1
|
Chau HY, Miller KD, Palmigiano A. Exact linear theory of perturbation response in a space- and feature-dependent cortical circuit model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.27.630558. [PMID: 39896520 PMCID: PMC11785077 DOI: 10.1101/2024.12.27.630558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
What are the principles that govern the responses of cortical networks to their inputs and the emergence of these responses from recurrent connectivity? Recent experiments have probed these questions by measuring cortical responses to two-photon optogenetic perturbations of single cells in the mouse primary visual cortex. A robust theoretical framework is needed to determine the implications of these responses for cortical recurrence. Here we propose a novel analytical approach: a formulation of the dependence of cell-type-specific connectivity on spatial distance that yields an exact solution for the linear perturbation response of a model with multiple cell types and space- and feature-dependent connectivity. Importantly and unlike previous approaches, the solution is valid in regimes of strong as well as weak intra-cortical coupling. Analysis reveals the structure of connectivity implied by various features of single-cell perturbation responses, such as the surprisingly narrow spatial radius of nearby excitation beyond which inhibition dominates, the number of transitions between mean excitation and inhibition thereafter, and the dependence of these responses on feature preferences. Comparison of these results to existing optogenetic perturbation data yields constraints on cell-type-specific connection strengths and their tuning dependence. Finally, we provide experimental predictions regarding the response of inhibitory neurons to single-cell perturbations and the modulation of perturbation response by neuronal gain; the latter can explain observed differences in the feature-tuning of perturbation responses in the presence vs. absence of visual stimuli.
Collapse
|
2
|
Chou CY, Wong HH, Guo C, Boukoulou KE, Huang C, Jannat J, Klimenko T, Li VY, Liang TA, Wu VC, Sjöström PJ. Principles of visual cortex excitatory microcircuit organization. Innovation (N Y) 2025; 6:100735. [PMID: 39872485 PMCID: PMC11763898 DOI: 10.1016/j.xinn.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 11/13/2024] [Indexed: 01/30/2025] Open
Abstract
Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells. Across these cell types, log-normal distribution of synaptic efficacies emerged as a principle. For pyramidal cells, optomapping reproduced the canonical circuit but unexpectedly uncovered that the excitation of basket cells concentrated to layer 5 and that of Martinotti cells dominated in layer 2/3. The excitation of basket cells was stronger and reached farther than the excitation of pyramidal cells, which may promote stability. Short-term plasticity surprisingly depended on cortical layer in addition to target cell. Finally, optomapping revealed an overrepresentation of shared inputs for interconnected layer-6 pyramidal cells. Thus, by resolving the throughput problem, optomapping uncovered hitherto unappreciated principles of V1 structure.
Collapse
Affiliation(s)
- Christina Y.C. Chou
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hovy H.W. Wong
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Connie Guo
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Kiminou E. Boukoulou
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Cleo Huang
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Javid Jannat
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Tal Klimenko
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Vivian Y. Li
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Tasha A. Liang
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Vivian C. Wu
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| |
Collapse
|
3
|
Judák L, Dobos G, Ócsai K, Báthory E, Szebik H, Tarján B, Maák P, Szadai Z, Takács I, Chiovini B, Lőrincz T, Szepesi Á, Roska B, Szalay G, Rózsa B. Moculus: an immersive virtual reality system for mice incorporating stereo vision. Nat Methods 2024:10.1038/s41592-024-02554-6. [PMID: 39668210 DOI: 10.1038/s41592-024-02554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/29/2024] [Indexed: 12/14/2024]
Abstract
Due to technical roadblocks, it is unclear how visual circuits represent multiple features or how behaviorally relevant representations are selected for long-term memory. Here we developed Moculus, a head-mounted virtual reality platform for mice that covers the entire visual field, and allows binocular depth perception and full visual immersion. This controllable environment, with three-dimensional (3D) corridors and 3D objects, in combination with 3D acousto-optical imaging, affords rapid visual learning and the uncovering of circuit substrates in one measurement session. Both the control and reinforcement-associated visual cue coding neuronal assemblies are transiently expanded by reinforcement feedback to near-saturation levels. This increases computational capability and allows competition among assemblies that encode behaviorally relevant information. The coding assemblies form partially orthogonal and overlapping clusters centered around hub cells with higher and earlier ramp-like responses, as well as locally increased functional connectivity.
Collapse
Affiliation(s)
- Linda Judák
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - Gergely Dobos
- Bay Zoltán Nonprofit for Applied Research, Budapest, Hungary
| | - Katalin Ócsai
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
- Department of Algebra and Geometry, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Eszter Báthory
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - Huba Szebik
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - Balázs Tarján
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
- Doctoral School, Semmelweis University, Budapest, Hungary
| | - Pál Maák
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán Szadai
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - István Takács
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Chiovini
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Tibor Lőrincz
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - Áron Szepesi
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - Botond Roska
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Gergely Szalay
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary
| | - Balázs Rózsa
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary.
- BrainVisionCenter Research Institute and Competence Center, Budapest, Hungary.
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| |
Collapse
|
4
|
Kong E, Zabeh E, Liao Z, Mihaila TS, Wilson C, Santhirasegaran C, Peterka DS, Losonczy A, Geiller T. Recurrent Connectivity Shapes Spatial Coding in Hippocampal CA3 Subregions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622379. [PMID: 39574766 PMCID: PMC11581023 DOI: 10.1101/2024.11.07.622379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Stable and flexible neural representations of space in the hippocampus are crucial for navigating complex environments. However, how these distinct representations emerge from the underlying local circuit architecture remains unknown. Using two-photon imaging of CA3 subareas during active behavior, we reveal opposing coding strategies within specific CA3 subregions, with proximal neurons demonstrating stable and generalized representations and distal neurons showing dynamic and context-specific activity. We show in artificial neural network models that varying the recurrence level causes these differences in coding properties to emerge. We confirmed the contribution of recurrent connectivity to functional heterogeneity by characterizing the representational geometry of neural recordings and comparing it with theoretical predictions of neural manifold dimensionality. Our results indicate that local circuit organization, particularly recurrent connectivity among excitatory neurons, plays a key role in shaping complementary spatial representations within the hippocampus.
Collapse
Affiliation(s)
- Eunji Kong
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Erfan Zabeh
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Tiberiu S Mihaila
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Caroline Wilson
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Charan Santhirasegaran
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Tristan Geiller
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
LaFosse PK, Zhou Z, O’Rawe JF, Friedman NG, Scott VM, Deng Y, Histed MH. Cellular-resolution optogenetics reveals attenuation-by-suppression in visual cortical neurons. Proc Natl Acad Sci U S A 2024; 121:e2318837121. [PMID: 39485801 PMCID: PMC11551350 DOI: 10.1073/pnas.2318837121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/14/2024] [Indexed: 11/03/2024] Open
Abstract
The relationship between neurons' input and spiking output is central to brain computation. Studies in vitro and in anesthetized animals suggest that nonlinearities emerge in cells' input-output (IO; activation) functions as network activity increases, yet how neurons transform inputs in vivo has been unclear. Here, we characterize cortical principal neurons' activation functions in awake mice using two-photon optogenetics. We deliver fixed inputs at the soma while neurons' activity varies with sensory stimuli. We find that responses to fixed optogenetic input are nearly unchanged as neurons are excited, reflecting a linear response regime above neurons' resting point. In contrast, responses are dramatically attenuated by suppression. This attenuation is a powerful means to filter inputs arriving to suppressed cells, privileging other inputs arriving to excited neurons. These results have two major implications. First, somatic neural activation functions in vivo accord with the activation functions used in recent machine learning systems. Second, neurons' IO functions can filter sensory inputs-not only do sensory stimuli change neurons' spiking outputs, but these changes also affect responses to input, attenuating responses to some inputs while leaving others unchanged.
Collapse
Affiliation(s)
- Paul K. LaFosse
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
- NIH-University of Maryland Graduate Partnerships Program, NIH, Bethesda, MD20892
- Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, MD20742
| | - Zhishang Zhou
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Jonathan F. O’Rawe
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Nina G. Friedman
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
- NIH-University of Maryland Graduate Partnerships Program, NIH, Bethesda, MD20892
- Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, MD20742
| | - Victoria M. Scott
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Yanting Deng
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Mark H. Histed
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
| |
Collapse
|
6
|
Holt CJ, Miller KD, Ahmadian Y. The stabilized supralinear network accounts for the contrast dependence of visual cortical gamma oscillations. PLoS Comput Biol 2024; 20:e1012190. [PMID: 38935792 PMCID: PMC11236182 DOI: 10.1371/journal.pcbi.1012190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 07/10/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
When stimulated, neural populations in the visual cortex exhibit fast rhythmic activity with frequencies in the gamma band (30-80 Hz). The gamma rhythm manifests as a broad resonance peak in the power-spectrum of recorded local field potentials, which exhibits various stimulus dependencies. In particular, in macaque primary visual cortex (V1), the gamma peak frequency increases with increasing stimulus contrast. Moreover, this contrast dependence is local: when contrast varies smoothly over visual space, the gamma peak frequency in each cortical column is controlled by the local contrast in that column's receptive field. No parsimonious mechanistic explanation for these contrast dependencies of V1 gamma oscillations has been proposed. The stabilized supralinear network (SSN) is a mechanistic model of cortical circuits that has accounted for a range of visual cortical response nonlinearities and contextual modulations, as well as their contrast dependence. Here, we begin by showing that a reduced SSN model without retinotopy robustly captures the contrast dependence of gamma peak frequency, and provides a mechanistic explanation for this effect based on the observed non-saturating and supralinear input-output function of V1 neurons. Given this result, the local dependence on contrast can trivially be captured in a retinotopic SSN which however lacks horizontal synaptic connections between its cortical columns. However, long-range horizontal connections in V1 are in fact strong, and underlie contextual modulation effects such as surround suppression. We thus explored whether a retinotopically organized SSN model of V1 with strong excitatory horizontal connections can exhibit both surround suppression and the local contrast dependence of gamma peak frequency. We found that retinotopic SSNs can account for both effects, but only when the horizontal excitatory projections are composed of two components with different patterns of spatial fall-off with distance: a short-range component that only targets the source column, combined with a long-range component that targets columns neighboring the source column. We thus make a specific qualitative prediction for the spatial structure of horizontal connections in macaque V1, consistent with the columnar structure of cortex.
Collapse
Affiliation(s)
- Caleb J Holt
- Department of Physics, Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Kenneth D Miller
- Deptartment of Neuroscience, Center for Theoretical Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons, and Morton B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Yashar Ahmadian
- Department of Engineering, Computational and Biological Learning Lab, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Aitken K, Campagnola L, Garrett ME, Olsen SR, Mihalas S. Simple synaptic modulations implement diverse novelty computations. Cell Rep 2024; 43:114188. [PMID: 38713584 DOI: 10.1016/j.celrep.2024.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/09/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024] Open
Abstract
Detecting novelty is ethologically useful for an organism's survival. Recent experiments characterize how different types of novelty over timescales from seconds to weeks are reflected in the activity of excitatory and inhibitory neuron types. Here, we introduce a learning mechanism, familiarity-modulated synapses (FMSs), consisting of multiplicative modulations dependent on presynaptic or pre/postsynaptic neuron activity. With FMSs, network responses that encode novelty emerge under unsupervised continual learning and minimal connectivity constraints. Implementing FMSs within an experimentally constrained model of a visual cortical circuit, we demonstrate the generalizability of FMSs by simultaneously fitting absolute, contextual, and omission novelty effects. Our model also reproduces functional diversity within cell subpopulations, leading to experimentally testable predictions about connectivity and synaptic dynamics that can produce both population-level novelty responses and heterogeneous individual neuron signals. Altogether, our findings demonstrate how simple plasticity mechanisms within a cortical circuit structure can produce qualitatively distinct and complex novelty responses.
Collapse
Affiliation(s)
- Kyle Aitken
- Center for Data-Driven Discovery for Biology, Allen Institute, Seattle, WA 98109, USA.
| | | | | | - Shawn R Olsen
- Allen Institute for Neural Dynamics, Seattle, WA 98109, USA
| | - Stefan Mihalas
- Center for Data-Driven Discovery for Biology, Allen Institute, Seattle, WA 98109, USA; Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Shah PT, Valiante TA, Packer AM. Highly local activation of inhibition at the seizure wavefront in vivo. Cell Rep 2024; 43:114189. [PMID: 38703365 DOI: 10.1016/j.celrep.2024.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
The propagation of a seizure wavefront in the cortex divides an intensely firing seizure core from a low-firing seizure penumbra. Seizure propagation is currently thought to generate strong activation of inhibition in the seizure penumbra that leads to its decreased neuronal firing. However, the direct measurement of neuronal excitability during seizures has been difficult to perform in vivo. We used simultaneous optogenetics and calcium imaging (all-optical interrogation) to characterize real-time neuronal excitability in an acute mouse model of seizure propagation. We find that single-neuron excitability is decreased in close proximity to the seizure wavefront but becomes increased distal to the seizure wavefront. This suggests that inhibitory neurons of the seizure wavefront create a proximal circumference of hypoexcitability but do not influence neuronal excitability in the penumbra.
Collapse
Affiliation(s)
- Prajay T Shah
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Taufik A Valiante
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Adam M Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Mulholland HN, Kaschube M, Smith GB. Self-organization of modular activity in immature cortical networks. Nat Commun 2024; 15:4145. [PMID: 38773083 PMCID: PMC11109213 DOI: 10.1038/s41467-024-48341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
During development, cortical activity is organized into distributed modular patterns that are a precursor of the mature columnar functional architecture. Theoretically, such structured neural activity can emerge dynamically from local synaptic interactions through a recurrent network with effective local excitation with lateral inhibition (LE/LI) connectivity. Utilizing simultaneous widefield calcium imaging and optogenetics in juvenile ferret cortex prior to eye opening, we directly test several critical predictions of an LE/LI mechanism. We show that cortical networks transform uniform stimulations into diverse modular patterns exhibiting a characteristic spatial wavelength. Moreover, patterned optogenetic stimulation matching this wavelength selectively biases evoked activity patterns, while stimulation with varying wavelengths transforms activity towards this characteristic wavelength, revealing a dynamic compromise between input drive and the network's intrinsic tendency to organize activity. Furthermore, the structure of early spontaneous cortical activity - which is reflected in the developing representations of visual orientation - strongly overlaps that of uniform opto-evoked activity, suggesting a common underlying mechanism as a basis for the formation of orderly columnar maps underlying sensory representations in the brain.
Collapse
Affiliation(s)
- Haleigh N Mulholland
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matthias Kaschube
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Department of Computer Science and Mathematics, Goethe University, 60054, Frankfurt am Main, Germany
| | - Gordon B Smith
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Optical Imaging and Brain Sciences Medical Discovery Team, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Koek LA, Scholl B. Mirrored might: A vision for inhibition. Neuron 2024; 112:868-869. [PMID: 38513616 DOI: 10.1016/j.neuron.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
In this issue of Neuron, Znamenskiy et al.1 unveil functional connection specificity between PV+ inhibitory interneurons and excitatory pyramidal neurons in mouse visual cortex, providing a circuit mechanism for stable amplification of cortical subpopulations.
Collapse
Affiliation(s)
- Laura A Koek
- Department of Physiology and Biophysics, University of Colorado School of Medicine, 12800 East 19(th) Avenue, MS8307, Aurora, CO 80045, USA
| | - Benjamin Scholl
- Department of Physiology and Biophysics, University of Colorado School of Medicine, 12800 East 19(th) Avenue, MS8307, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Lees RM, Pichler B, Packer AM. Contribution of optical resolution to the spatial precision of two-photon optogenetic photostimulation in vivo. NEUROPHOTONICS 2024; 11:015006. [PMID: 38322022 PMCID: PMC10846536 DOI: 10.1117/1.nph.11.1.015006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Significance Two-photon optogenetics combines nonlinear excitation with noninvasive activation of neurons to enable the manipulation of neural circuits with a high degree of spatial precision. Combined with two-photon population calcium imaging, these approaches comprise a flexible platform for all-optical interrogation of neural circuits. However, a multitude of optical and biological factors dictate the exact precision of this approach in vivo, where it is most usefully applied. Aim We aimed to assess how the optical point spread function (OPSF) contributes to the spatial precision of two-photon photostimulation in neurobiology. Approach We altered the axial spread of the OPSF of the photostimulation beam using a spatial light modulator. Subsequently, calcium imaging was used to monitor the axial spatial precision of two-photon photostimulation of layer 2 neurons in the mouse neocortex. Results We found that optical resolution is not always the limiting factor of the spatial precision of two-photon optogenetic photostimulation and, by doing so, reveal the key factors that must be improved to achieve maximal precision. Conclusions Our results enable future work to focus on the optimal factors by providing key insight from controlled experiments in a manner not previously reported. This research can be applied to advance the state-of-the-art of all-optical interrogation, extending the toolkit for neuroscience research to achieve spatiotemporal precision at the crucial levels in which neural circuits operate.
Collapse
Affiliation(s)
- Robert M. Lees
- Science and Technology Facilities Council, Octopus Imaging Facility, Oxfordshire, United Kingdom
- University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom
| | - Bruno Pichler
- Independent NeuroScience Services INSS Ltd., East Sussex, United Kingdom
| | - Adam M. Packer
- University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom
| |
Collapse
|
12
|
LaFosse PK, Zhou Z, Friedman NG, Deng Y, Li AJ, Akitake B, Histed MH. Bicistronic Expression of a High-Performance Calcium Indicator and Opsin for All-Optical Stimulation and Imaging at Cellular Resolution. eNeuro 2023; 10:ENEURO.0378-22.2023. [PMID: 36858826 PMCID: PMC10062490 DOI: 10.1523/eneuro.0378-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
State-of-the-art all-optical systems promise unprecedented access to neural activity in vivo, using multiphoton optogenetics to allow simultaneous imaging and control of activity in selected neurons at cellular resolution. However, to achieve wide use of all-optical stimulation and imaging, simple strategies are needed to robustly and stably express opsins and indicators in the same cells. Here, we describe a bicistronic adeno-associated virus (AAV) that expresses both the fast and bright calcium indicator jGCaMP8s, and a soma-targeted (st) and two-photon-activatable opsin, ChrimsonR. With this method, stChrimsonR stimulation with two-photon holography in the visual cortex of mice drives robust spiking in targeted cells, and neural responses to visual sensory stimuli and spontaneous activity are strong and stable. Cells expressing this bicistronic construct show responses to both photostimulation and visual stimulation that are similar to responses measured from cells expressing the same opsin and indicator via separate viruses. This approach is a simple and robust way to prepare neurons in vivo for two-photon holography and imaging.
Collapse
Affiliation(s)
- Paul K LaFosse
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- National Institutes of Health-University of Maryland Graduate Partnerships Program, Bethesda, MD 20892
- Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, MD 20742
| | - Zhishang Zhou
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Nina G Friedman
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- National Institutes of Health-University of Maryland Graduate Partnerships Program, Bethesda, MD 20892
- Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, MD 20742
| | - Yanting Deng
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Anna J Li
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Bradley Akitake
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Mark H Histed
- Intramural Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|