1
|
Pierré A, Pham T, Pearl J, Datta SR, Ritt JT, Fleischmann A. A Perspective on Neuroscience Data Standardization with Neurodata Without Borders. J Neurosci 2024; 44:e0381242024. [PMID: 39293939 PMCID: PMC11411583 DOI: 10.1523/jneurosci.0381-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024] Open
Abstract
Neuroscience research has evolved to generate increasingly large and complex experimental data sets, and advanced data science tools are taking on central roles in neuroscience research. Neurodata Without Borders (NWB), a standard language for neurophysiology data, has recently emerged as a powerful solution for data management, analysis, and sharing. We here discuss our labs' efforts to implement NWB data science pipelines. We describe general principles and specific use cases that illustrate successes, challenges, and non-trivial decisions in software engineering. We hope that our experience can provide guidance for the neuroscience community and help bridge the gap between experimental neuroscience and data science. Key takeaways from this article are that (1) standardization with NWB requires non-trivial design choices; (2) the general practice of standardization in the lab promotes data awareness and literacy, and improves transparency, rigor, and reproducibility in our science; (3) we offer several feature suggestions to ease the extensibility, publishing/sharing, and usability for NWB standard and users of NWB data.
Collapse
Affiliation(s)
- Andrea Pierré
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Tuan Pham
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Jonah Pearl
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Jason T Ritt
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
2
|
Lee KH, Denovellis EL, Ly R, Magland J, Soules J, Comrie AE, Gramling DP, Guidera JA, Nevers R, Adenekan P, Brozdowski C, Bray SR, Monroe E, Bak JH, Coulter ME, Sun X, Broyles E, Shin D, Chiang S, Holobetz C, Tritt A, Rübel O, Nguyen T, Yatsenko D, Chu J, Kemere C, Garcia S, Buccino A, Frank LM. Spyglass: a framework for reproducible and shareable neuroscience research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577295. [PMID: 38328074 PMCID: PMC10849637 DOI: 10.1101/2024.01.25.577295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Scientific progress depends on reliable and reproducible results. Progress can also be accelerated when data are shared and re-analyzed to address new questions. Current approaches to storing and analyzing neural data typically involve bespoke formats and software that make replication, as well as the subsequent reuse of data, difficult if not impossible. To address these challenges, we created Spyglass, an open-source software framework that enables reproducible analyses and sharing of data and both intermediate and final results within and across labs. Spyglass uses the Neurodata Without Borders (NWB) standard and includes pipelines for several core analyses in neuroscience, including spectral filtering, spike sorting, pose tracking, and neural decoding. It can be easily extended to apply both existing and newly developed pipelines to datasets from multiple sources. We demonstrate these features in the context of a cross-laboratory replication by applying advanced state space decoding algorithms to publicly available data. New users can try out Spyglass on a Jupyter Hub hosted by HHMI and 2i2c: https://spyglass.hhmi.2i2c.cloud/.
Collapse
Affiliation(s)
- Kyu Hyun Lee
- Department of Physiology, University of California, San Francisco
- Howard Hughes Medical Institute, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| | - Eric L. Denovellis
- Department of Physiology, University of California, San Francisco
- Howard Hughes Medical Institute, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| | - Ryan Ly
- Scientific Data Division, Lawrence Berkeley National Laboratory
| | - Jeremy Magland
- Center for Computational Mathematics, Flatiron Institute
| | - Jeff Soules
- Center for Computational Mathematics, Flatiron Institute
| | - Alison E. Comrie
- Department of Physiology, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| | - Daniel P. Gramling
- Graudate Program in Neural and Behavioral Sciences, University of Tübingen
| | - Jennifer A. Guidera
- Department of Physiology, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
- UCSF-UC Berkeley Graduate Program in Bioengineering, University of California, San Francisco
- Medical Scientist Training Program, University of California, San Francisco
| | - Rhino Nevers
- Department of Physiology, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| | - Philip Adenekan
- Department of Physiology, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| | - Chris Brozdowski
- Department of Physiology, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| | - Samuel R. Bray
- Department of Physiology, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| | - Emily Monroe
- Department of Physiology, University of California, San Francisco
| | - Ji Hyun Bak
- Department of Physiology, University of California, San Francisco
| | - Michael E. Coulter
- Department of Physiology, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| | - Xulu Sun
- Department of Physiology, University of California, San Francisco
- Howard Hughes Medical Institute, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| | - Emrey Broyles
- Department of Physiology, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| | - Donghoon Shin
- Department of Physiology, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
- UCSF-UC Berkeley Graduate Program in Bioengineering, University of California, San Francisco
| | - Sharon Chiang
- Department of Neurology, University of California, San Francisco
| | | | - Andrew Tritt
- Scientific Data Division, Lawrence Berkeley National Laboratory
| | - Oliver Rübel
- Scientific Data Division, Lawrence Berkeley National Laboratory
| | | | | | - Joshua Chu
- Department of Electrical and Computer Engineering, Rice University
| | - Caleb Kemere
- Department of Electrical and Computer Engineering, Rice University
| | | | | | - Loren M. Frank
- Department of Physiology, University of California, San Francisco
- Howard Hughes Medical Institute, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| |
Collapse
|
3
|
Ramaswamy S. Data-driven multiscale computational models of cortical and subcortical regions. Curr Opin Neurobiol 2024; 85:102842. [PMID: 38320453 DOI: 10.1016/j.conb.2024.102842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Data-driven computational models of neurons, synapses, microcircuits, and mesocircuits have become essential tools in modern brain research. The goal of these multiscale models is to integrate and synthesize information from different levels of brain organization, from cellular properties, dendritic excitability, and synaptic dynamics to microcircuits, mesocircuits, and ultimately behavior. This article surveys recent advances in the genesis of data-driven computational models of mammalian neural networks in cortical and subcortical areas. I discuss the challenges and opportunities in developing data-driven multiscale models, including the need for interdisciplinary collaborations, the importance of model validation and comparison, and the potential impact on basic and translational neuroscience research. Finally, I highlight future directions and emerging technologies that will enable more comprehensive and predictive data-driven models of brain function and dysfunction.
Collapse
Affiliation(s)
- Srikanth Ramaswamy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|