1
|
Wang T, Toriumi K, Suzuki K, Miyashita M, Ozawa A, Masada M, Itokawa M, Arai M. Amyloban, extracted from Hericium erinaceus, ameliorates social deficits and suppresses the enhanced dopaminergic system in social defeat stress mice. Neuropsychopharmacol Rep 2024. [PMID: 39263933 DOI: 10.1002/npr2.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Social dysfunctions are common in various psychiatric disorders, including depression, schizophrenia, and autism, and are long-lasting and difficult to treat. The development of treatments for social impairment is critical for the treatment of several psychiatric disorders. "Amyloban 3399," a product extracted from the mushroom Hericium erinaceus, markedly improves social dysfunctions in patients with treatment-resistant schizophrenia and depression. However, the molecular mechanism(s) through which amyloban ameliorates social impairment remains unclear. To clarify this mechanism, in this study, we aimed to establish a mouse model of social defeat stress (SDS) and investigate the effects of amyloban on social deficits. Amyloban administration ameliorated social deficits and the dopamine system activity in SDS mice. These findings suggest that there is a possibility that amyloban may improve social deficits by suppressing the hyperactivation of the dopaminergic system. Amyloban may be an effective treatment for social dysfunctions associated with various psychiatric disorders.
Collapse
Affiliation(s)
- Tianran Wang
- Schizophrenia Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Community Mental Health, Shinshu University School of Medicine, Nagano, Japan
- Department of Psychiatry, Shinshu University School of Medicine, Nagano, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Azuna Ozawa
- Schizophrenia Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Molecular and Cellular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mayuko Masada
- Schizophrenia Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Masanari Itokawa
- Schizophrenia Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Makoto Arai
- Schizophrenia Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
2
|
Oliva CA, Lira M, Jara C, Catenaccio A, Mariqueo TA, Lindsay CB, Bozinovic F, Cavieres G, Inestrosa NC, Tapia-Rojas C, Rivera DS. Long-term social isolation stress exacerbates sex-specific neurodegeneration markers in a natural model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1250342. [PMID: 37810621 PMCID: PMC10557460 DOI: 10.3389/fnagi.2023.1250342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-β (Aβ) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aβ increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aβ proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Carolina A. Oliva
- Centro para la Transversalización de Género en I+D+i+e, Vicerrectoría de Investigación y Doctorados, Universidad Autónoma de Chile, Santiago, Chile
| | - Matías Lira
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Catenaccio
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Trinidad A. Mariqueo
- Centro de Investigaciones Médicas, Laboratorio de Neurofarmacología, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Carolina B. Lindsay
- Laboratory of Neurosystems, Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Grisel Cavieres
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Nibaldo C. Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Daniela S. Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
3
|
Qi Y, Bruch D, Krop P, Herrmann MJ, Latoschik ME, Deckert J, Hein G. Social buffering of human fear is shaped by gender, social concern, and the presence of real vs virtual agents. Transl Psychiatry 2021; 11:641. [PMID: 34930923 PMCID: PMC8688413 DOI: 10.1038/s41398-021-01761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 11/09/2022] Open
Abstract
The presence of a partner can attenuate physiological fear responses, a phenomenon known as social buffering. However, not all individuals are equally sociable. Here we investigated whether social buffering of fear is shaped by sensitivity to social anxiety (social concern) and whether these effects are different in females and males. We collected skin conductance responses (SCRs) and affect ratings of female and male participants when they experienced aversive and neutral sounds alone (alone treatment) or in the presence of an unknown person of the same gender (social treatment). Individual differences in social concern were assessed based on a well-established questionnaire. Our results showed that social concern had a stronger effect on social buffering in females than in males. The lower females scored on social concern, the stronger the SCRs reduction in the social compared to the alone treatment. The effect of social concern on social buffering of fear in females disappeared if participants were paired with a virtual agent instead of a real person. Together, these results showed that social buffering of human fear is shaped by gender and social concern. In females, the presence of virtual agents can buffer fear, irrespective of individual differences in social concern. These findings specify factors that shape the social modulation of human fear, and thus might be relevant for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Yanyan Qi
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, 97080, Wurzburg, Germany.
- Department of Psychology, School of Education, Zhengzhou University, 450001, Zhengzhou, China.
| | - Dorothée Bruch
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, 97080, Wurzburg, Germany
| | - Philipp Krop
- Human-Computer Interaction, University of Wurzburg, Am Hubland, 97074, Wurzburg, Germany
| | - Martin J Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, 97080, Wurzburg, Germany
| | - Marc E Latoschik
- Human-Computer Interaction, University of Wurzburg, Am Hubland, 97074, Wurzburg, Germany
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, 97080, Wurzburg, Germany
| | - Grit Hein
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, 97080, Wurzburg, Germany.
| |
Collapse
|
4
|
Peen NF, Duque-Wilckens N, Trainor BC. Convergent neuroendocrine mechanisms of social buffering and stress contagion. Horm Behav 2021; 129:104933. [PMID: 33465346 PMCID: PMC7965339 DOI: 10.1016/j.yhbeh.2021.104933] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/07/2023]
Abstract
Social interactions play a key role in modulating the impact of stressful experiences. In some cases, social interactions can result in social buffering, the process in which the presence of one individual reduces the physiological and behavioral impact of stress in another individual. On the other hand, there is growing evidence that a key initiating factor of social buffering behaviors is the initiation of an anxiogenic state in the individual that was not directly exposed to the stress. This is referred to as stress contagion (a form of emotion contagion). Both processes involve the transmission of social information, suggesting that contagion and buffering could share similar neural mechanisms. In general, mechanistic studies of contagion and buffering are considered separately, even though behavioral studies show that a degree of contagion is usually necessary for social buffering behaviors to occur. Here we consider the extent to which the neuropeptides corticotropin releasing hormone and oxytocin are involved in contagion and stress buffering. We also assess the importance that frontal cortical areas such as the anterior cingulate cortex and infralimbic cortex play in these behavioral processes. We suggest that further work that directly compares neural mechanisms during stress contagion and stress buffering will be important for identifying what appear to be distinct but overlapping circuits mediating these processes.
Collapse
Affiliation(s)
- Natanja F Peen
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychology, University of California, Davis, CA. USA
| | - Natalia Duque-Wilckens
- Department of Psychology, University of California, Davis, CA. USA; Departments of Physiology and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI. USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA. USA.
| |
Collapse
|
5
|
Rivera DS, Lindsay CB, Oliva CA, Codocedo JF, Bozinovic F, Inestrosa NC. Effects of long-lasting social isolation and re-socialization on cognitive performance and brain activity: a longitudinal study in Octodon degus. Sci Rep 2020; 10:18315. [PMID: 33110163 PMCID: PMC7591540 DOI: 10.1038/s41598-020-75026-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Social isolation is considered a stressful situation that results in increased physiological reactivity to novel stimuli, altered behaviour, and impaired brain function. Here, we investigated the effects of long-term social isolation on working memory, spatial learning/memory, hippocampal synaptic transmission, and synaptic proteins in the brain of adult female and male Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects, makes it a unique animal model that can be highly applicable for further social, emotional, cognitive, and aging studies. These animals were socially isolated from post-natal and post-weaning until adulthood. We also evaluated if re-socialization would be able to compensate for reactive stress responses in chronically stressed animals. We showed that long-term social isolation impaired the HPA axis negative feedback loop, which can be related to cognitive deficits observed in chronically stressed animals. Notably, re-socialization restored it. In addition, we measured physiological aspects of synaptic transmission, where chronically stressed males showed more efficient transmission but deficient plasticity, as the reverse was true on females. Finally, we analysed synaptic and canonical Wnt signalling proteins in the hypothalamus, hippocampus, and prefrontal cortex, finding both sex- and brain structure-dependent modulation, including transient and permanent changes dependent on stress treatment.
Collapse
Affiliation(s)
- Daniela S Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile.
| | - Carolina B Lindsay
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Francisco Codocedo
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
6
|
Pause BM, Storch D, Lübke KT. Chemosensory communication of aggression: women's fine-tuned neural processing of male aggression signals. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190270. [PMID: 32306885 PMCID: PMC7209929 DOI: 10.1098/rstb.2019.0270] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The current study is the first to examine the central nervous processing of aggression chemosignals within men and women by means of chemosensory event-related potential (CSERP) analysis. Axillary sweat was collected from 17 men and 17 women participating in a competitive computer game (aggression condition) and playing a construction game (control condition). Sweat samples were pooled with reference to donor gender and condition, and presented to 23 men and 25 women via a constant flow olfactometer. Ongoing electroencephalogram was recorded from 61 scalp locations, CSERPs (P2, P3-1, P3-2) were analysed and neuronal sources calculated (low-resolution electromagnetic tomography, LORETA). Women, especially, showed larger P3-1 and P3-2 amplitudes in response to male as compared with female aggression signals (all p values < 0.01). The peak activation of this effect was related to activity within the dorsomedial prefrontal cortex (Brodmann area 8). As male aggression commonly targets physical harm, the competence of the human brain to sensitively detect male aggression signals is considered to be highly adaptive. The detection of male aggression signals seems to be of higher importance for women than for men. It is suggested that the processing of male aggression signals in women induces an immediate response selection. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Bettina M Pause
- Department of Experimental Psychology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Dunja Storch
- Department of Experimental Psychology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Katrin T Lübke
- Department of Experimental Psychology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Cognitive functions associated with developing prefrontal cortex during adolescence and developmental neuropsychiatric disorders. Neurobiol Dis 2019; 131:104322. [DOI: 10.1016/j.nbd.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/24/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
|