1
|
Zhang F, Chow RD, He E, Dong C, Xin S, Mirza D, Feng Y, Tian X, Verma N, Majety M, Zhang Y, Wang G, Chen S. Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy. Nat Biotechnol 2025:10.1038/s41587-024-02535-2. [PMID: 39820813 DOI: 10.1038/s41587-024-02535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/13/2024] [Indexed: 01/19/2025]
Abstract
The complex nature of the immunosuppressive tumor microenvironment (TME) requires multi-agent combinations for optimal immunotherapy. Here we describe multiplex universal combinatorial immunotherapy via gene silencing (MUCIG), which uses CRISPR-Cas13d to silence multiple endogenous immunosuppressive genes in the TME, promoting TME remodeling and enhancing antitumor immunity. MUCIG vectors targeting four genes delivered by adeno-associated virus (AAV) (Cd274/Pdl1, Lgals9/Galectin9, Lgals3/Galectin3 and Cd47; AAV-Cas13d-PGGC) demonstrate significant antitumor efficacy across multiple syngeneic tumor models, remodeling the TME by increasing CD8+ T-cell infiltration while reducing neutrophils. Whole transcriptome profiling validates the on-target knockdown of the four target genes and shows limited potential off-target or downstream gene alterations. AAV-Cas13d-PGGC outperforms corresponding shRNA treatments and individual gene knockdown. We further optimize MUCIG by employing high-fidelity Cas13d (hfCas13d), which similarly showed potent gene silencing and in vivo antitumor efficacy, without weight loss or liver toxicity. MUCIG represents a universal method to silence multiple immune genes in vivo in a programmable manner, offering broad efficacy across multiple tumor types.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Emily He
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Yale College, New Haven, CT, USA
| | - Chuanpeng Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Shan Xin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Daniyal Mirza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Yale College, New Haven, CT, USA
| | - Yanzhi Feng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Xiaolong Tian
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Nipun Verma
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Medha Majety
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Yale College, New Haven, CT, USA
| | - Yueqi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Guangchuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Yale College, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Lin Y, Li C, Chen Y, Gao J, Li J, Huang C, Liu Z, Wang W, Zheng X, Song X, Wu J, Wu J, Luo OJ, Tu Z, Li S, Li XJ, Lai L, Yan S. RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models. Mol Neurodegener 2025; 20:4. [PMID: 39806441 PMCID: PMC11727607 DOI: 10.1186/s13024-024-00794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention. METHODS The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA. This therapeutic effect was substantiated in various models: HEK 293 T cell, the HD 140Q-KI mouse, and the HD-KI pig model. The efficiency of the knockdown was analyzed through Western blot and RT-qPCR. Additionally, neuropathological changes were examined using Western blot, immunostaining, and RNA sequencing. The impact on motor abilities was assessed via behavioral experiments, providing a comprehensive evaluation of the treatment's effectiveness. RESULTS CRISPR/CasRx system can significantly reduce HTT mRNA levels across various models, including HEK 293 T cells, HD 140Q-KI mice at various disease stages, and HD-KI pigs, and resulted in decreased expression of mHTT. Utilizing the CRISPR/CasRx system to knock down HTT RNA has shown to ameliorate gliosis in HD 140Q-KI mice and delay neurodegeneration in HD pigs. CONCLUSIONS These findings highlight the effectiveness of the RNA-targeting CRISPR/CasRx as a potential therapeutic strategy for HD. Furthermore, the success of this approach provides valuable insights and novel avenues for the treatment of other genetic disorders caused by gene mutations.
Collapse
Affiliation(s)
- Yingqi Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Yizhi Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiale Gao
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiawei Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Chunhui Huang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Zhaoming Liu
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, Institutes of Biomedicine and Health , Chinese Academy of Sciences, Guangzhou, China
| | - Wei Wang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jianhao Wu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiaxi Wu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, Institutes of Biomedicine and Health , Chinese Academy of Sciences, Guangzhou, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Department of Neurology, Faculty of Medical Science, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Kempthorne L, Vaizoglu D, Cammack AJ, Carcolé M, Roberts MJ, Mikheenko A, Fisher A, Suklai P, Muralidharan B, Kroll F, Moens TG, Yshii L, Verschoren S, Hölbling BV, Moreira FC, Katona E, Coneys R, de Oliveira P, Zhang YJ, Jansen K, Daughrity LM, McGown A, Ramesh TM, Van Den Bosch L, Lignani G, Rahim AA, Coyne AN, Petrucelli L, Rihel J, Isaacs AM. Dual-targeting CRISPR-CasRx reduces C9orf72 ALS/FTD sense and antisense repeat RNAs in vitro and in vivo. Nat Commun 2025; 16:459. [PMID: 39779704 PMCID: PMC11711508 DOI: 10.1038/s41467-024-55550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic G4C2 repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy. CRISPR-Cas13 systems mature their own guide arrays, allowing targeting of multiple RNA species from a single construct. We show CRISPR-Cas13d variant CasRx effectively reduces overexpressed C9orf72 sense and antisense repeat transcripts and DPRs in HEK cells. In C9orf72 patient-derived iPSC-neuron lines, CRISPR-CasRx reduces endogenous sense and antisense repeat RNAs and DPRs and protects against glutamate-induced excitotoxicity. AAV delivery of CRISPR-CasRx to two distinct C9orf72 repeat mouse models significantly reduced both sense and antisense repeat-containing transcripts. This highlights the potential of RNA-targeting CRISPR systems as therapeutics for C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Liam Kempthorne
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Deniz Vaizoglu
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexander J Cammack
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mireia Carcolé
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Martha J Roberts
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alla Mikheenko
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alessia Fisher
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Pacharaporn Suklai
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Bhavana Muralidharan
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - François Kroll
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Thomas G Moens
- VIB-KU Center for Brain and Disease Research, Leuven, 3001, Belgium
| | - Lidia Yshii
- VIB-KU Center for Brain and Disease Research, Leuven, 3001, Belgium
| | - Stijn Verschoren
- VIB-KU Center for Brain and Disease Research, Leuven, 3001, Belgium
| | - Benedikt V Hölbling
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Francisco C Moreira
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Eszter Katona
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Rachel Coneys
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Paula de Oliveira
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Karen Jansen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Alexander McGown
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Tennore M Ramesh
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | | | - Gabriele Lignani
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University, Baltimore, USA
- Brain Science Institute, Johns Hopkins University, Baltimore, USA
| | | | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
4
|
McCallister TX, Lim CKW, Singh M, Zhang S, Ahsan NS, Terpstra WM, Xiong AY, Zeballos C MA, Powell JE, Drnevich J, Kang Y, Gaj T. A high-fidelity CRISPR-Cas13 system improves abnormalities associated with C9ORF72-linked ALS/FTD. Nat Commun 2025; 16:460. [PMID: 39779681 PMCID: PMC11711314 DOI: 10.1038/s41467-024-55548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
An abnormal expansion of a GGGGCC (G4C2) hexanucleotide repeat in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two debilitating neurodegenerative disorders driven in part by gain-of-function mechanisms involving transcribed forms of the repeat expansion. By utilizing a Cas13 variant with reduced collateral effects, we develop here a high-fidelity RNA-targeting CRISPR-based system for C9ORF72-linked ALS/FTD. When delivered to the brain of a transgenic rodent model, this Cas13-based platform curbed the expression of the G4C2 repeat-containing RNA without affecting normal C9ORF72 levels, which in turn decreased the formation of RNA foci, reduced the production of a dipeptide repeat protein, and reversed transcriptional deficits. This high-fidelity system possessed improved transcriptome-wide specificity compared to its native form and mediated targeting in motor neuron-like cells derived from a patient with ALS. These results lay the foundation for the implementation of RNA-targeting CRISPR technologies for C9ORF72-linked ALS/FTD.
Collapse
Affiliation(s)
- Tristan X McCallister
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Colin K W Lim
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mayuri Singh
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sijia Zhang
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Najah S Ahsan
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - William M Terpstra
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alisha Y Xiong
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - M Alejandra Zeballos C
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jackson E Powell
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yifei Kang
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thomas Gaj
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Shembrey C, Yang R, Casan J, Hu W, Chen H, Singh GJ, Sadras T, Prasad K, Shortt J, Johnstone RW, Trapani JA, Ekert PG, Fareh M. Principles of CRISPR-Cas13 mismatch intolerance enable selective silencing of point-mutated oncogenic RNA with single-base precision. SCIENCE ADVANCES 2024; 10:eadl0731. [PMID: 39693429 DOI: 10.1126/sciadv.adl0731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
Single-nucleotide variants (SNVs) are extremely prevalent in human cancers, although most of these remain clinically unactionable. The programmable RNA nuclease CRISPR-Cas13 has been deployed to specifically target oncogenic RNAs. However, silencing oncogenic SNVs with single-base precision remains extremely challenging due to the intrinsic mismatch tolerance of Cas13. Here, we show that introducing synthetic mismatches at precise positions of the spacer sequence enables de novo design of guide RNAs [CRISPR RNAs (crRNAs)] with strong preferential silencing of point-mutated transcripts. We applied these design principles to effectively silence the oncogenic KRAS G12 hotspot, NRAS G12D and BRAF V600E transcripts with minimal off-target silencing of the wild-type transcripts, underscoring the adaptability of this platform to silence various SNVs. Unexpectedly, the SNV-selective crRNAs harboring mismatched nucleotides reduce the promiscuous collateral activity of the RfxCas13d ortholog. These findings demonstrate that the CRISPR-Cas13 system can be reprogrammed to target mutant transcripts with single-base precision, showcasing the tremendous potential of this tool in personalized transcriptome editing.
Collapse
Affiliation(s)
- Carolyn Shembrey
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Ray Yang
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Joshua Casan
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Wenxin Hu
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Honglin Chen
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Gurjeet J Singh
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Teresa Sadras
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Krishneel Prasad
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Jake Shortt
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Ricky W Johnstone
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Joseph A Trapani
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| | - Paul G Ekert
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales, Sydney, Kensington, NSW, Australia
- UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, Kensington, NSW, Australia
| | - Mohamed Fareh
- Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne 3052 Australia
| |
Collapse
|
6
|
Lou Y, Yang P, Wang Y, Liu X, Guo Z, Geng Z, Lin J, Wang J, Zhang M, Guo X, Fu L, Zhu D, Wu L, Zhang B. Long-term therapeutic efficacy and safety profiles of hpCas13d RNA editing in treating early-onset hypertrophic cardiomyopathy. Life Sci 2024; 358:123144. [PMID: 39424268 DOI: 10.1016/j.lfs.2024.123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
AIMS Through evolving a precise RNA nuclease, hpCas13d, we have successfully inhibited hypertrophic cardiomyopathy in a compound heterozygous model. However, further investigation is needed to assess the long-term therapeutic effects and safety profiles of hpCas13d treatment. MATERIALS AND METHODS AAV-hpCas13d[RQ] was subcutaneously injected into neonatal Myh6RH/RQ mice. Sequential echocardiography analyses were conducted at 4 months and 12 months to evaluate the sustained therapeutic effects of hpCas13d. Electrocardiography was employed to assess cardiac arrhythmias, and mice were euthanized at 12 months. Quantification of Myh6RQ degradation induced by hpCas13d[RQ] was performed using digital droplet PCR and cDNA sequencing. Histological analysis, RNA sequencing, and proteomic analyses were utilized to examine the inhibitory effects on pathological phenotypes and downstream signaling pathways. Biodistribution, tissue damage, and host immune response to AAV-hpCas13d[RQ] were assessed to evaluate long-term safety profiles. KEY FINDINGS The allele-specific RNA degradation persisted for 12 months in AAV-hpCas13d[RQ]-treated Myh6RH/RQ mice. Partial degradation of pathogenic Myh6RQ transcripts proved adequate for the long-term inhibition of cardiac hypertrophy, arrhythmias, fibrosis, and cellular apoptosis in Myh6RH/RQ mice. RNA sequencing and proteomic analyses revealed that hpCas13d[RQ] treatment impeded hypertrophy and fibrosis, mitochondrial dysfunction, and abnormalities in ion channels downstream of mutant Myh6. Prolonged treatment with AAV-hpCas13d from the neonatal stage did not induce significant tissue damage, liver toxicity, humoral responses, or cellular immune reactions against the AAV9 capsid and bacterial hpCas13d. SIGNIFICANCE These results underscore the promising translational potential of AAV-hpCas13d in treating cardiovascular diseases and advancing in vivo gene therapy.
Collapse
Affiliation(s)
- Yingmei Lou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ping Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuze Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xing Liu
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhizhao Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zilong Geng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Juntao Lin
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junxiao Wang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Guo
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Fu
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Zhu
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lianpin Wu
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, China; Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
Kushawah G, Amaral DB, Hassan H, Gogol M, Nowotarski SH, Bazzini AA. Critical role of Spatio-Temporally Regulated Maternal RNAs in Zebrafish Embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622483. [PMID: 39574587 PMCID: PMC11580991 DOI: 10.1101/2024.11.07.622483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
The maternal-to-zygotic transition shifts regulatory control from maternal to zygotic messenger RNAs (mRNA) through maternal mRNA degradation. While temporal aspects of maternal mRNA decay are known, spatial mechanisms remain underexplored. Using CRISPR-Cas9 and CRISPR-Cas13d systems, we functionally dissected the contribution of maternal versus zygotic fractions and overcame challenges of studying embryonic lethal genes. We identified differentially distributed maternal mRNAs in specific cells and evidenced the critical role of five maternal mRNAs, cth1, arl4d, abi1b, foxa and lhx1a, in embryogenesis. Further, we focused on the functionally uncharacterized cth1 gene, revealing its essential role in gametogenesis and embryogenesis. Cth1 acts as a spatio-temporal RNA decay factor regulating mRNA stability and accumulation of its targets in a spatio-temporal manner through 3'UTR recognition during early development. Furthermore, Cth1 3'UTR drives its spatio-temporal RNA localization. Our findings provide new insights into spatio-temporal RNA decay mechanisms and highlight dual CRISPR-Cas strategies in studying embryonic development. Highlights Differentially distributed marginal maternal RNAs have a critical role in early embryogenesis.Cas13d complements the Cas9 limitation to study the functions of embryonic lethal genes. Cth1 is essential for gametogenesis and early embryonic development. Cth1 is a maternal RNA decay factor required for spatio-temporal RNA regulation. 3'UTR of Cth1 drives its spatio-temporal RNA dynamics.
Collapse
|
9
|
Yao JY, Liu T, Hu XR, Sheng H, Chen ZH, Zhao HY, Li XJ, Wang Y, Hao L. An insight into allele-selective approaches to lowering mutant huntingtin protein for Huntington's disease treatment. Biomed Pharmacother 2024; 180:117557. [PMID: 39405896 DOI: 10.1016/j.biopha.2024.117557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Huntington's disease (HD), a monogenic neurodegenerative disorder, stems from a CAG repeat expansion within the mutant huntingtin gene (HTT). This leads to a detrimental gain-of-function of the mutated huntingtin protein (mHTT). As of now, there exist no efficacious therapies to alter the disease progression. In view of the monogenetic mutation nature and an indispensable role of wild-type HTT in healthy neurodevelopment and cellular functions, the developing strategy of allele-selectively deleting/silencing mutant HTT as well as only inactivating mHTT without altering wild-type HTT or wild-type huntingtin protein (wtHTT) comes highly recommended, and may offer a promising treatment option for HD. Here, we reviewed the therapeutic approaches that allele-selective lowering mHTT expression by targeting only mutant HTT DNA, RNA and mHTT along with recent preclinical and clinical outcomes and challenges, in anticipation of some novel ideas to be introduced into HD therapeutic research.
Collapse
Affiliation(s)
- Jia-Yuan Yao
- The First Clinical College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Ting Liu
- The Queen's University of Belfast Joint College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xin-Ru Hu
- The First Clinical College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hui Sheng
- Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenhe Area, Shenyang 110016, PR China
| | - Zi-Hao Chen
- The Queen's University of Belfast Joint College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hai-Yang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xiao-Jia Li
- Teaching Center for Basic Medical Experiment, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Yang Wang
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|
10
|
Solem MA, Pelzel R, Rozema NB, Brown TG, Reid E, Mansky RH, Gomez-Pastor R. Enhanced Hippocampal Spare Capacity in Q175DN Mice Despite Elevated mHTT Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618355. [PMID: 39464002 PMCID: PMC11507687 DOI: 10.1101/2024.10.14.618355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Huntington's disease (HD) is a neurodegenerative disease resulting in devastating motor, cognitive, and psychiatric deficits. The striatum is a brain region that controls movement and some forms of cognition and is most significantly impacted in HD. However, despite well-documented deficits in learning and memory in HD, knowledge of the potential implication of other brain regions such as the hippocampus remains limited. Objective Here, we study the comparative impact of enhanced mHTT aggregation and neuropathology in the striatum and hippocampus of two HD mouse models. Methods We utilized the zQ175 as a control HD mouse model and the Q175DN mice lacking the PGK-Neomycin cassette generated in house. We performed a comparative characterization of the neuropathology between zQ175 and Q175DN mice in the striatum and the hippocampus by assessing HTT aggregation, neuronal and glial pathology, chaperone expression, and synaptic density. Results We showed that Q175DN mice presented enhanced mHTT aggregation in both striatum and hippocampus compared to zQ175. Striatal neurons showed a greater susceptibility to enhanced accumulation of mHTT than hippocampal neurons in Q175DN despite high levels of mHTT in both regions. Contrary to the pathology seen in the striatum, Q175DN hippocampus presented enhanced spare capacity showing increased synaptic density, decreased Iba1+ microglia density and enhanced HSF1 levels in specific subregions of the hippocampus compared to zQ175. Conclusions Q175DN mice are a valuable tool to understand the fundamental susceptibility differences to mHTT toxicity between striatal neurons and other neuronal subtypes. Furthermore, our findings also suggest that cognitive deficits observed in HD animals might arise from either striatum dysfunction or other regions involved in cognitive processes but not from hippocampal degeneration.
Collapse
Affiliation(s)
- Melissa A Solem
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ross Pelzel
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Nicholas B. Rozema
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Taylor G. Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Emma Reid
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Rachel H. Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - R Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Truong VA, Chang YH, Dang TQ, Tu Y, Tu J, Chang CW, Chang YH, Liu GS, Hu YC. Programmable editing of primary MicroRNA switches stem cell differentiation and improves tissue regeneration. Nat Commun 2024; 15:8358. [PMID: 39333549 PMCID: PMC11436717 DOI: 10.1038/s41467-024-52707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Programmable RNA editing is harnessed for modifying mRNA. Besides mRNA, miRNA also regulates numerous biological activities, but current RNA editors have yet to be exploited for miRNA manipulation. To engineer primary miRNA (pri-miRNA), the miRNA precursor, we present a customizable editor REPRESS (RNA Editing of Pri-miRNA for Efficient Suppression of miRNA) and characterize critical parameters. The optimized REPRESS is distinct from other mRNA editing tools in design rationale, hence enabling editing of pri-miRNAs that are not editable by other RNA editing systems. We edit various pri-miRNAs in different cells including adipose-derived stem cells (ASCs), hence attenuating mature miRNA levels without disturbing host gene expression. We further develop an improved REPRESS (iREPRESS) that enhances and prolongs pri-miR-21 editing for at least 10 days, with minimal perturbation of transcriptome and miRNAome. iREPRESS reprograms ASCs differentiation, promotes in vitro cartilage formation and augments calvarial bone regeneration in rats, thus implicating its potentials for engineering miRNA and applications such as stem cell reprogramming and tissue regeneration.
Collapse
Affiliation(s)
- Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Thuc Quyen Dang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi Tu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jui Tu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
12
|
Li G, Cheng Y, Yu J, Zhu Y, Ma H, Zhou Y, Pu Z, Zhu G, Yuan Y, Zhang Z, Zhou X, Tian K, Qiao J, Hu X, Chen XX, Ji Q, Huang X, Ma B, Yao Y. Compact RNA editors with natural miniature Cas13j nucleases. Nat Chem Biol 2024:10.1038/s41589-024-01729-8. [PMID: 39300230 DOI: 10.1038/s41589-024-01729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
Clustered regularly interspaced short palindromic repeats-Cas13 effectors are used for RNA editing but the adeno-associated virus (AAV) packaging limitations because of their big sizes hinder their therapeutic application. Here we report the identification of the Cas13j family, with LepCas13j (529 aa) and ChiCas13j (424 aa) being the smallest and most highly efficient variants for RNA interference. The miniaturized Cas13j proteins enable the development of compact RNA base editors. Chi-RESCUE-S, by fusing dChiCas13j with hADAR2dd, demonstrates high efficiency and specificity in A-to-G and C-to-U conversions. Importantly, this system is compatible with single-AAV packaging without the need for protein sequence truncation. It successfully corrected pathogenic mutations, such as APOC3D65N and SCN9AR896Q, to the wild-type forms. In addition, we developed an optimized system, Chi-RESCUE-S-mini3, which pioneered efficient in vivo C-to-U RNA editing of PCSK9 in mice through single-AAV delivery, resulting in reduced total cholesterol levels. These results highlight the potential of Cas13j to treat human diseases.
Collapse
Affiliation(s)
- Guo Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- Xianghu Laboratory, Hangzhou, China.
| | - Yaxian Cheng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jingwen Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yunfei Zhu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Hongru Ma
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yuqiao Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhongji Pu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Guanglin Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | | | - Ziyue Zhang
- Zhejiang Institute of Tianjin University, Shaoxing, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
| | - Xinzhi Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Kairen Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Institute of Tianjin University, Shaoxing, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Institute of Tianjin University, Shaoxing, China
| | - Xiaoxiang Hu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Bin Ma
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Yuan Yao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Liu H, Zhao XF, Lu YN, Hayes LR, Wang J. CRISPR/Cas13d targeting suppresses repeat-associated non-AUG translation of C9orf72 hexanucleotide repeat RNA. J Clin Invest 2024; 134:e179016. [PMID: 39288267 PMCID: PMC11527445 DOI: 10.1172/jci179016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
A hexanucleotide GGGGCC repeat expansion in the non-coding region of the C9orf72 gene is the most common genetic mutation identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The resulting repeat RNA and dipeptide repeat proteins from non-conventional repeat translation have been recognized as important markers associated with the diseases. CRISPR/Cas13d, a powerful RNA-targeting tool, has faced challenges in effectively targeting RNA with stable secondary structures. Here we report that CRISPR/Cas13d can be optimized to specifically target GGGGCC repeat RNA. Our results demonstrate that the CRISPR/Cas13d system can be harnessed to significantly diminish the translation of poly-dipeptides originating from the GGGGCC repeat RNA. This efficacy has been validated in various cell types, including induced pluripotent stem cells and differentiated motor neurons originating from C9orf72-ALS patients, as well as in C9orf72 repeat transgenic mice. These findings demonstrate the application of CRISPR/Cas13d in targeting RNA with intricate higher-order structures and suggest a potential therapeutic approach for ALS and FTD.
Collapse
Affiliation(s)
- Honghe Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiao-Feng Zhao
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yu-Ning Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lindsey R. Hayes
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, and
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
de Sousa-Lourenço J, Silva AC, Pereira de Almeida L, Nobre RJ. Molecular therapy for polyQ disorders: from bench to clinical trials. Trends Mol Med 2024; 30:804-808. [PMID: 38839514 DOI: 10.1016/j.molmed.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Polyglutamine (polyQ) disorders are monogenic neurodegenerative disorders. Currently, no therapies are available for this complex group of disorders. Here, we aim to provide an overview of recent promising preclinical studies and the ongoing clinical trials focusing on molecular therapies for polyQ disorders.
Collapse
Affiliation(s)
- João de Sousa-Lourenço
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana C Silva
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal; GeneT, Gene Therapy Center of Excellence, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; GeneT, Gene Therapy Center of Excellence, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.
| | - Rui J Nobre
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; GeneT, Gene Therapy Center of Excellence, University of Coimbra, Coimbra, Portugal; ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
15
|
Gao J, Gunasekar S, Xia ZJ, Shalin K, Jiang C, Chen H, Lee D, Lee S, Pisal ND, Luo JN, Griciuc A, Karp JM, Tanzi R, Joshi N. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci 2024; 25:553-572. [PMID: 38898231 DOI: 10.1038/s41583-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Swetharajan Gunasekar
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziting Judy Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiruba Shalin
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Christopher Jiang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| | - Dongtak Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sohyung Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nishkal D Pisal
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - James N Luo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ana Griciuc
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rudolph Tanzi
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Yang P, Lou Y, Geng Z, Guo Z, Wu S, Li Y, Song K, Shi T, Zhang S, Xiong J, Chen AF, Li D, Pu WT, Da L, Zhang Y, Sun K, Zhang B. Allele-Specific Suppression of Variant MHC With High-Precision RNA Nuclease CRISPR-Cas13d Prevents Hypertrophic Cardiomyopathy. Circulation 2024; 150:283-298. [PMID: 38752340 PMCID: PMC11259241 DOI: 10.1161/circulationaha.123.067890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/12/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored. METHODS We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs. RESULTS Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy. CONCLUSIONS Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Yingmei Lou
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Zilong Geng
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Zhizhao Guo
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Shuo Wu
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Yige Li
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Kaiyuan Song
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China (T.S.)
| | - Shasha Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Junhao Xiong
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Alex F. Chen
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (D.L.)
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, MA (W.T.P.)
- Harvard Stem Cell Institute, Harvard University, MA (W.T.P.)
| | - Lintai Da
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Yan Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (Y.Z.)
| | - Kun Sun
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (P.Y., Y. Lou, Z. Geng, Z. Guo, S.W., Y. Li, K.S., S.Z., J.X., A.F.C., L.D., K.S., B.Z.)
| |
Collapse
|
17
|
Song Y, Cui J, Zhu J, Kim B, Kuo ML, Potts PR. RNATACs: Multispecific small molecules targeting RNA by induced proximity. Cell Chem Biol 2024; 31:1101-1117. [PMID: 38876100 DOI: 10.1016/j.chembiol.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
RNA-targeting small molecules (rSMs) have become an attractive modality to tackle traditionally undruggable proteins and expand the druggable space. Among many innovative concepts, RNA-targeting chimeras (RNATACs) represent a new class of multispecific, induced proximity small molecules that act by chemically bringing RNA targets into proximity with an endogenous RNA effector, such as a ribonuclease (RNase). Depending on the RNA effector, RNATACs can alter the stability, localization, translation, or splicing of the target RNA. Although still in its infancy, this new modality has the potential for broad applications in the future to treat diseases with high unmet need. In this review, we discuss potential advantages of RNATACs, recent progress in the field, and challenges to this cutting-edge technology.
Collapse
Affiliation(s)
- Yan Song
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| | - Jia Cui
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Jiaqiang Zhu
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Boseon Kim
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Mei-Ling Kuo
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Patrick Ryan Potts
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
18
|
Hart SK, Wessels HH, Méndez-Mancilla A, Müller S, Drabavicius G, Choi O, Sanjana NE. Low copy CRISPR-Cas13d mitigates collateral RNA cleavage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594039. [PMID: 38798586 PMCID: PMC11118291 DOI: 10.1101/2024.05.13.594039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
While CRISPR-Cas13 systems excel in accurately targeting RNA, the potential for collateral RNA degradation poses a concern for therapeutic applications and limits broader adoption for transcriptome perturbations. We evaluate the extent to which collateral RNA cleavage occurs when Rfx Cas13d is delivered via plasmid transfection or lentiviral transduction and find that collateral activity only occurs with high levels of Rfx Cas13d expression. Using transcriptome-scale and combinatorial CRISPR pooled screens in cell lines with low-copy Rfx Cas13d, we find high on-target knockdown, without extensive collateral activity regardless of the expression level of the target gene. In contrast, transfection of Rfx Cas13d, which yields higher nuclease expression, results in collateral RNA degradation. Further, our analysis of a high-fidelity Cas13 variant uncovers a marked decrease in on-target efficiency, suggesting that its reduced collateral activity may be due to an overall diminished nuclease capability.
Collapse
|
19
|
Wang S, Xiao Y, Tian J, Dai B, Tao Z, Liu J, Sun Z, Liu X, Li Y, Zhao G, Cui Y, Wang F, Liu S. Targeted Macrophage CRISPR-Cas13 mRNA Editing in Immunotherapy for Tendon Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311964. [PMID: 38302097 DOI: 10.1002/adma.202311964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/12/2024] [Indexed: 02/03/2024]
Abstract
CRISPR-Cas13 holds substantial promise for tissue repair through its RNA editing capabilities and swift catabolism. However, conventional delivery methods fall short in addressing the heightened inflammatory response orchestrated by macrophages during the acute stages of tendon injury. In this investigation, macrophage-targeting cationic polymers are systematically screened to facilitate the entry of Cas13 ribonucleic-protein complex (Cas13 RNP) into macrophages. Notably, SPP1 (OPN encoding)-producing macrophages are recognized as a profibrotic subtype that emerges during the inflammatory stage. By employing ROS-responsive release mechanisms tailored for macrophage-targeted Cas13 RNP editing systems, the overactivation of SPP1 is curbed in the face of an acute immune microenvironment. Upon encapsulating this composite membrane around the tendon injury site, the macrophage-targeted Cas13 RNP effectively curtails the emergence of injury-induced SPP1-producing macrophages in the acute phase, leading to diminished fibroblast activation and mitigated peritendinous adhesion. Consequently, this study furnishes a swift RNA editing strategy for macrophages in the inflammatory phase triggered by ROS in tendon injury, along with a pioneering macrophage-targeted carrier proficient in delivering Cas13 into macrophages efficiently.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Xiao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Tian
- Department of Orthopedics, Soochow University Affiliated Wuxi Ninth People's Hospital, Wuxi, 214061, China
| | - Bo Dai
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jingwen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhenyu Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yanhao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gang Zhao
- Department of Orthopedics, Soochow University Affiliated Wuxi Ninth People's Hospital, Wuxi, 214061, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
20
|
Johnston M, Urban N, Dincer C. Cas13d-mediated gene knockdown in CAR T cells: towards off-the-shelf cancer treatment. Signal Transduct Target Ther 2024; 9:113. [PMID: 38670950 PMCID: PMC11053049 DOI: 10.1038/s41392-024-01830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Affiliation(s)
- Midori Johnston
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Nadine Urban
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Can Dincer
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany.
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
21
|
Wessels HH, Stirn A, Méndez-Mancilla A, Kim EJ, Hart SK, Knowles DA, Sanjana NE. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning. Nat Biotechnol 2024; 42:628-637. [PMID: 37400521 DOI: 10.1038/s41587-023-01830-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2023] [Indexed: 07/05/2023]
Abstract
Transcriptome engineering applications in living cells with RNA-targeting CRISPR effectors depend on accurate prediction of on-target activity and off-target avoidance. Here we design and test ~200,000 RfxCas13d guide RNAs targeting essential genes in human cells with systematically designed mismatches and insertions and deletions (indels). We find that mismatches and indels have a position- and context-dependent impact on Cas13d activity, and mismatches that result in G-U wobble pairings are better tolerated than other single-base mismatches. Using this large-scale dataset, we train a convolutional neural network that we term targeted inhibition of gene expression via gRNA design (TIGER) to predict efficacy from guide sequence and context. TIGER outperforms the existing models at predicting on-target and off-target activity on our dataset and published datasets. We show that TIGER scoring combined with specific mismatches yields the first general framework to modulate transcript expression, enabling the use of RNA-targeting CRISPRs to precisely control gene dosage.
Collapse
Affiliation(s)
- Hans-Hermann Wessels
- New York Genome Center, New York City, NY, USA
- Department of Biology, New York University, New York City, NY, USA
| | - Andrew Stirn
- New York Genome Center, New York City, NY, USA
- Department of Computer Science, Columbia University, New York City, NY, USA
| | - Alejandro Méndez-Mancilla
- New York Genome Center, New York City, NY, USA
- Department of Biology, New York University, New York City, NY, USA
| | - Eric J Kim
- Department of Computer Science, Columbia University, New York City, NY, USA
| | - Sydney K Hart
- New York Genome Center, New York City, NY, USA
- Department of Biology, New York University, New York City, NY, USA
| | - David A Knowles
- New York Genome Center, New York City, NY, USA.
- Department of Computer Science, Columbia University, New York City, NY, USA.
- Data Science Institute, Columbia University, New York City, NY, USA.
- Department of Systems Biology, Columbia University, New York City, NY, USA.
| | - Neville E Sanjana
- New York Genome Center, New York City, NY, USA.
- Department of Biology, New York University, New York City, NY, USA.
| |
Collapse
|
22
|
Teng M, Xia ZJ, Lo N, Daud K, He HH. Assembling the RNA therapeutics toolbox. MEDICAL REVIEW (2021) 2024; 4:110-128. [PMID: 38680684 PMCID: PMC11046573 DOI: 10.1515/mr-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
From the approval of COVID-19 mRNA vaccines to the 2023 Nobel Prize awarded for nucleoside base modifications, RNA therapeutics have entered the spotlight and are transforming drug development. While the term "RNA therapeutics" has been used in various contexts, this review focuses on treatments that utilize RNA as a component or target RNA for therapeutic effects. We summarize the latest advances in RNA-targeting tools and RNA-based technologies, including but not limited to mRNA, antisense oligos, siRNAs, small molecules and RNA editors. We focus on the mechanisms of current FDA-approved therapeutics but also provide a discussion on the upcoming workforces. The clinical utility of RNA-based therapeutics is enabled not only by the advances in RNA technologies but in conjunction with the significant improvements in chemical modifications and delivery platforms, which are also briefly discussed in the review. We summarize the latest RNA therapeutics based on their mechanisms and therapeutic effects, which include expressing proteins for vaccination and protein replacement therapies, degrading deleterious RNA, modulating transcription and translation efficiency, targeting noncoding RNAs, binding and modulating protein activity and editing RNA sequences and modifications. This review emphasizes the concept of an RNA therapeutic toolbox, pinpointing the readers to all the tools available for their desired research and clinical goals. As the field advances, the catalog of RNA therapeutic tools continues to grow, further allowing researchers to combine appropriate RNA technologies with suitable chemical modifications and delivery platforms to develop therapeutics tailored to their specific clinical challenges.
Collapse
Affiliation(s)
- Mona Teng
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ziting Judy Xia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nicholas Lo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kashif Daud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
23
|
Tong H, Yang T, Xu S, Li X, Liu L, Zhou G, Yang S, Yin S, Li XJ, Li S. Huntington's Disease: Complex Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:3845. [PMID: 38612657 PMCID: PMC11011923 DOI: 10.3390/ijms25073845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Huntington's disease (HD) arises from the abnormal expansion of CAG repeats in the huntingtin gene (HTT), resulting in the production of the mutant huntingtin protein (mHTT) with a polyglutamine stretch in its N-terminus. The pathogenic mechanisms underlying HD are complex and not yet fully elucidated. However, mHTT forms aggregates and accumulates abnormally in neuronal nuclei and processes, leading to disruptions in multiple cellular functions. Although there is currently no effective curative treatment for HD, significant progress has been made in developing various therapeutic strategies to treat HD. In addition to drugs targeting the neuronal toxicity of mHTT, gene therapy approaches that aim to reduce the expression of the mutant HTT gene hold great promise for effective HD therapy. This review provides an overview of current HD treatments, discusses different therapeutic strategies, and aims to facilitate future therapeutic advancements in the field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (H.T.); (T.Y.); (S.X.); (X.L.); (L.L.); (G.Z.); (S.Y.); (S.Y.)
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (H.T.); (T.Y.); (S.X.); (X.L.); (L.L.); (G.Z.); (S.Y.); (S.Y.)
| |
Collapse
|
24
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
25
|
Hermann DM. Heliyon Neurology: Leveraging cell biology concepts for advancing clinical neurology development. Heliyon 2024; 10:e26080. [PMID: 38495531 PMCID: PMC10943517 DOI: 10.1016/j.heliyon.2024.e26080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Affiliation(s)
- Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Kuo HC, Prupes J, Chou CW, Finkelstein IJ. Massively parallel profiling of RNA-targeting CRISPR-Cas13d. Nat Commun 2024; 15:498. [PMID: 38216559 PMCID: PMC10786891 DOI: 10.1038/s41467-024-44738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
CRISPR-Cas13d cleaves RNA and is used in vivo and for diagnostics. However, a systematic understanding of its RNA binding and cleavage specificity is lacking. Here, we describe an RNA Chip-Hybridized Association-Mapping Platform (RNA-CHAMP) for measuring the binding affinity for > 10,000 RNAs containing structural perturbations and other alterations relative to the CRISPR RNA (crRNA). Deep profiling of Cas13d reveals that it does not require a protospacer flanking sequence but is exquisitely sensitive to secondary structure within the target RNA. Cas13d binding is penalized by mismatches in the distal crRNA-target RNA region, while alterations in the proximal region inhibit nuclease activity. A biophysical model built from these data reveals that target recognition initiates in the distal end of the target RNA. Using this model, we design crRNAs that can differentiate between SARS-CoV-2 variants by modulating nuclease activation. This work describes the key determinants of RNA targeting by a type VI CRISPR enzyme.
Collapse
Affiliation(s)
- Hung-Che Kuo
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Joshua Prupes
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Chia-Wei Chou
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
27
|
Binda CS, Lelos MJ, Rosser AE, Massey TH. Using gene or cell therapies to treat Huntington's disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:193-215. [PMID: 39341655 DOI: 10.1016/b978-0-323-90120-8.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Huntington's disease is caused by a CAG repeat expansion in the first exon of the HTT gene, leading to the production of gain-of-toxic-function mutant huntingtin protein species and consequent transcriptional dysregulation and disrupted cell metabolism. The brunt of the disease process is borne by the striatum from the earliest disease stages, with striatal atrophy beginning approximately a decade prior to the onset of neurologic signs. Although the expanded CAG repeat in the HTT gene is necessary and sufficient to cause HD, other genes can influence the age at onset of symptoms and how they progress. Many of these modifier genes have roles in DNA repair and are likely to modulate the stability of the CAG repeat in somatic cells. Currently, there are no disease-modifying treatments for HD that can be prescribed to patients and few symptomatic treatments, but there is a lot of interest in therapeutics that can target the pathogenic pathways at the DNA and RNA levels, some of which have reached the stage of human studies. In contrast, cell therapies aim to replace key neural cells lost to the disease process and/or to support the host vulnerable striatum by direct delivery of cells to the brain. Ultimately it may be possible to combine gene and cell therapies to both slow disease processes and provide some level of neural repair. In this chapter we consider the current status of these therapeutic strategies along with their prospects and challenges.
Collapse
Affiliation(s)
- Caroline S Binda
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; BRAIN Unit, Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom.
| | - Thomas H Massey
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
28
|
Shi P, Wu X. Programmable RNA targeting with CRISPR-Cas13. RNA Biol 2024; 21:1-9. [PMID: 38764173 PMCID: PMC11110701 DOI: 10.1080/15476286.2024.2351657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
The RNA-targeting CRISPR-Cas13 system has enabled precise engineering of endogenous RNAs, significantly advancing our understanding of RNA regulation and the development of RNA-based diagnostic and therapeutic applications. This review aims to provide a summary of Cas13-based RNA targeting tools and applications, discuss limitations and challenges of existing tools and suggest potential directions for further development of the RNA targeting system.
Collapse
Affiliation(s)
- Peiguo Shi
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xuebing Wu
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
29
|
McCallister TX, Lim CKW, Terpstra WM, Alejandra Zeballos C M, Zhang S, Powell JE, Gaj T. A high-fidelity CRISPR-Cas13 system improves abnormalities associated with C9ORF72-linked ALS/FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571328. [PMID: 38168370 PMCID: PMC10760048 DOI: 10.1101/2023.12.12.571328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An abnormal expansion of a GGGGCC hexanucleotide repeat in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two debilitating neurodegenerative disorders driven in part by gain-of-function mechanisms involving transcribed forms of the repeat expansion. By utilizing a Cas13 variant with reduced collateral effects, we developed a high-fidelity RNA-targeting CRISPR-based system for C9ORF72-linked ALS/FTD. When delivered to the brain of a transgenic rodent model, this Cas13-based platform effectively curbed the expression of the GGGGCC repeat-containing RNA without affecting normal C9ORF72 levels, which in turn decreased the formation of RNA foci and reversed transcriptional deficits. This high-fidelity Cas13 variant possessed improved transcriptome-wide specificity compared to its native form and mediated efficient targeting in motor neuron-like cells derived from a patient with ALS. Our results lay the foundation for the implementation of RNA-targeting CRISPR technologies for C9ORF72-linked ALS/FTD.
Collapse
Affiliation(s)
- Tristan X. McCallister
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Colin K. W. Lim
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William M. Terpstra
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - M. Alejandra Zeballos C
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jackson E. Powell
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
30
|
Regio S, Vachey G, Goñi E, Duarte F, Rybarikova M, Sipion M, Rey M, Huarte M, Déglon N. Revisiting the outcome of adult wild-type Htt inactivation in the context of HTT-lowering strategies for Huntington's disease. Brain Commun 2023; 5:fcad344. [PMID: 38116140 PMCID: PMC10729863 DOI: 10.1093/braincomms/fcad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Huntingtin-lowering strategies are central to therapeutic approaches for Huntington's disease. Recent studies reported the induction of age- and cell type-specific phenotypes by conditional huntingtin knockout, but these experimental conditions did not precisely mimic huntingtin-lowering or gene-editing conditions in terms of the cells targeted and brain distribution, and no transcriptional profiles were provided. Here, we used the adeno-associated delivery system commonly used in CNS gene therapy programmes and the self-inactivating KamiCas9 gene-editing system to investigate the long-term consequences of wild-type mouse huntingtin inactivation in adult neurons and, thus, the feasibility and safety of huntingtin inactivation in these cells. Behavioural and neuropathological analyses and single-nuclei RNA sequencing indicated that huntingtin editing in 77% of striatal neurons and 16% of cortical projecting neurons in adult mice induced no behavioural deficits or cellular toxicity. Single-nuclei RNA sequencing in 11.5-month-old animals showed that huntingtin inactivation did not alter striatal-cell profiles or proportions. Few differentially expressed genes were identified and Augur analysis confirmed an extremely limited response to huntingtin inactivation in all cell types. Our results therefore indicate that wild-type huntingtin inactivation in adult striatal and projection neurons is well tolerated in the long term.
Collapse
Affiliation(s)
- Sara Regio
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| | - Gabriel Vachey
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| | - Enrique Goñi
- Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona 31008, Spain
| | - Fabio Duarte
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| | - Margareta Rybarikova
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| | - Mélanie Sipion
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| | - Maria Rey
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona 31008, Spain
| | - Nicole Déglon
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| |
Collapse
|
31
|
Gunitseva N, Evteeva M, Korzhenkov A, Patrushev M. A New RNA-Dependent Cas12g Nuclease. Int J Mol Sci 2023; 24:17105. [PMID: 38069429 PMCID: PMC10707612 DOI: 10.3390/ijms242317105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
The development of RNA-targeting CRISPR-Cas systems represents a major step forward in the field of gene editing and regulation. RNA editing presents a viable alternative to genome editing in certain scenarios as it offers a reversible and manageable approach, reducing the likelihood of runaway mutant variants. One of the most promising applications is in the treatment of genetic disorders caused by mutations in RNA molecules. In this study, we investigate a previously undescribed Cas12g nuclease which was found in metagenomes from promising thermophilic microbial communities during the expedition to the Republic of North Ossetia-Alania in 2020. The method outlined in this study can be applied to other Cas orthologs and variants, leading to a better understanding of the CRISPR-Cas system and its enzymatic activities. The cis-cleavage activity of the new type V-G Cas effector was indicated by in vitro RNA cleavage experiments. While CRISPR-Cas systems are known for their high specificity, there is still a risk of unintended cleavage of nontargeted RNA molecules. Ultimately, the search for new genome editing tools and the study of their properties will remove barriers to research in this area. With continued research and development, we may be able to unlock their full potential.
Collapse
Affiliation(s)
- Natalia Gunitseva
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia (M.P.)
| | - Martha Evteeva
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia (M.P.)
| | | | | |
Collapse
|
32
|
Thompson LM, Orr HT. HD and SCA1: Tales from two 30-year journeys since gene discovery. Neuron 2023; 111:3517-3530. [PMID: 37863037 PMCID: PMC10842341 DOI: 10.1016/j.neuron.2023.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
One of the more transformative findings in human genetics was the discovery that the expansion of unstable nucleotide repeats underlies a group of inherited neurological diseases. A subset of these unstable repeat neurodegenerative diseases is due to the expansion of a CAG trinucleotide repeat encoding a stretch of glutamines, i.e., the polyglutamine (polyQ) repeat neurodegenerative diseases. Among the CAG/polyQ repeat diseases are Huntington's disease (HD) and spinocerebellar ataxia type 1 (SCA1), in which the expansions are within widely expressed proteins. Although both HD and SCA1 are autosomal dominantly inherited, and both typically cause mid- to late-life-onset movement disorders with cognitive decline, they each are characterized by distinct clinical characteristics and predominant sites of neuropathology. Importantly, the respective affected proteins, Huntingtin (HTT, HD) and Ataxin 1 (ATXN1, SCA1), have unique functions and biological properties. Here, we review HD and SCA1 with a focus on how their disease-specific and shared features may provide informative insights.
Collapse
Affiliation(s)
- Leslie M Thompson
- Department of Psychiatry and Human Behavior, Department of Neurobiology and Behavior, Department of Biological Chemistry, Institute of Memory Impairments and Neurological Disorders, Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis and Saint Paul, MN 55455, USA.
| |
Collapse
|
33
|
Wang W, Tasset A, Pyatnitskiy I, Lin P, Bellamkonda A, Mehta R, Gabbert C, Yuan F, Mohamed HG, Peppas NA, Wang H. Reversible, Covalent DNA Condensation Approach Using Chemical Linkers for Enhanced Gene Delivery. NANO LETTERS 2023; 23:9310-9318. [PMID: 37843021 DOI: 10.1021/acs.nanolett.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nonviral gene delivery has emerged as a promising technology for gene therapy. Nonetheless, these approaches often face challenges, primarily associated with lower efficiency, which can be attributed to the inefficient transportation of DNA into the nucleus. Here, we report a two-stage condensation approach to achieve efficient nuclear transport of DNA. First, we utilize chemical linkers to cross-link DNA plasmids via a reversible covalent bond to form smaller-sized bundled DNA (b-DNA). Then, we package the b-DNA into cationic vectors to further condense b-DNA and enable efficient gene delivery to the nucleus. We demonstrate clear improvements in the gene transfection efficiency in vitro, including with 11.6 kbp plasmids and in primary cultured neurons. Moreover, we also observed a remarkable improvement in lung-selective gene transfection efficiency in vivo by this two-stage condensation approach following intravenous administration. This reversible covalent assembly strategy demonstrates substantial value of nonviral gene delivery for clinical therapeutic applications.
Collapse
Affiliation(s)
- Wenliang Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Aaron Tasset
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ilya Pyatnitskiy
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Peter Lin
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arjun Bellamkonda
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rohan Mehta
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christian Gabbert
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Feng Yuan
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heba Galaa Mohamed
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nicholas A Peppas
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Huiliang Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
34
|
Szalai C. Arguments for and against the whole-genome sequencing of newborns. Am J Transl Res 2023; 15:6255-6263. [PMID: 37969196 PMCID: PMC10641337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
Recent decades have brought enormous progress in both genetics and genomics, as well as in information technology (IT). The sequence of the human genome is now known, and although our knowledge is far from complete, great progress has been made in understanding how the genome works. With the developments in storage capacity, artificial intelligence, and learning algorithms, we are now able to learn and interpret complex systems such as the human genome in a very short time. Perhaps the most important goal of learning about the human genome is to understand diseases better: how they develop; how their processes can be prevented or slowed down; and after diseases have developed, how they can be cured or their symptoms alleviated. The vast majority of diseases have a genetic background, i.e., genes, sequence variations, and gene-gene interactions play a role in most diseases to a greater or lesser extent. Accordingly, the first step is to discover which genes, or genomic variants, cause or contribute to the development of a particular disease in a given patient. Given that an individual's genome remains virtually unchanged throughout their life (with one or two exceptions, such as in the case of cancer, which is caused by somatic mutations), it might be considered advantageous to sequence the genome of every person at birth. In this paper, we set out to show the possible benefits of sequencing the entire genome of every human being at birth, while also discussing the main arguments against it.
Collapse
Affiliation(s)
- Csaba Szalai
- Department of Genetics, Cell and Immunobiology, Semmelweis University1089 Budapest, Hungary
- Heim Pál Children’s Hospital1089 Budapest, Hungary
| |
Collapse
|
35
|
Zeballos C MA, Moore HJ, Smith TJ, Powell JE, Ahsan NS, Zhang S, Gaj T. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. Nat Commun 2023; 14:6492. [PMID: 37838698 PMCID: PMC10576788 DOI: 10.1038/s41467-023-42147-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
The TDP-43 proteinopathies, which include amyotrophic lateral sclerosis and frontotemporal dementia, are a devastating group of neurodegenerative disorders that are characterized by the mislocalization and aggregation of TDP-43. Here we demonstrate that RNA-targeting CRISPR effector proteins, a programmable class of gene silencing agents that includes the Cas13 family of enzymes and Cas7-11, can be used to mitigate TDP-43 pathology when programmed to target ataxin-2, a modifier of TDP-43-associated toxicity. In addition to inhibiting the aggregation and transit of TDP-43 to stress granules, we find that the in vivo delivery of an ataxin-2-targeting Cas13 system to a mouse model of TDP-43 proteinopathy improved functional deficits, extended survival, and reduced the severity of neuropathological hallmarks. Further, we benchmark RNA-targeting CRISPR platforms against ataxin-2 and find that high-fidelity forms of Cas13 possess improved transcriptome-wide specificity compared to Cas7-11 and a first-generation effector. Our results demonstrate the potential of CRISPR technology for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- M Alejandra Zeballos C
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hayden J Moore
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tyler J Smith
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jackson E Powell
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Najah S Ahsan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
36
|
Yan Z, Yao Y, Li L, Cai L, Zhang H, Zhang S, Xiao Q, Wang X, Zuo E, Xu C, Wu J, Yang H. Treatment of autosomal dominant retinitis pigmentosa caused by RHO-P23H mutation with high-fidelity Cas13X in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:750-761. [PMID: 37621413 PMCID: PMC10445100 DOI: 10.1016/j.omtn.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
Mutations in Rhodopsin (RHO) gene commonly cause autosomal dominant retinitis pigmentosa (adRP) without effective therapeutic treatment so far. Compared with genomic DNA-targeting CRISPR-Cas9 system, Cas13 edits RNA for therapeutic applications, avoiding the risk of causing permanent changes in the genome. In particular, a compact and high-fidelity Cas13X (hfCas13X) recently has been developed to degrade targeted RNA with minimal collateral effects and could also be packaged in a single adeno-associated virus for efficient in vivo delivery. In this study, we engineered single-guide RNA for hfCas13X to specifically knock down human mutant Rhodopsin transcripts RHO-P23H with minimal effect on wild-type transcripts. Moreover, treatment with hfCas13X alleviated the adRP progression in both RHO-P23H overexpression-induced and humanized hRHOP23H/WT mouse models. Our study indicates the potential of hfCas13X in treating adRP caused by RHO mutations and other genetic diseases.
Collapse
Affiliation(s)
- Zixiang Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yuqin Yao
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Luyao Li
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Lingqiong Cai
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Haiwei Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shenghai Zhang
- Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Qingquan Xiao
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Xing Wang
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Chunlong Xu
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
- Lingang Laboratory, Shanghai 201210, China
| | - Jihong Wu
- Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Hui Yang
- HuidaGene Therapeutics Co., Ltd., Shanghai 200131, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|
37
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
38
|
Hermann DM. Hot topics in cellular neuropathology III: using CRISPR/Cas9 technology for deciphering central nervous system disease targets. Front Cell Neurosci 2023; 17:1276077. [PMID: 37720547 PMCID: PMC10502715 DOI: 10.3389/fncel.2023.1276077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
39
|
Zeballos C MA, Moore HJ, Smith TJ, Powell JE, Ahsan NS, Zhang S, Gaj T. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536072. [PMID: 37066174 PMCID: PMC10104115 DOI: 10.1101/2023.04.07.536072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The TDP-43 proteinopathies, which include amyotrophic lateral sclerosis and frontotemporal dementia, are a devastating group of neurodegenerative disorders that are characterized by the mislocalization and aggregation of TDP-43. Here we demonstrate that RNA-targeting CRISPR effector proteins, a programmable class of gene silencing agents that includes the Cas13 family of enzymes and Cas7-11, can be used to mitigate TDP-43 pathology when programmed to target ataxin-2, a modifier of TDP-43-associated toxicity. In addition to inhibiting the aggregation and transit of TDP-43 to stress granules, we find that the in vivo delivery of an ataxin-2-targeting Cas13 system to a mouse model of TDP-43 proteinopathy improved functional deficits, extended survival, and reduced the severity of neuropathological hallmarks. Further, we benchmark RNA-targeting CRISPR platforms against ataxin-2 and find that high-fidelity forms of Cas13 possess improved transcriptome-wide specificity compared to Cas7-11 and a first-generation effector. Our results demonstrate the potential of CRISPR technology for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- M. Alejandra Zeballos C
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hayden J. Moore
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Tyler J. Smith
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jackson E. Powell
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Najah S. Ahsan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
40
|
Bijak V, Szczygiel M, Lenkiewicz J, Gucwa M, Cooper DR, Murzyn K, Minor W. The current role and evolution of X-ray crystallography in drug discovery and development. Expert Opin Drug Discov 2023; 18:1221-1230. [PMID: 37592849 PMCID: PMC10620067 DOI: 10.1080/17460441.2023.2246881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION Macromolecular X-ray crystallography and cryo-EM are currently the primary techniques used to determine the three-dimensional structures of proteins, nucleic acids, and viruses. Structural information has been critical to drug discovery and structural bioinformatics. The integration of artificial intelligence (AI) into X-ray crystallography has shown great promise in automating and accelerating the analysis of complex structural data, further improving the efficiency and accuracy of structure determination. AREAS COVERED This review explores the relationship between X-ray crystallography and other modern structural determination methods. It examines the integration of data acquired from diverse biochemical and biophysical techniques with those derived from structural biology. Additionally, the paper offers insights into the influence of AI on X-ray crystallography, emphasizing how integrating AI with experimental approaches can revolutionize our comprehension of biological processes and interactions. EXPERT OPINION Investing in science is crucially emphasized due to its significant role in drug discovery and advancements in healthcare. X-ray crystallography remains an essential source of structural biology data for drug discovery. Recent advances in biochemical, spectroscopic, and bioinformatic methods, along with the integration of AI techniques, hold the potential to revolutionize drug discovery when effectively combined with robust data management practices.
Collapse
Affiliation(s)
- Vanessa Bijak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Michal Szczygiel
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Joanna Lenkiewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Michal Gucwa
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| |
Collapse
|
41
|
Duan W, Urani E, Mattson MP. The potential of gene editing for Huntington's disease. Trends Neurosci 2023; 46:365-376. [PMID: 36907678 PMCID: PMC10121915 DOI: 10.1016/j.tins.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a trinucleotide repeat expansion in the huntingtin gene resulting in long stretches of polyglutamine repeats in the huntingtin protein. The disease involves progressive degeneration of neurons in the striatum and cerebral cortex resulting in loss of control of motor function, psychiatric problems, and cognitive deficits. There are as yet no treatments that can slow disease progression in HD. Recent advances in gene editing using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) systems and demonstrations of their ability to correct gene mutations in animal models of a range of diseases suggest that gene editing may prove effective in preventing or ameliorating HD. Here we describe (i) potential CRISPR-Cas designs and cellular delivery methods for the correction of mutant genes that cause inherited diseases, and (ii) recent preclinical findings demonstrating the efficacy of such gene-editing approaches in animal models, with a focus on HD.
Collapse
Affiliation(s)
- Wenzhen Duan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ece Urani
- Program in Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
42
|
Morelli KH, Smargon AA, Yeo GW. Programmable macromolecule-based RNA-targeting therapies to treat human neurological disorders. RNA (NEW YORK, N.Y.) 2023; 29:489-497. [PMID: 36693761 PMCID: PMC10019361 DOI: 10.1261/rna.079519.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Disruptions in RNA processing play critical roles in the pathogenesis of neurological diseases. In this Perspective, we discuss recent progress in the development of RNA-targeting therapeutic modalities. We focus on progress, limitations, and opportunities in a new generation of therapies engineered from RNA binding proteins and other endogenous RNA regulatory macromolecules to treat human neurological disorders.
Collapse
Affiliation(s)
- Kathryn H Morelli
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| | - Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| |
Collapse
|
43
|
Kuo HC, Prupes J, Chou CW, Finkelstein IJ. Massively Parallel Profiling of RNA-targeting CRISPR-Cas13d. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534188. [PMID: 37034598 PMCID: PMC10081190 DOI: 10.1101/2023.03.27.534188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Type VI CRISPR enzymes cleave target RNAs and are widely used for gene regulation, RNA tracking, and diagnostics. However, a systematic understanding of their RNA binding specificity and cleavage activation is lacking. Here, we describe RNA chip-hybridized association-mapping platform (RNA-CHAMP), a massively parallel platform that repurposes next-generation DNA sequencing chips to measure the binding affinity for over 10,000 RNA targets containing structural perturbations, mismatches, insertions, and deletions relative to the CRISPR RNA (crRNA). Deep profiling of Cas13d, a compact and widely used RNA nuclease, reveals that it does not require a protospacer flanking sequence (PFS) but is exquisitely sensitive to secondary structure within the target RNA. Cas13d binding is strongly penalized by mismatches, insertions, and deletions in the distal crRNA-target RNA regions, while alterations in the proximal region inhibit nuclease activity without affecting binding. A biophysical model built from these data reveals that target recognition begins at the distal end of unstructured target RNAs and proceeds to the proximal end. Using this model, we designed a series of partially mismatched guide RNAs that modulate nuclease activity to detect single nucleotide polymorphisms (SNPs) in circulating SARS-CoV-2 variants. This work describes the key determinants of RNA targeting by a type VI CRISPR enzyme to improve CRISPR diagnostics and in vivo RNA editing. More broadly, RNA-CHAMP provides a quantitative platform for systematically measuring protein-RNA interactions.
Collapse
Affiliation(s)
- Hung-Che Kuo
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Joshua Prupes
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Chia-Wei Chou
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
44
|
Weeding out toxic RNA in Huntington disease. Nat Rev Drug Discov 2023; 22:95. [PMID: 36627440 DOI: 10.1038/d41573-023-00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|