and CHIP have been examined in two previous studies, which reported conflicting findings and were limited by small sample sizes. Methods In this study, we examined the prospective associations between CHIP and CKD progression events in four cohorts of CKD patients (total N = 5,772). The primary outcome was a composite of 50% kidney function decline or kidney failure. The slope of eGFR decline was examined as a secondary outcome. Mendelian randomization techniques were then used to investigate potential causal effects of CHIP on eGFR decline. Finally, kidney function was assessed in adenine-fed CKD model mice having received a bone marrow transplant recapitulating Tet2 -CHIP compared to controls transplanted wild-type bone marrow. Results Across all cohorts, the average age was 66.4 years, the average baseline eGFR was 42.6 ml/min/1.73m 2 , and 24% had CHIP. Upon meta-analysis, non- DNMT3A CHIP was associated with a 59% higher relative risk of incident CKD progression (HR 1.59, 95% CI: 1.02-2.47). This association was more pronounced among individuals with diabetes (HR 1.29, 95% CI: 1.03-1.62) and with baseline eGFR ≥ 30 ml/min/1.73m (HR 1.80, 95% CI: 1.11-2.90). Additionally, the annualized slope of eGFR decline was steeper among non- DNMT3A CHIP carriers, relative to non-carriers (β -0.61 ± 0.31 ml/min/1.73m 2 , p = 0.04). Mendelian randomization analyses suggested a causal role for CHIP in eGFR decline among individuals with diabetes. In a dietary adenine mouse model of CKD, Tet2 -CHIP was associated with lower GFR as well as greater kidney inflammation, tubular injury, and tubulointerstitial fibrosis. Conclusion Non- DNMT3A CHIP is a potentially targetable novel risk factor for CKD progression.
Collapse
|
19
|
Allison SJ. Clonal haematopoiesis and AKI. Nat Rev Nephrol 2024; 20:271. [PMID: 38532004 DOI: 10.1038/s41581-024-00831-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
|