1
|
Ouyang J. Transcription as a double-edged sword in genome maintenance. FEBS Lett 2025; 599:147-156. [PMID: 39704019 DOI: 10.1002/1873-3468.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
Genome maintenance is essential for the integrity of the genetic blueprint, of which only a small fraction is transcribed in higher eukaryotes. DNA lesions occurring in the transcribed genome trigger transcription pausing and transcription-coupled DNA repair. There are two major transcription-coupled DNA repair pathways. The transcription-coupled nucleotide excision repair (TC-NER) pathway has been well studied for decades, while the transcription-coupled homologous recombination repair (TC-HR) pathway has recently gained attention. Importantly, recent studies have uncovered crucial roles of RNA transcripts in TC-HR, opening exciting directions for future research. Transcription also plays pivotal roles in regulating the stability of highly specialized genomic structures such as telomeres, centromeres, and fragile sites. Despite their positive function in genome maintenance, transcription and RNA transcripts can also be the sources of genomic instability, especially when colliding with DNA replication and forming unscheduled pathological RNA:DNA hybrids (R-loops), respectively. Pathological R-loops can result from transcriptional stress, which may be induced by transcription dysregulation. Future investigation into the interplay between transcription and DNA repair will reveal novel molecular bases for genome maintenance and transcriptional stress-associated genomic instability, providing therapeutic targets for human disease intervention.
Collapse
Affiliation(s)
- Jian Ouyang
- Department of Biochemistry and Molecular Biology
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
2
|
Wilson TE, Ahmed S, Winningham A, Glover TW. Replication stress induces POLQ-mediated structural variant formation throughout common fragile sites after entry into mitosis. Nat Commun 2024; 15:9582. [PMID: 39505880 PMCID: PMC11541566 DOI: 10.1038/s41467-024-53917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Genomic structural variants (SVs) greatly impact human health, but much is unknown about the mechanisms that generate the largest class of nonrecurrent alterations. Common fragile sites (CFSs) are unstable loci that provide a model for SV formation, especially large deletions, under replication stress. We study SV junction formation as it occurs in human cell lines by applying error-minimized capture sequencing to CFS DNA harvested after low-dose aphidicolin treatment. SV junctions form throughout CFS genes at a 5-fold higher rate after cells pass from G2 into M-phase. Neither SV formation nor CFS expression depend on mitotic DNA synthesis (MiDAS), an error-prone form of replication active at CFSs. Instead, analysis of tens of thousands of de novo SV junctions combined with DNA repair pathway inhibition reveal a primary role for DNA polymerase theta (POLQ)-mediated end-joining (TMEJ). We propose an important role for mitotic TMEJ in nonrecurrent SV formation genome wide.
Collapse
Affiliation(s)
- Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Samreen Ahmed
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Amanda Winningham
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Arroyo M, Casas-Delucchi C, Pabba M, Prorok P, Pradhan S, Rausch C, Lehmkuhl A, Maiser A, Buschbeck M, Pasque V, Bernstein E, Luck K, Cardoso M. Histone variant macroH2A1 regulates synchronous firing of replication origins in the inactive X chromosome. Nucleic Acids Res 2024; 52:11659-11688. [PMID: 39189450 PMCID: PMC11514477 DOI: 10.1093/nar/gkae734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
MacroH2A has been linked to transcriptional silencing, cell identity, and is a hallmark of the inactive X chromosome (Xi). However, it remains unclear whether macroH2A plays a role in DNA replication. Using knockdown/knockout cells for each macroH2A isoform, we show that macroH2A-containing nucleosomes slow down replication progression rate in the Xi reflecting the higher nucleosome stability. Moreover, macroH2A1, but not macroH2A2, regulates the number of nano replication foci in the Xi, and macroH2A1 downregulation increases DNA loop sizes corresponding to replicons. This relates to macroH2A1 regulating replicative helicase loading during G1 by interacting with it. We mapped this interaction to a phenylalanine in macroH2A1 that is not conserved in macroH2A2 and the C-terminus of Mcm3 helicase subunit. We propose that macroH2A1 enhances the licensing of pre-replication complexes via DNA helicase interaction and loading onto the Xi.
Collapse
Affiliation(s)
- Maria Arroyo
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Maruthi K Pabba
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Sunil K Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Andreas Maiser
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Munich 81377, Germany
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Camí de les Escoles, 08916 Badalona, Barcelona, Spain
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, NY, NY 10029, USA
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Rojas P, Wang J, Guglielmi G, Sadurnì MM, Pavlou L, Leung GHD, Rajagopal V, Spill F, Saponaro M. Genome-wide identification of replication fork stalling/pausing sites and the interplay between RNA Pol II transcription and DNA replication progression. Genome Biol 2024; 25:126. [PMID: 38773641 PMCID: PMC11106976 DOI: 10.1186/s13059-024-03278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/14/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND DNA replication progression can be affected by the presence of physical barriers like the RNA polymerases, leading to replication stress and DNA damage. Nonetheless, we do not know how transcription influences overall DNA replication progression. RESULTS To characterize sites where DNA replication forks stall and pause, we establish a genome-wide approach to identify them. This approach uses multiple timepoints during S-phase to identify replication fork/stalling hotspots as replication progresses through the genome. These sites are typically associated with increased DNA damage, overlapped with fragile sites and with breakpoints of rearrangements identified in cancers but do not overlap with replication origins. Overlaying these sites with a genome-wide analysis of RNA polymerase II transcription, we find that replication fork stalling/pausing sites inside genes are directly related to transcription progression and activity. Indeed, we find that slowing down transcription elongation slows down directly replication progression through genes. This indicates that transcription and replication can coexist over the same regions. Importantly, rearrangements found in cancers overlapping transcription-replication collision sites are detected in non-transformed cells and increase following treatment with ATM and ATR inhibitors. At the same time, we find instances where transcription activity favors replication progression because it reduces histone density. CONCLUSIONS Altogether, our findings highlight how transcription and replication overlap during S-phase, with both positive and negative consequences for replication fork progression and genome stability by the coexistence of these two processes.
Collapse
Affiliation(s)
- Patricia Rojas
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jianming Wang
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Giovanni Guglielmi
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Martina Mustè Sadurnì
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lucas Pavlou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Geoffrey Ho Duen Leung
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
5
|
Corazzi L, Ionasz VS, Andrejev S, Wang LC, Vouzas A, Giaisi M, Di Muzio G, Ding B, Marx AJM, Henkenjohann J, Allers MM, Gilbert DM, Wei PC. Linear interaction between replication and transcription shapes DNA break dynamics at recurrent DNA break Clusters. Nat Commun 2024; 15:3594. [PMID: 38678011 PMCID: PMC11055891 DOI: 10.1038/s41467-024-47934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Recurrent DNA break clusters (RDCs) are replication-transcription collision hotspots; many are unique to neural progenitor cells. Through high-resolution replication sequencing and a capture-ligation assay in mouse neural progenitor cells experiencing replication stress, we unravel the replication features dictating RDC location and orientation. Most RDCs occur at the replication forks traversing timing transition regions (TTRs), where sparse replication origins connect unidirectional forks. Leftward-moving forks generate telomere-connected DNA double-strand breaks (DSBs), while rightward-moving forks lead to centromere-connected DSBs. Strand-specific mapping for DNA-bound RNA reveals co-transcriptional dual-strand DNA:RNA hybrids present at a higher density in RDC than in other actively transcribed long genes. In addition, mapping RNA polymerase activity uncovers that head-to-head interactions between replication and transcription machinery result in 60% DSB contribution to the head-on compared to 40% for co-directional. Taken together we reveal TTR as a fragile class and show how the linear interaction between transcription and replication impacts genome stability.
Collapse
Affiliation(s)
- Lorenzo Corazzi
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | - Vivien S Ionasz
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | | | - Li-Chin Wang
- German Cancer Research Center, 69120, Heidelberg, Germany
| | - Athanasios Vouzas
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Marco Giaisi
- German Cancer Research Center, 69120, Heidelberg, Germany
| | - Giulia Di Muzio
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | - Boyu Ding
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
- Faculty of Medicine, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | - Anna J M Marx
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | - Jonas Henkenjohann
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | - Michael M Allers
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Medicine, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Pei-Chi Wei
- German Cancer Research Center, 69120, Heidelberg, Germany.
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany.
- Interdisciplinary Center for Neurosciences, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Corazzi L, Ionasz V, Andrejev S, Wang LC, Vouzas A, Giaisi M, Di Muzio G, Ding B, Marx AJM, Henkenjohann J, Allers MM, Gilbert DM, Wei PC. Linear Interaction Between Replication and Transcription Shapes DNA Break Dynamics at Recurrent DNA Break Clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554340. [PMID: 37662334 PMCID: PMC10473677 DOI: 10.1101/2023.08.22.554340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Recurrent DNA break clusters (RDCs) are replication-transcription collision hotspots; many are unique to neural progenitor cells. Through high-resolution replication sequencing and a capture-ligation assay in mouse neural progenitor cells experiencing replication stress, we unraveled the replication features dictating RDC location and orientation. Most RDCs occur at the replication forks traversing timing transition regions (TTRs), where sparse replication origins connect unidirectional forks. Leftward-moving forks generate telomere-connected DNA double-strand breaks (DSBs), while rightward-moving forks lead to centromere-connected DSBs. Strand-specific mapping for DNA-bound RNA revealed co-transcriptional dual-strand DNA:RNA hybrids present at a higher density in RDC than in other actively transcribed long genes. In addition, mapping RNA polymerase activity revealed that head-to-head interactions between replication and transcription machinery resulted in 60% DSB contribution to the head-on compared to 40% for co-directional. Our findings revealed TTR as a novel fragile class and highlighted how the linear interaction between transcription and replication impacts genome stability.
Collapse
|
7
|
Irony-Tur Sinai M, Kerem B. Insights into common fragile site instability: DNA replication challenges at DNA repeat sequences. Emerg Top Life Sci 2023; 7:277-287. [PMID: 37876349 PMCID: PMC10754330 DOI: 10.1042/etls20230023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Common fragile sites (CFS) are specific genomic regions prone to chromosomal instability under conditions of DNA replication stress. CFSs manifest as breaks, gaps, and constrictions on metaphase chromosomes under mild replication stress. These replication-sensitive CFS regions are preferentially unstable during cancer development, as reflected by their association with copy number variants (CNVs) frequently arise in most tumor types. Over the years, it became clear that a combination of different characteristics underlies the enhanced sensitivity of CFSs to replication stress. As of today, there is a strong evidence that the core fragility regions along CFSs overlap with actively transcribed large genes with delayed replication timing upon replication stress. Recently, the mechanistic basis for CFS instability was further extended to regions which span topologically associated domain (TAD) boundaries, generating a fragility signature composed of replication, transcription and genome organization. The presence of difficult-to-replicate AT-rich repeats was one of the early features suggested to characterize a subgroup of CFSs. These long stretches of AT-dinucleotide have the potential to fold into stable secondary structures which may impede replication fork progression, leaving the region under-replicated. Here, we focus on the molecular mechanisms underlying repeat instability at CFSs and on the proteins involved in the resolution of secondary structure impediments arising along repetitive sequence elements which are essential for the maintenance of genome stability.
Collapse
Affiliation(s)
- Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
8
|
Malzl D, Peycheva M, Rahjouei A, Gnan S, Klein KN, Nazarova M, Schoeberl UE, Gilbert DM, Buonomo SCB, Di Virgilio M, Neumann T, Pavri R. RIF1 regulates early replication timing in murine B cells. Nat Commun 2023; 14:8049. [PMID: 38081811 PMCID: PMC10713614 DOI: 10.1038/s41467-023-43778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The mammalian DNA replication timing (RT) program is crucial for the proper functioning and integrity of the genome. The best-known mechanism for controlling RT is the suppression of late origins of replication in heterochromatin by RIF1. Here, we report that in antigen-activated, hypermutating murine B lymphocytes, RIF1 binds predominantly to early-replicating active chromatin and promotes early replication, but plays a minor role in regulating replication origin activity, gene expression and genome organization in B cells. Furthermore, we find that RIF1 functions in a complementary and non-epistatic manner with minichromosome maintenance (MCM) proteins to establish early RT signatures genome-wide and, specifically, to ensure the early replication of highly transcribed genes. These findings reveal additional layers of regulation within the B cell RT program, driven by the coordinated activity of RIF1 and MCM proteins.
Collapse
Affiliation(s)
- Daniel Malzl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Lazarettgasse 14, Vienna, Austria
| | - Mihaela Peycheva
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Lazarettgasse 14, Vienna, Austria
| | - Ali Rahjouei
- Max-Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Stefano Gnan
- School of Biological Sciences, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Kyle N Klein
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Mariia Nazarova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria
| | - Ursula E Schoeberl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Sara C B Buonomo
- School of Biological Sciences, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Michela Di Virgilio
- Max-Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria.
- Quantro Therapeutics, Vienna Biocenter, 1030, Vienna, Austria.
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030, Vienna, Austria.
| |
Collapse
|
9
|
Abstract
Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.
Collapse
Affiliation(s)
- Liana Goehring
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA;
| |
Collapse
|
10
|
Einig E, Jin C, Andrioletti V, Macek B, Popov N. RNAPII-dependent ATM signaling at collisions with replication forks. Nat Commun 2023; 14:5147. [PMID: 37620345 PMCID: PMC10449895 DOI: 10.1038/s41467-023-40924-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Deregulation of RNA Polymerase II (RNAPII) by oncogenic signaling leads to collisions of RNAPII with DNA synthesis machinery (transcription-replication conflicts, TRCs). TRCs can result in DNA damage and are thought to underlie genomic instability in tumor cells. Here we provide evidence that elongating RNAPII nucleates activation of the ATM kinase at TRCs to stimulate DNA repair. We show the ATPase WRNIP1 associates with RNAPII and limits ATM activation during unperturbed cell cycle. WRNIP1 binding to elongating RNAPII requires catalytic activity of the ubiquitin ligase HUWE1. Mutation of HUWE1 induces TRCs, promotes WRNIP1 dissociation from RNAPII and binding to the replisome, stimulating ATM recruitment and activation at RNAPII. TRCs and translocation of WRNIP1 are rapidly induced in response to hydroxyurea treatment to activate ATM and facilitate subsequent DNA repair. We propose that TRCs can provide a controlled mechanism for stalling of replication forks and ATM activation, instrumental in cellular response to replicative stress.
Collapse
Affiliation(s)
- Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Str 14, 72076, Tübingen, Germany
| | - Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Str 14, 72076, Tübingen, Germany
| | - Valentina Andrioletti
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Str 14, 72076, Tübingen, Germany
- enGenome S.R.L., Via Fratelli Cuzio 42, 27100, Pavia, Italy
| | - Boris Macek
- Interfaculty Institute of Cell Biology, Eberhard Karls University of Tübingen, Auf d. Morgenstelle 15, 72076, Tübingen, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Str 14, 72076, Tübingen, Germany.
| |
Collapse
|
11
|
Kislova AV, Zheglo D, Pozhitnova VO, Sviridov PS, Gadzhieva EP, Voronina ES. Replication stress causes delayed mitotic entry and chromosome 12 fragility at the ANKS1B large neuronal gene in human induced pluripotent stem cells. Chromosome Res 2023; 31:23. [PMID: 37597021 DOI: 10.1007/s10577-023-09729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Substantial background level of replication stress is a feature of embryonic and induced pluripotent stem cells (iPSCs), which can predispose to numerical and structural chromosomal instability, including recurrent aberrations of chromosome 12. In differentiated cells, replication stress-sensitive genomic regions, including common fragile sites, are widely mapped through mitotic chromosome break induction by mild aphidicolin treatment, an inhibitor of replicative polymerases. IPSCs exhibit lower apoptotic threshold and higher repair capacity hindering fragile site mapping. Caffeine potentiates genotoxic effects and abrogates G2/M checkpoint delay induced by chemical and physical mutagens. Using 5-ethynyl-2'-deoxyuridine (EdU) for replication labeling, we characterized the mitotic entry dynamics of asynchronous iPSCs exposed to aphidicolin and/or caffeine. Under the adjusted timing of replication stress exposure accounting revealed cell cycle delay, higher metaphase chromosome breakage rate was observed in iPSCs compared to primary lymphocytes. Using differential chromosome staining and subsequent locus-specific fluorescent in situ hybridization, we mapped the FRA12L fragile site spanning the large neuronal ANKS1B gene at 12q23.1, which may contribute to recurrent chromosome 12 missegregation and rearrangements in iPSCs. Publicly available data on the ANKS1B genetic alterations and their possible functional impact are reviewed. Our study provides the first evidence of common fragile site induction in iPSCs and reveals potential somatic instability of a clinically relevant gene during early human development and in vitro cell expansion.
Collapse
Affiliation(s)
| | - Diana Zheglo
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia.
| | | | - Philipp S Sviridov
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Elmira P Gadzhieva
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
12
|
Brison O, Gnan S, Azar D, Koundrioukoff S, Melendez-Garcia R, Kim SJ, Schmidt M, El-Hilali S, Jaszczyszyn Y, Lachages AM, Thermes C, Chen CL, Debatisse M. Mistimed origin licensing and activation stabilize common fragile sites under tight DNA-replication checkpoint activation. Nat Struct Mol Biol 2023; 30:539-550. [PMID: 37024657 DOI: 10.1038/s41594-023-00949-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/28/2023] [Indexed: 04/08/2023]
Abstract
Genome integrity requires replication to be completed before chromosome segregation. The DNA-replication checkpoint (DRC) contributes to this coordination by inhibiting CDK1, which delays mitotic onset. Under-replication of common fragile sites (CFSs), however, escapes surveillance, resulting in mitotic chromosome breaks. Here we asked whether loose DRC activation induced by modest stresses commonly used to destabilize CFSs could explain this leakage. We found that tightening DRC activation or CDK1 inhibition stabilizes CFSs in human cells. Repli-Seq and molecular combing analyses showed a burst of replication initiations implemented in mid S-phase across a subset of late-replicating sequences, including CFSs, while the bulk genome was unaffected. CFS rescue and extra-initiations required CDC6 and CDT1 availability in S-phase, implying that CDK1 inhibition permits mistimed origin licensing and firing. In addition to delaying mitotic onset, tight DRC activation therefore supports replication completion of late origin-poor domains at risk of under-replication, two complementary roles preserving genome stability.
Collapse
Affiliation(s)
- Olivier Brison
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Stefano Gnan
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
| | - Dana Azar
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Université Saint-Joseph, Beirut, Lebanon
| | - Stéphane Koundrioukoff
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Sorbonne University, Paris, France
| | - Rodrigo Melendez-Garcia
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Su-Jung Kim
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Mélanie Schmidt
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Sami El-Hilali
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
- Villefranche sur mer Developmental Biology Laboratory, CNRS UMR7009, Villefranche-sur-Mer, France
| | - Yan Jaszczyszyn
- Paris-Saclay University, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198CNRS, CEA, Paris-Sud University, Gif-sur-Yvette, France
| | - Anne-Marie Lachages
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- UTCBS, CNRS UMR 8258/ INSERM U 1267, Sorbonne-Paris-Cité University, Paris, France
| | - Claude Thermes
- Paris-Saclay University, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198CNRS, CEA, Paris-Sud University, Gif-sur-Yvette, France
| | - Chun-Long Chen
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
| | - Michelle Debatisse
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France.
- Sorbonne University, Paris, France.
| |
Collapse
|
13
|
Vouzas AE, Gilbert DM. Replication timing and transcriptional control: beyond cause and effect - part IV. Curr Opin Genet Dev 2023; 79:102031. [PMID: 36905782 PMCID: PMC10035587 DOI: 10.1016/j.gde.2023.102031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 03/11/2023]
Abstract
Decades of work on the spatiotemporal organization of mammalian DNA replication timing (RT) continues to unveil novel correlations with aspects of transcription and chromatin organization but, until recently, mechanisms regulating RT and the biological significance of the RT program had been indistinct. We now know that the RT program is both influenced by and necessary to maintain chromatin structure, forming an epigenetic positive feedback loop. Moreover, the discovery of specific cis-acting elements regulating mammalian RT at both the domain and the whole-chromosome level has revealed multiple cell-type-specific and developmentally regulated mechanisms of RT control. We review recent evidence for diverse mechanisms employed by different cell types to regulate their RT programs and the biological significance of RT regulation during development.
Collapse
Affiliation(s)
- Athanasios E Vouzas
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - David M Gilbert
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| |
Collapse
|
14
|
Benitez A, Sebald M, Kanagaraj R, Rodrigo-Brenni MC, Chan YW, Liang CC, West SC. GEN1 promotes common fragile site expression. Cell Rep 2023; 42:112062. [PMID: 36729836 DOI: 10.1016/j.celrep.2023.112062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Our genomes harbor conserved DNA sequences, known as common fragile sites (CFSs), that are difficult to replicate and correspond to regions of genome instability. Following replication stress, CFS loci give rise to breaks or gaps (termed CFS expression) where under-replicated DNA subsequently undergoes mitotic DNA synthesis (MiDAS). We show that loss of the structure-selective endonuclease GEN1 reduces CFS expression, leading to defects in MiDAS, ultrafine anaphase bridge formation, and DNA damage in the ensuing cell cycle due to aberrant chromosome segregation. GEN1 knockout cells also exhibit an elevated frequency of bichromatid constrictions consistent with the presence of unresolved regions of under-replicated DNA. Previously, the role of GEN1 was thought to be restricted to the nucleolytic resolution of recombination intermediates. However, its ability to cleave under-replicated DNA at CFS loci indicates that GEN1 plays a dual role resolving both DNA replication and recombination intermediates before chromosome segregation.
Collapse
Affiliation(s)
- Anaid Benitez
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Marie Sebald
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Radhakrishnan Kanagaraj
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Monica C Rodrigo-Brenni
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Ying Wai Chan
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Chih-Chao Liang
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Stephen C West
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
15
|
Crucianelli C, Jaiswal J, Vijayakumar Maya A, Nogay L, Cosolo A, Grass I, Classen AK. Distinct signaling signatures drive compensatory proliferation via S-phase acceleration. PLoS Genet 2022; 18:e1010516. [PMID: 36520882 PMCID: PMC9799308 DOI: 10.1371/journal.pgen.1010516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/29/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
Regeneration relies on cell proliferation to restore damaged tissues. Multiple signaling pathways activated by local or paracrine cues have been identified to promote regenerative proliferation. How different types of tissue damage may activate distinct signaling pathways and how these differences converge on regenerative proliferation is less well defined. To better understand how tissue damage and proliferative signals are integrated during regeneration, we investigate models of compensatory proliferation in Drosophila imaginal discs. We find that compensatory proliferation is associated with a unique cell cycle profile, which is characterized by short G1 and G2 phases and, surprisingly, by acceleration of the S-phase. S-phase acceleration can be induced by two distinct signaling signatures, aligning with inflammatory and non-inflammatory tissue damage. Specifically, non-autonomous activation of JAK/STAT and Myc in response to inflammatory damage, or local activation of Ras/ERK and Hippo/Yki in response to elevated cell death, promote accelerated nucleotide incorporation during S-phase. This previously unappreciated convergence of different damaging insults on the same regenerative cell cycle program reconciles previous conflicting observations on proliferative signaling in different tissue regeneration and tumor models.
Collapse
Affiliation(s)
- Carlo Crucianelli
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Janhvi Jaiswal
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Ananthakrishnan Vijayakumar Maya
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, Freiburg, Germany
| | - Liyne Nogay
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, Freiburg, Germany
| | - Andrea Cosolo
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabelle Grass
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Anne-Kathrin Classen
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Shaikh N, Mazzagatti A, De Angelis S, Johnson SC, Bakker B, Spierings DCJ, Wardenaar R, Maniati E, Wang J, Boemo MA, Foijer F, McClelland SE. Replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses. Genome Biol 2022; 23:223. [PMID: 36266663 PMCID: PMC9583511 DOI: 10.1186/s13059-022-02781-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major driver of cancer chromosomal instability is replication stress, the slowing or stalling of DNA replication. How replication stress and genomic instability are connected is not known. Aphidicolin-induced replication stress induces breakages at common fragile sites, but the exact causes of fragility are debated, and acute genomic consequences of replication stress are not fully explored. RESULTS We characterize DNA copy number alterations (CNAs) in single, diploid non-transformed cells, caused by one cell cycle in the presence of either aphidicolin or hydroxyurea. Multiple types of CNAs are generated, associated with different genomic regions and features, and observed copy number landscapes are distinct between aphidicolin and hydroxyurea-induced replication stress. Coupling cell type-specific analysis of CNAs to gene expression and single-cell replication timing analyses pinpointed the causative large genes of the most recurrent chromosome-scale CNAs in aphidicolin. These are clustered on chromosome 7 in RPE1 epithelial cells but chromosome 1 in BJ fibroblasts. Chromosome arm level CNAs also generate acentric lagging chromatin and micronuclei containing these chromosomes. CONCLUSIONS Chromosomal instability driven by replication stress occurs via focal CNAs and chromosome arm scale changes, with the latter confined to a very small subset of chromosome regions, potentially heavily skewing cancer genome evolution. Different inducers of replication stress lead to distinctive CNA landscapes providing the opportunity to derive copy number signatures of specific replication stress mechanisms. Single-cell CNA analysis thus reveals the impact of replication stress on the genome, providing insights into the molecular mechanisms which fuel chromosomal instability in cancer.
Collapse
Affiliation(s)
- Nadeem Shaikh
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Alice Mazzagatti
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Simone De Angelis
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sarah C Johnson
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, AV, the Netherlands
- Current address: The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Michael A Boemo
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Sarah E McClelland
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
17
|
Ji F, Zhu X, Liao H, Ouyang L, Huang Y, Syeda MZ, Ying S. New Era of Mapping and Understanding Common Fragile Sites: An Updated Review on Origin of Chromosome Fragility. Front Genet 2022; 13:906957. [PMID: 35669181 PMCID: PMC9164283 DOI: 10.3389/fgene.2022.906957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Common fragile sites (CFSs) are specific genomic loci prone to forming gaps or breakages upon replication perturbation, which correlate well with chromosomal rearrangement and copy number variation. CFSs have been actively studied due to their important pathophysiological relevance in different diseases such as cancer and neurological disorders. The genetic locations and sequences of CFSs are crucial to understanding the origin of such unstable sites, which require reliable mapping and characterizing approaches. In this review, we will inspect the evolving techniques for CFSs mapping, especially genome-wide mapping and sequencing of CFSs based on current knowledge of CFSs. We will also revisit the well-established hypotheses on the origin of CFSs fragility, incorporating novel findings from the comprehensive analysis of finely mapped CFSs regarding their locations, sequences, and replication/transcription, etc. This review will present the most up-to-date picture of CFSs and, potentially, a new framework for future research of CFSs.
Collapse
Affiliation(s)
- Fang Ji
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinli Zhu
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Liao
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujian Ouyang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingfei Huang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Madiha Zahra Syeda
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Theulot B, Lacroix L, Arbona JM, Millot GA, Jean E, Cruaud C, Pellet J, Proux F, Hennion M, Engelen S, Lemainque A, Audit B, Hyrien O, Le Tallec B. Genome-wide mapping of individual replication fork velocities using nanopore sequencing. Nat Commun 2022; 13:3295. [PMID: 35676270 PMCID: PMC9177527 DOI: 10.1038/s41467-022-31012-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
Little is known about replication fork velocity variations along eukaryotic genomes, since reference techniques to determine fork speed either provide no sequence information or suffer from low throughput. Here we present NanoForkSpeed, a nanopore sequencing-based method to map and extract the velocity of individual forks detected as tracks of the thymidine analogue bromodeoxyuridine incorporated during a brief pulse-labelling of asynchronously growing cells. NanoForkSpeed retrieves previous Saccharomyces cerevisiae mean fork speed estimates (≈2 kb/min) in the BT1 strain exhibiting highly efficient bromodeoxyuridine incorporation and wild-type growth, and precisely quantifies speed changes in cells with altered replisome progression or exposed to hydroxyurea. The positioning of >125,000 fork velocities provides a genome-wide map of fork progression based on individual fork rates, showing a uniform fork speed across yeast chromosomes except for a marked slowdown at known pausing sites.
Collapse
Affiliation(s)
- Bertrand Theulot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Laurent Lacroix
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France.
| | - Jean-Michel Arbona
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, INSERM, U1293, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - Gael A Millot
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Etienne Jean
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France
| | - Corinne Cruaud
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Jade Pellet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France
| | - Florence Proux
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France
| | - Magali Hennion
- Université Paris Cité, Epigenetics and Cell Fate, UMR7216, CNRS, Paris, 75013, France
| | - Stefan Engelen
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Arnaud Lemainque
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Benjamin Audit
- ENSL, CNRS, Laboratoire de physique, F-69342, Lyon, France
| | - Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France.
| | - Benoît Le Tallec
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
19
|
Grieb BC, Eischen CM. MTBP and MYC: A Dynamic Duo in Proliferation, Cancer, and Aging. BIOLOGY 2022; 11:881. [PMID: 35741402 PMCID: PMC9219613 DOI: 10.3390/biology11060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022]
Abstract
The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.
Collapse
Affiliation(s)
- Brian C. Grieb
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christine M. Eischen
- Department of Cancer Biology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
20
|
Saayman X, Esashi F. Breaking the paradigm: early insights from mammalian DNA breakomes. FEBS J 2022; 289:2409-2428. [PMID: 33792193 PMCID: PMC9451923 DOI: 10.1111/febs.15849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) can result from both exogenous and endogenous sources and are potentially toxic lesions to the human genome. If improperly repaired, DSBs can threaten genome integrity and contribute to premature ageing, neurodegenerative disorders and carcinogenesis. Through decades of work on genome stability, it has become evident that certain regions of the genome are inherently more prone to breakage than others, known as genome instability hotspots. Recent advancements in sequencing-based technologies now enable the profiling of genome-wide distributions of DSBs, also known as breakomes, to systematically map these instability hotspots. Here, we review the application of these technologies and their implications for our current understanding of the genomic regions most likely to drive genome instability. These breakomes ultimately highlight both new and established breakage hotspots including actively transcribed regions, loop boundaries and early-replicating regions of the genome. Further, these breakomes challenge the paradigm that DNA breakage primarily occurs in hard-to-replicate regions. With these advancements, we begin to gain insights into the biological mechanisms both invoking and protecting against genome instability.
Collapse
Affiliation(s)
- Xanita Saayman
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
21
|
Wootton J, Soutoglou E. Chromatin and Nuclear Dynamics in the Maintenance of Replication Fork Integrity. Front Genet 2022; 12:773426. [PMID: 34970302 PMCID: PMC8712883 DOI: 10.3389/fgene.2021.773426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Replication of the eukaryotic genome is a highly regulated process and stringent control is required to maintain genome integrity. In this review, we will discuss the many aspects of the chromatin and nuclear environment that play key roles in the regulation of both unperturbed and stressed replication. Firstly, the higher order organisation of the genome into A and B compartments, topologically associated domains (TADs) and sub-nuclear compartments has major implications in the control of replication timing. In addition, the local chromatin environment defined by non-canonical histone variants, histone post-translational modifications (PTMs) and enrichment of factors such as heterochromatin protein 1 (HP1) plays multiple roles in normal S phase progression and during the repair of replicative damage. Lastly, we will cover how the spatial organisation of stalled replication forks facilitates the resolution of replication stress.
Collapse
Affiliation(s)
- Jack Wootton
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Evi Soutoglou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
22
|
St Germain C, Zhao H, Sinha V, Sanz LA, Chédin F, Barlow J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2051-2073. [PMID: 35100392 PMCID: PMC8887484 DOI: 10.1093/nar/gkac035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Conflicts between transcription and replication machinery are a potent source of replication stress and genome instability; however, no technique currently exists to identify endogenous genomic locations prone to transcription–replication interactions. Here, we report a novel method to identify genomic loci prone to transcription–replication interactions termed transcription–replication immunoprecipitation on nascent DNA sequencing, TRIPn-Seq. TRIPn-Seq employs the sequential immunoprecipitation of RNA polymerase 2 phosphorylated at serine 5 (RNAP2s5) followed by enrichment of nascent DNA previously labeled with bromodeoxyuridine. Using TRIPn-Seq, we mapped 1009 unique transcription–replication interactions (TRIs) in mouse primary B cells characterized by a bimodal pattern of RNAP2s5, bidirectional transcription, an enrichment of RNA:DNA hybrids, and a high probability of forming G-quadruplexes. TRIs are highly enriched at transcription start sites and map to early replicating regions. TRIs exhibit enhanced Replication Protein A association and TRI-associated genes exhibit higher replication fork termination than control transcription start sites, two marks of replication stress. TRIs colocalize with double-strand DNA breaks, are enriched for deletions, and accumulate mutations in tumors. We propose that replication stress at TRIs induces mutations potentially contributing to age-related disease, as well as tumor formation and development.
Collapse
Affiliation(s)
- Commodore P St Germain
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
- School of Mathematics and Science, Solano Community College, 4000 Suisun Valley Road, Fairfield, CA 94534, USA
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Vrishti Sinha
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jacqueline H Barlow
- To whom correspondence should be addressed. Tel: +1 530 752 9529; Fax: +1 530 752 9014;
| |
Collapse
|
23
|
Medium levels of transcription and replication related chromosomal instability are associated with poor clinical outcome. Sci Rep 2021; 11:23429. [PMID: 34873180 PMCID: PMC8648741 DOI: 10.1038/s41598-021-02787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Genomic instability (GI) influences treatment efficacy and resistance, and an accurate measure of it is lacking. Current measures of GI are based on counts of specific structural variation (SV) and mutational signatures. Here, we present a holistic approach to measuring GI based on the quantification of the steady-state equilibrium between DNA damage and repair as assessed by the residual breakpoints (BP) remaining after repair, irrespective of SV type. We use the notion of Hscore, a BP "hotspotness" magnitude scale, to measure the propensity of genomic structural or functional DNA elements to break more than expected by chance. We then derived new measures of transcription- and replication-associated GI that we call iTRAC (transcription-associated chromosomal instability index) and iRACIN (replication-associated chromosomal instability index). We show that iTRAC and iRACIN are predictive of metastatic relapse in Leiomyosarcoma (LMS) and that they may be combined to form a new classifier called MAGIC (mixed transcription- and replication-associated genomic instability classifier). MAGIC outperforms the gold standards FNCLCC and CINSARC in stratifying metastatic risk in LMS. Furthermore, iTRAC stratifies chemotherapeutic response in LMS. We finally show that this approach is applicable to other cancers.
Collapse
|
24
|
Kemiha S, Poli J, Lin YL, Lengronne A, Pasero P. Toxic R-loops: Cause or consequence of replication stress? DNA Repair (Amst) 2021; 107:103199. [PMID: 34399314 DOI: 10.1016/j.dnarep.2021.103199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Transcription-replication conflicts (TRCs) represent a potential source of endogenous replication stress (RS) and genomic instability in eukaryotic cells but the mechanisms that underlie this instability remain poorly understood. Part of the problem could come from non-B DNA structures called R-loops, which are formed of a RNA:DNA hybrid and a displaced ssDNA loop. In this review, we discuss different scenarios in which R-loops directly or indirectly interfere with DNA replication. We also present other types of TRCs that may not depend on R-loops to impede fork progression. Finally, we discuss alternative models in which toxic RNA:DNA hybrids form at stalled forks as a consequence - but not a cause - of replication stress and interfere with replication resumption.
Collapse
Affiliation(s)
- Samira Kemiha
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Jérôme Poli
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
25
|
Lokanga RA, Kumari D, Usdin K. Common Threads: Aphidicolin-Inducible and Folate-Sensitive Fragile Sites in the Human Genome. Front Genet 2021; 12:708860. [PMID: 34567068 PMCID: PMC8456018 DOI: 10.3389/fgene.2021.708860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
The human genome has many chromosomal regions that are fragile, demonstrating chromatin breaks, gaps, or constrictions on exposure to replication stress. Common fragile sites (CFSs) are found widely distributed in the population, with the largest subset of these sites being induced by aphidicolin (APH). Other fragile sites are only found in a subset of the population. One group of these so-called rare fragile sites (RFSs) is induced by folate stress. APH-inducible CFSs are generally located in large transcriptionally active genes that are A + T rich and often enriched for tracts of AT-dinucleotide repeats. In contrast, all the folate-sensitive sites mapped to date consist of transcriptionally silenced CGG microsatellites. Thus, all the folate-sensitive fragile sites may have a very similar molecular basis that differs in key ways from that of the APH CFSs. The folate-sensitive FSs include FRAXA that is associated with Fragile X syndrome (FXS), the most common heritable form of intellectual disability. Both CFSs and RFSs can cause chromosomal abnormalities. Recent work suggests that both APH-inducible fragile sites and FRAXA undergo Mitotic DNA synthesis (MiDAS) when exposed to APH or folate stress, respectively. Interestingly, blocking MiDAS in both cases prevents chromosome fragility but increases the risk of chromosome mis-segregation. MiDAS of both APH-inducible and FRAXA involves conservative DNA replication and POLD3, an accessory subunit of the replicative polymerase Pol δ that is essential for break-induced replication (BIR). Thus, MiDAS is thought to proceed via some form of BIR-like process. This review will discuss the recent work that highlights the similarities and differences between these two groups of fragile sites and the growing evidence for the presence of many more novel fragile sites in the human genome.
Collapse
Affiliation(s)
| | - Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Mailler J, Padayachy L, Halazonetis TD. A method to sequence genomic sites of mitotic DNA synthesis in mammalian cells. Methods Enzymol 2021; 661:283-304. [PMID: 34776216 DOI: 10.1016/bs.mie.2021.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Under normal conditions, the genome of eukaryotic cells is faithfully replicated during S phase. However, in cells exposed to DNA polymerase inhibitors, some regions of the genome may fail to be replicated prior to mitotic entry. To prevent chromosomal breakage and loss of genomic information, mitotic DNA synthesis (MiDAS) completes replication of the genome prior to the onset of anaphase. We have developed a protocol that allows one to map the genomic regions that are replicated by MiDAS in mammalian cells. The protocol involves incorporation of a thymidine analog in nascent DNA in mitotic cells and then capture and high throughput sequencing of the nascent DNA. With this approach, sites of MiDAS can be identified at high resolution.
Collapse
Affiliation(s)
- Jonathan Mailler
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Laura Padayachy
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
27
|
Park SH, Bennett-Baker P, Ahmed S, Arlt MF, Ljungman M, Glover TW, Wilson TE. Locus-specific transcription silencing at the FHIT gene suppresses replication stress-induced copy number variant formation and associated replication delay. Nucleic Acids Res 2021; 49:7507-7524. [PMID: 34181717 PMCID: PMC8287918 DOI: 10.1093/nar/gkab559] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Impaired replication progression leads to de novo copy number variant (CNV) formation at common fragile sites (CFSs). We previously showed that these hotspots for genome instability reside in late-replicating domains associated with large transcribed genes and provided indirect evidence that transcription is a factor in their instability. Here, we compared aphidicolin (APH)-induced CNV and CFS frequency between wild-type and isogenic cells in which FHIT gene transcription was ablated by promoter deletion. Two promoter-deletion cell lines showed reduced or absent CNV formation and CFS expression at FHIT despite continued instability at the NLGN1 control locus. APH treatment led to critical replication delays that remained unresolved in G2/M in the body of many, but not all, large transcribed genes, an effect that was reversed at FHIT by the promoter deletion. Altering RNase H1 expression did not change CNV induction frequency and DRIP-seq showed a paucity of R-loop formation in the central regions of large genes, suggesting that R-loops are not the primary mediator of the transcription effect. These results demonstrate that large gene transcription is a determining factor in replication stress-induced genomic instability and support models that CNV hotspots mainly result from the transcription-dependent passage of unreplicated DNA into mitosis.
Collapse
Affiliation(s)
- So Hae Park
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Samreen Ahmed
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martin F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas W Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas E Wilson
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Brossas C, Duriez B, Valton AL, Prioleau MN. Promoters are key organizers of the duplication of vertebrate genomes. Bioessays 2021; 43:e2100141. [PMID: 34319621 DOI: 10.1002/bies.202100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/06/2022]
Abstract
In vertebrates, single cell analyses of replication timing patterns brought to light a very well controlled program suggesting a tight regulation on initiation sites. Mapping of replication origins with different methods has revealed discrete preferential sites, enriched in promoters and potential G-quadruplex motifs, which can aggregate into initiation zones spanning several tens of kilobases (kb). Another characteristic of replication origins is a nucleosome-free region (NFR). A modified yeast strain containing a humanized origin recognition complex (ORC) fires new origins at NFRs revealing their regulatory role. In cooperation with NFRs, the histone variant H2A.Z facilitates ORC loading through di-methylation of lysine 20 of histone H4. Recent studies using genome editing methods show that efficient initiation sites associated with transcriptional activity can synergize over several tens of kb by establishing physical contacts and lead to the formation of early domains of DNA replication demonstrating a co-regulation between replication initiation and transcription.
Collapse
Affiliation(s)
- Caroline Brossas
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Bénédicte Duriez
- IMRB, INSERM U955, Equipe GEIC2O, Faculté de Santé, Créteil, France
| | - Anne-Laure Valton
- Department of Biochemistry and Molecular Pharmacology, Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | |
Collapse
|
29
|
Li Y, Xue B, Zhang M, Zhang L, Hou Y, Qin Y, Long H, Su QP, Wang Y, Guan X, Jin Y, Cao Y, Li G, Sun Y. Transcription-coupled structural dynamics of topologically associating domains regulate replication origin efficiency. Genome Biol 2021; 22:206. [PMID: 34253239 PMCID: PMC8276456 DOI: 10.1186/s13059-021-02424-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Metazoan cells only utilize a small subset of the potential DNA replication origins to duplicate the whole genome in each cell cycle. Origin choice is linked to cell growth, differentiation, and replication stress. Although various genetic and epigenetic signatures have been linked to the replication efficiency of origins, there is no consensus on how the selection of origins is determined. RESULTS We apply dual-color stochastic optical reconstruction microscopy (STORM) super-resolution imaging to map the spatial distribution of origins within individual topologically associating domains (TADs). We find that multiple replication origins initiate separately at the spatial boundary of a TAD at the beginning of the S phase. Intriguingly, while both high-efficiency and low-efficiency origins are distributed homogeneously in the TAD during the G1 phase, high-efficiency origins relocate to the TAD periphery before the S phase. Origin relocalization is dependent on both transcription and CTCF-mediated chromatin structure. Further, we observe that the replication machinery protein PCNA forms immobile clusters around TADs at the G1/S transition, explaining why origins at the TAD periphery are preferentially fired. CONCLUSION Our work reveals a new origin selection mechanism that the replication efficiency of origins is determined by their physical distribution in the chromatin domain, which undergoes a transcription-dependent structural re-organization process. Our model explains the complex links between replication origin efficiency and many genetic and epigenetic signatures that mark active transcription. The coordination between DNA replication, transcription, and chromatin organization inside individual TADs also provides new insights into the biological functions of sub-domain chromatin structural dynamics.
Collapse
Affiliation(s)
- Yongzheng Li
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mengling Zhang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Liwei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingping Hou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yizhi Qin
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Haizhen Long
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Peter Su
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yao Wang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaodong Guan
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yanyan Jin
- Department of Neurobiology, Beijing Centre of Neural Regeneration and Repair, Capital Medical University, Beijing, 100101, China
| | - Yuan Cao
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.
- College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Blin M, Lacroix L, Petryk N, Jaszczyszyn Y, Chen CL, Hyrien O, Le Tallec B. DNA molecular combing-based replication fork directionality profiling. Nucleic Acids Res 2021; 49:e69. [PMID: 33836085 PMCID: PMC8266662 DOI: 10.1093/nar/gkab219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 01/05/2023] Open
Abstract
The replication strategy of metazoan genomes is still unclear, mainly because definitive maps of replication origins are missing. High-throughput methods are based on population average and thus may exclusively identify efficient initiation sites, whereas inefficient origins go undetected. Single-molecule analyses of specific loci can detect both common and rare initiation events along the targeted regions. However, these usually concentrate on positioning individual events, which only gives an overview of the replication dynamics. Here, we computed the replication fork directionality (RFD) profiles of two large genes in different transcriptional states in chicken DT40 cells, namely untranscribed and transcribed DMD and CCSER1 expressed at WT levels or overexpressed, by aggregating hundreds of oriented replication tracks detected on individual DNA fibres stretched by molecular combing. These profiles reconstituted RFD domains composed of zones of initiation flanking a zone of termination originally observed in mammalian genomes and were highly consistent with independent population-averaging profiles generated by Okazaki fragment sequencing. Importantly, we demonstrate that inefficient origins do not appear as detectable RFD shifts, explaining why dispersed initiation has remained invisible to population-based assays. Our method can both generate quantitative profiles and identify discrete events, thereby constituting a comprehensive approach to study metazoan genome replication.
Collapse
Affiliation(s)
- Marion Blin
- Département de Gastro-entérologie, pôle MAD, Assistance Publique des Hôpitaux de Marseille, Centre Hospitalier Universitaire de Marseille, Marseille, France
| | - Laurent Lacroix
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, F-75005 Paris, France
| | - Nataliya Petryk
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, F-75005 Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, F-75005 Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, F-75005 Paris, France
| | - Benoît Le Tallec
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, F-75005 Paris, France
| |
Collapse
|
31
|
Lalonde M, Trauner M, Werner M, Hamperl S. Consequences and Resolution of Transcription-Replication Conflicts. Life (Basel) 2021; 11:life11070637. [PMID: 34209204 PMCID: PMC8303131 DOI: 10.3390/life11070637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Transcription–replication conflicts occur when the two critical cellular machineries responsible for gene expression and genome duplication collide with each other on the same genomic location. Although both prokaryotic and eukaryotic cells have evolved multiple mechanisms to coordinate these processes on individual chromosomes, it is now clear that conflicts can arise due to aberrant transcription regulation and premature proliferation, leading to DNA replication stress and genomic instability. As both are considered hallmarks of aging and human diseases such as cancer, understanding the cellular consequences of conflicts is of paramount importance. In this article, we summarize our current knowledge on where and when collisions occur and how these encounters affect the genome and chromatin landscape of cells. Finally, we conclude with the different cellular pathways and multiple mechanisms that cells have put in place at conflict sites to ensure the resolution of conflicts and accurate genome duplication.
Collapse
|
32
|
Liu Y, Ai C, Gan T, Wu J, Jiang Y, Liu X, Lu R, Gao N, Li Q, Ji X, Hu J. Transcription shapes DNA replication initiation to preserve genome integrity. Genome Biol 2021; 22:176. [PMID: 34108027 PMCID: PMC8188667 DOI: 10.1186/s13059-021-02390-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Early DNA replication occurs within actively transcribed chromatin compartments in mammalian cells, raising the immediate question of how early DNA replication coordinates with transcription to avoid collisions and DNA damage. RESULTS We develop a high-throughput nucleoside analog incorporation sequencing assay and identify thousands of early replication initiation zones in both mouse and human cells. The identified early replication initiation zones fall in open chromatin compartments and are mutually exclusive with transcription elongation. Of note, early replication initiation zones are mainly located in non-transcribed regions adjacent to transcribed regions. Mechanistically, we find that RNA polymerase II actively redistributes the chromatin-bound mini-chromosome maintenance complex (MCM), but not the origin recognition complex (ORC), to actively restrict early DNA replication initiation outside of transcribed regions. In support of this finding, we detect apparent MCM accumulation and DNA replication initiation in transcribed regions due to anchoring of nuclease-dead Cas9 at transcribed genes, which stalls RNA polymerase II. Finally, we find that the orchestration of early DNA replication initiation by transcription efficiently prevents gross DNA damage. CONCLUSION RNA polymerase II redistributes MCM complexes, but not the ORC, to prevent early DNA replication from initiating within transcribed regions. This RNA polymerase II-driven MCM redistribution spatially separates transcription and early DNA replication events and avoids the transcription-replication initiation collision, thereby providing a critical regulatory mechanism to preserve genome stability.
Collapse
Affiliation(s)
- Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chen Ai
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
| | - Tingting Gan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jinchun Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yongpeng Jiang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
| | - Rusen Lu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ning Gao
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Li
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiong Ji
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
33
|
Abstract
Unlike bacteria, mammalian cells need to complete DNA replication before segregating their chromosomes for the maintenance of genome integrity. Thus, cells have evolved efficient pathways to restore stalled and/or collapsed replication forks during S-phase, and when necessary, also to delay cell cycle progression to ensure replication completion. However, strong evidence shows that cells can proceed to mitosis with incompletely replicated DNA when under mild replication stress (RS) conditions. Consequently, the incompletely replicated genomic gaps form, predominantly at common fragile site regions, where the converging fork-like DNA structures accumulate. These branched structures pose a severe threat to the faithful disjunction of chromosomes as they physically interlink the partially duplicated sister chromatids. In this review, we provide an overview discussing how cells respond and deal with the under-replicated DNA structures that escape from the S/G2 surveillance system. We also focus on recent research of a mitotic break-induced replication pathway (also known as mitotic DNA repair synthesis), which has been proposed to operate during prophase in an attempt to finish DNA synthesis at the under-replicated genomic regions. Finally, we discuss recent data on how mild RS may cause chromosome instability and mutations that accelerate cancer genome evolution.
Collapse
Affiliation(s)
- Camelia Mocanu
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| | - Kok-Lung Chan
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| |
Collapse
|
34
|
Hadi K, Yao X, Behr JM, Deshpande A, Xanthopoulakis C, Tian H, Kudman S, Rosiene J, Darmofal M, DeRose J, Mortensen R, Adney EM, Shaiber A, Gajic Z, Sigouros M, Eng K, Wala JA, Wrzeszczyński KO, Arora K, Shah M, Emde AK, Felice V, Frank MO, Darnell RB, Ghandi M, Huang F, Dewhurst S, Maciejowski J, de Lange T, Setton J, Riaz N, Reis-Filho JS, Powell S, Knowles DA, Reznik E, Mishra B, Beroukhim R, Zody MC, Robine N, Oman KM, Sanchez CA, Kuhner MK, Smith LP, Galipeau PC, Paulson TG, Reid BJ, Li X, Wilkes D, Sboner A, Mosquera JM, Elemento O, Imielinski M. Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs. Cell 2021; 183:197-210.e32. [PMID: 33007263 DOI: 10.1016/j.cell.2020.08.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.
Collapse
Affiliation(s)
- Kevin Hadi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA
| | - Xiaotong Yao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Tri-institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julie M Behr
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Tri-institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Aditya Deshpande
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Tri-institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Huasong Tian
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA
| | - Sarah Kudman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joel Rosiene
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA
| | - Madison Darmofal
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Tri-institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | | | | | - Emily M Adney
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA
| | - Alon Shaiber
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Zoran Gajic
- New York Genome Center, New York, NY 10013, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kenneth Eng
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jeremiah A Wala
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Departments of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Minita Shah
- New York Genome Center, New York, NY 10013, USA
| | | | | | - Mayu O Frank
- New York Genome Center, New York, NY 10013, USA; Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Robert B Darnell
- New York Genome Center, New York, NY 10013, USA; Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Mahmoud Ghandi
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Franklin Huang
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sally Dewhurst
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - John Maciejowski
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Jeremy Setton
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge S Reis-Filho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David A Knowles
- New York Genome Center, New York, NY 10013, USA; Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bud Mishra
- Departments of Computer Science, Mathematics and Cell Biology, Courant Institute and NYU School of Medicine, New York University, New York, NY 10012, USA
| | - Rameen Beroukhim
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Departments of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | - Kenji M Oman
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Carissa A Sanchez
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mary K Kuhner
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lucian P Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Patricia C Galipeau
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Thomas G Paulson
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brian J Reid
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xiaohong Li
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David Wilkes
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Olivier Elemento
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
35
|
Simpson BS, Pye H, Whitaker HC. The oncological relevance of fragile sites in cancer. Commun Biol 2021; 4:567. [PMID: 33980983 PMCID: PMC8115686 DOI: 10.1038/s42003-021-02020-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
Recent developments in sequencing the cancer genome have provided the first in-depth mapping of structural variants (SV) across 38 tumour types. Sixteen signatures of structural variants have been proposed which broadly characterise the variation seen across cancer types. One signature shows increased duplications and deletions at fragile sites, with little association with the typical DNA repair defects. We discuss how, for many of these fragile sites, the clinical impacts are yet to be explored. One example is NAALADL2, one of the most frequently altered fragile sites in the cancer genome. The copy-number variations (CNVs) which occur at fragile sites, such as NAALADL2, may span many genes without typical DNA repair defects and could have a large impact on cell signalling. In this Perspective, Simpson, Pye, and Whitaker discuss recent research identifying structural genomic variants in human cancers with a particular focus on deletions and duplications at genomic fragile sites. They argue that tumours with predominantly fragile site structural variants represent a distinct mutational signature that warrants further research.
Collapse
Affiliation(s)
- Benjamin S Simpson
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK
| | - Hayley Pye
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK
| | - Hayley C Whitaker
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK.
| |
Collapse
|
36
|
Boteva L, Nozawa RS, Naughton C, Samejima K, Earnshaw WC, Gilbert N. Common Fragile Sites Are Characterized by Faulty Condensin Loading after Replication Stress. Cell Rep 2021; 32:108177. [PMID: 32966795 PMCID: PMC7511797 DOI: 10.1016/j.celrep.2020.108177] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cells coordinate interphase-to-mitosis transition, but recurrent cytogenetic lesions appear at common fragile sites (CFSs), termed CFS expression, in a tissue-specific manner after replication stress, marking regions of instability in cancer. Despite such a distinct defect, no model fully provides a molecular explanation for CFSs. We show that CFSs are characterized by impaired chromatin folding, manifesting as disrupted mitotic structures visible with molecular fluorescence in situ hybridization (FISH) probes in the presence and absence of replication stress. Chromosome condensation assays reveal that compaction-resistant chromatin lesions persist at CFSs throughout the cell cycle and mitosis. Cytogenetic and molecular lesions are marked by faulty condensin loading at CFSs, a defect in condensin-I-mediated compaction, and are coincident with mitotic DNA synthesis (MIDAS). This model suggests that, in conditions of exogenous replication stress, aberrant condensin loading leads to molecular defects and CFS expression, concomitantly providing an environment for MIDAS, which, if not resolved, results in chromosome instability.
Collapse
Affiliation(s)
- Lora Boteva
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK
| | - Ryu-Suke Nozawa
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, The University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, The University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK.
| |
Collapse
|
37
|
Kumagai A, Dunphy WG. Binding of the Treslin-MTBP Complex to Specific Regions of the Human Genome Promotes the Initiation of DNA Replication. Cell Rep 2021; 32:108178. [PMID: 32966791 PMCID: PMC7523632 DOI: 10.1016/j.celrep.2020.108178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
The processes that control where higher eukaryotic cells initiate DNA replication throughout the genome are not understood clearly. In metazoans, the Treslin-MTBP complex mediates critical final steps in formation of the activated replicative helicase prior to initiation of replication. Here, we map the genome-wide distribution of the MTBP subunit of this complex in human cells. Our results indicate that MTBP binds to at least 30,000 sites in the genome. A majority of these sites reside in regions of open chromatin that contain transcriptional-regulatory elements (e.g., promoters, enhancers, and super-enhancers), which are known to be preferred areas for initiation of replication. Furthermore, many binding sites encompass two genomic features: a nucleosome-free DNA sequence (e.g., G-quadruplex DNA or AP-1 motif) and a nucleosome bearing histone marks characteristic of open chromatin, such as H3K4me2. Taken together, these findings indicate that Treslin-MTBP associates coordinately with multiple genomic signals to promote initiation of replication. Kumagai and Dunphy show that Treslin-MTBP, activator of the replicative helicase, binds to at least 30,000 sites in the human genome. Many sites contain a nucleosome with active chromatin marks and nucleosome-free DNA (G-quadruplex or AP-1 site). Thus, Treslin-MTBP associates with multiple genomic elements to promote initiation of DNA replication.
Collapse
Affiliation(s)
- Akiko Kumagai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William G Dunphy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
38
|
Replication Stress, Genomic Instability, and Replication Timing: A Complex Relationship. Int J Mol Sci 2021; 22:ijms22094764. [PMID: 33946274 PMCID: PMC8125245 DOI: 10.3390/ijms22094764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
The replication-timing program constitutes a key element of the organization and coordination of numerous nuclear processes in eukaryotes. This program is established at a crucial moment in the cell cycle and occurs simultaneously with the organization of the genome, thus indicating the vital significance of this process. With recent technological achievements of high-throughput approaches, a very strong link has been confirmed between replication timing, transcriptional activity, the epigenetic and mutational landscape, and the 3D organization of the genome. There is also a clear relationship between replication stress, replication timing, and genomic instability, but the extent to which they are mutually linked to each other is unclear. Recent evidence has shown that replication timing is affected in cancer cells, although the cause and consequence of this effect remain unknown. However, in-depth studies remain to be performed to characterize the molecular mechanisms of replication-timing regulation and clearly identify different cis- and trans-acting factors. The results of these studies will potentially facilitate the discovery of new therapeutic pathways, particularly for personalized medicine, or new biomarkers. This review focuses on the complex relationship between replication timing, replication stress, and genomic instability.
Collapse
|
39
|
FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability. Commun Biol 2021; 4:127. [PMID: 33514811 PMCID: PMC7846573 DOI: 10.1038/s42003-021-01647-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and promotes CFS gene stability. Mechanistically, we demonstrate that the mitochondrial stress-dependent induction of CFS genes is mediated by ubiquitin-like protein 5 (UBL5), and that a UBL5-FANCD2 dependent axis regulates the mitochondrial UPR in human cells. We propose that FANCD2 coordinates nuclear and mitochondrial activities to prevent genome instability.
Collapse
|
40
|
Abstract
The Origin Recognition Complex (ORC) is an evolutionarily conserved six-subunit protein complex that binds specific sites at many locations to coordinately replicate the entire eukaryote genome. Though highly conserved in structure, ORC’s selectivity for replication origins has diverged tremendously between yeasts and humans to adapt to vastly different life cycles. In this work, we demonstrate that the selectivity determinant of ORC for DNA binding lies in a 19-amino acid insertion helix in the Orc4 subunit, which is present in yeast but absent in human. Removal of this motif from Orc4 transforms the yeast ORC, which selects origins based on base-specific binding at defined locations, into one whose selectivity is dictated by chromatin landscape and afforded with plasticity, as reported for human. Notably, the altered yeast ORC has acquired an affinity for regions near transcriptional start sites (TSSs), which the human ORC also favors. In most model yeast species the Origin Recognition Complex (ORC) binds defined and species-specific base sequences while in humans what determines the binding appears to be more complex. Here the authors reveal that the yeast’s ORC complex binding specificity is dependent on a 19-amino acid insertion helix in the Orc4 subunit which is lost in human.
Collapse
|
41
|
Lezaja A, Altmeyer M. Dealing with DNA lesions: When one cell cycle is not enough. Curr Opin Cell Biol 2020; 70:27-36. [PMID: 33310228 DOI: 10.1016/j.ceb.2020.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Subversion of genome integrity fuels cellular adaptation and is a prerequisite for organismal evolution, yet genomic lesions are also the harmful driving force of cancer and other age-related human diseases. Genome integrity maintenance is inherently linked to genome organization and nuclear architecture, which are substantially remodeled during the cell cycle. Here we discuss recent findings on how actively dividing cells cope with endogenous genomic lesions that occur frequently at repetitive, heterochromatic, and late replicating regions as byproducts of genome duplication. We discuss how such lesions, rather than being resolved immediately when they occur, are dealt with in subsequent cell cycle phases, and even after mitotic cell division, and how this in turn affects genome organization, stability, and function.
Collapse
Affiliation(s)
- Aleksandra Lezaja
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Pentzold C, Kokal M, Pentzold S, Weise A. Sites of chromosomal instability in the context of nuclear architecture and function. Cell Mol Life Sci 2020; 78:2095-2103. [PMID: 33219838 PMCID: PMC7966619 DOI: 10.1007/s00018-020-03698-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/02/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022]
Abstract
Chromosomal fragile sites are described as areas within the tightly packed mitotic chromatin that appear as breaks or gaps mostly tracing back to a loosened structure and not a real nicked break within the DNA molecule. Most facts about fragile sites result from studies in mitotic cells, mainly during metaphase and mainly in lymphocytes. Here, we synthesize facts about the genomic regions that are prone to form gaps and breaks on metaphase chromosomes in the context of interphase. We conclude that nuclear architecture shapes the activity profile of the cell, i.e. replication timing and transcriptional activity, thereby influencing genomic integrity during interphase with the potential to cause fragility in mitosis. We further propose fragile sites as examples of regions specifically positioned in the interphase nucleus with putative anchoring points at the nuclear lamina to enable a tightly regulated replication–transcription profile and diverse signalling functions in the cell. Consequently, fragility starts before the actual display as chromosomal breakage in metaphase to balance the initial contradiction of cellular overgrowth or malfunctioning and maintaining diversity in molecular evolution.
Collapse
Affiliation(s)
- Constanze Pentzold
- Institute of Human Genetics, University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany.
| | - Miriam Kokal
- Institute of Human Genetics, University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Stefan Pentzold
- Research Center Lobeda, Jena University Hospital, 07747, Jena, Germany
| | - Anja Weise
- Institute of Human Genetics, University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany
| |
Collapse
|
43
|
Waisertreiger I, Barlow J. Fragile site instability: measuring more than breaks. Oncoscience 2020; 7:60-67. [PMID: 33195735 PMCID: PMC7640903 DOI: 10.18632/oncoscience.513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/23/2022] Open
Abstract
Genome instability is not only a hallmark of cancer, it is necessary for its initiation and evolution, and naturally accumulates as cells age. Replication stress is a potent source of genome instability found in many tumor types [1]. Chromosomal fragile sites are genomic loci highly prone to DNA damage specifically from replication stress and are frequently mutated in cancer [2-4]2-4]. While tracking the origin of individual mutations has proved challenging, measuring DNA damage and repair at endogenous sites can offer key insights into understanding the etiology of cancer. In the past 15 years, the causal link between replication stress, oncogene activation, and tumor initiation and evolution has become increasingly clear [1, 5-9]. Replication-associated damage accumulates at early stages of tumorigenesis and may promote further transformation. Studying the causes and consequences of fragile site instability can offer a window into the earliest stages of carcinogenesis [10-13]. In particular, fragile site studies will help us understand the molecular underpinnings influencing the frequency of DNA breakage, successful repair processes suppressing genome instability, and unsuccessful repair leading to mutations and chromosome rearrangements. Of these, measuring successful repair is the most challenging as it leaves little evidence behind.
Collapse
Affiliation(s)
- Irina Waisertreiger
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Jacqueline Barlow
- Department of Microbiology and Molecular Genetics & Genome Center, University of California, Davis, CA, USA
| |
Collapse
|
44
|
3D genome organization contributes to genome instability at fragile sites. Nat Commun 2020; 11:3613. [PMID: 32680994 PMCID: PMC7367836 DOI: 10.1038/s41467-020-17448-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Common fragile sites (CFSs) are regions susceptible to replication stress and are hotspots for chromosomal instability in cancer. Several features were suggested to underlie CFS instability, however, these features are prevalent across the genome. Therefore, the molecular mechanisms underlying CFS instability remain unclear. Here, we explore the transcriptional profile and DNA replication timing (RT) under mild replication stress in the context of the 3D genome organization. The results reveal a fragility signature, comprised of a TAD boundary overlapping a highly transcribed large gene with APH-induced RT-delay. This signature enables precise mapping of core fragility regions in known CFSs and identification of novel fragile sites. CFS stability may be compromised by incomplete DNA replication and repair in TAD boundaries core fragility regions leading to genomic instability. The identified fragility signature will allow for a more comprehensive mapping of CFSs and pave the way for investigating mechanisms promoting genomic instability in cancer. Common fragile sites are regions susceptible to replication stress and are prone to chromosomal instability. Here, the authors, by analyzing the contribution of 3D chromatin organization, identify and characterize a fragility signature and precisely map these fragility regions.
Collapse
|
45
|
SLX4 interacts with RTEL1 to prevent transcription-mediated DNA replication perturbations. Nat Struct Mol Biol 2020; 27:438-449. [PMID: 32398829 DOI: 10.1038/s41594-020-0419-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
The SLX4 tumor suppressor is a scaffold that plays a pivotal role in several aspects of genome protection, including homologous recombination, interstrand DNA crosslink repair and the maintenance of common fragile sites and telomeres. Here, we unravel an unexpected direct interaction between SLX4 and the DNA helicase RTEL1, which, until now, were viewed as having independent and antagonistic functions. We identify cancer and Hoyeraal-Hreidarsson syndrome-associated mutations in SLX4 and RTEL1, respectively, that abolish SLX4-RTEL1 complex formation. We show that both proteins are recruited to nascent DNA, tightly co-localize with active RNA pol II, and that SLX4, in complex with RTEL1, promotes FANCD2/RNA pol II co-localization. Importantly, disrupting the SLX4-RTEL1 interaction leads to DNA replication defects in unstressed cells, which are rescued by inhibiting transcription. Our data demonstrate that SLX4 and RTEL1 interact to prevent replication-transcription conflicts and provide evidence that this is independent of the nuclease scaffold function of SLX4.
Collapse
|
46
|
Zhao PA, Sasaki T, Gilbert DM. High-resolution Repli-Seq defines the temporal choreography of initiation, elongation and termination of replication in mammalian cells. Genome Biol 2020; 21:76. [PMID: 32209126 PMCID: PMC7092589 DOI: 10.1186/s13059-020-01983-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND DNA replication in mammalian cells occurs in a defined temporal order during S phase, known as the replication timing (RT) programme. Replication timing is developmentally regulated and correlated with chromatin conformation and local transcriptional potential. Here, we present RT profiles of unprecedented temporal resolution in two human embryonic stem cell lines, human colon carcinoma line HCT116, and mouse embryonic stem cells and their neural progenitor derivatives. RESULTS Fine temporal windows revealed a remarkable degree of cell-to-cell conservation in RT, particularly at the very beginning and ends of S phase, and identified 5 temporal patterns of replication in all cell types, consistent with varying degrees of initiation efficiency. Zones of replication initiation (IZs) were detected throughout S phase and interacted in 3D space preferentially with other IZs of similar firing time. Temporal transition regions were resolved into segments of uni-directional replication punctuated at specific sites by small, inefficient IZs. Sites of convergent replication were divided into sites of termination or large constant timing regions consisting of many synchronous IZs in tandem. Developmental transitions in RT occured mainly by activating or inactivating individual IZs or occasionally by altering IZ firing time, demonstrating that IZs, rather than individual origins, are the units of developmental regulation. Finally, haplotype phasing revealed numerous regions of allele-specific and allele-independent asynchronous replication. Allele-independent asynchronous replication was correlated with the presence of previously mapped common fragile sites. CONCLUSIONS Altogether, these data provide a detailed temporal choreography of DNA replication in mammalian cells.
Collapse
Affiliation(s)
- Peiyao A Zhao
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA.
| |
Collapse
|
47
|
Abstract
Common fragile sites (CFSs) are large chromosomal regions that exhibit breakage on metaphase chromosomes upon replication stress. They become preferentially unstable at the early stage of cancer development and are hotspots for chromosomal rearrangements in cancers. Increasing evidence has highlighted the complexity underlying the instability of CFSs, and a combination of multiple mechanisms is believed to cause CFS fragility. We will review recent advancements in our understanding of the molecular mechanisms underlying the maintenance of CFS stability and the relevance of CFSs to cancer-associated genome instability. We will emphasize the contribution of the structure-prone AT-rich sequences to CFS instability, which is in line with the recent genome-wide study showing that structure-forming repeat sequences are principal sites of replication stress.
Collapse
Affiliation(s)
- Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, San Diego, CA 92037 USA
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, San Diego, CA 92037 USA
| |
Collapse
|
48
|
Transcription-mediated organization of the replication initiation program across large genes sets common fragile sites genome-wide. Nat Commun 2019; 10:5693. [PMID: 31836700 PMCID: PMC6911102 DOI: 10.1038/s41467-019-13674-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022] Open
Abstract
Common fragile sites (CFSs) are chromosome regions prone to breakage upon replication stress known to drive chromosome rearrangements during oncogenesis. Most CFSs nest in large expressed genes, suggesting that transcription could elicit their instability; however, the underlying mechanisms remain elusive. Genome-wide replication timing analyses here show that stress-induced delayed/under-replication is the hallmark of CFSs. Extensive genome-wide analyses of nascent transcripts, replication origin positioning and fork directionality reveal that 80% of CFSs nest in large transcribed domains poor in initiation events, replicated by long-travelling forks. Forks that travel long in late S phase explains CFS replication features, whereas formation of sequence-dependent fork barriers or head-on transcription–replication conflicts do not. We further show that transcription inhibition during S phase, which suppresses transcription–replication encounters and prevents origin resetting, could not rescue CFS stability. Altogether, our results show that transcription-dependent suppression of initiation events delays replication of large gene bodies, committing them to instability. Common Fragile Sites (CFSs) are chromosome regions prone to breakage upon replication stress known to drive chromosome rearrangements during oncogenesis. Here the authors use genome-wide and single cell techniques to assess how replication timing and transcriptional activity correlate with genome stability.
Collapse
|
49
|
Marchal C, Sima J, Gilbert DM. Control of DNA replication timing in the 3D genome. Nat Rev Mol Cell Biol 2019; 20:721-737. [PMID: 31477886 PMCID: PMC11567694 DOI: 10.1038/s41580-019-0162-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
The 3D organization of mammalian chromatin was described more than 30 years ago by visualizing sites of DNA synthesis at different times during the S phase of the cell cycle. These early cytogenetic studies revealed structurally stable chromosome domains organized into subnuclear compartments. Active-gene-rich domains in the nuclear interior replicate early, whereas more condensed chromatin domains that are largely at the nuclear and nucleolar periphery replicate later. During the past decade, this spatiotemporal DNA replication programme has been mapped along the genome and found to correlate with epigenetic marks, transcriptional activity and features of 3D genome architecture such as chromosome compartments and topologically associated domains. But the causal relationship between these features and DNA replication timing and the regulatory mechanisms involved have remained an enigma. The recent identification of cis-acting elements regulating the replication time and 3D architecture of individual replication domains and of long non-coding RNAs that coordinate whole chromosome replication provide insights into such mechanisms.
Collapse
Affiliation(s)
- Claire Marchal
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
50
|
Rivera-Mulia JC, Kim S, Gabr H, Chakraborty A, Ay F, Kahveci T, Gilbert DM. Replication timing networks reveal a link between transcription regulatory circuits and replication timing control. Genome Res 2019; 29:1415-1428. [PMID: 31434679 PMCID: PMC6724675 DOI: 10.1101/gr.247049.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
DNA replication occurs in a defined temporal order known as the replication timing (RT) program and is regulated during development, coordinated with 3D genome organization and transcriptional activity. However, transcription and RT are not sufficiently coordinated to predict each other, suggesting an indirect relationship. Here, we exploit genome-wide RT profiles from 15 human cell types and intermediate differentiation stages derived from human embryonic stem cells to construct different types of RT regulatory networks. First, we constructed networks based on the coordinated RT changes during cell fate commitment to create highly complex RT networks composed of thousands of interactions that form specific functional subnetwork communities. We also constructed directional regulatory networks based on the order of RT changes within cell lineages, and identified master regulators of differentiation pathways. Finally, we explored relationships between RT networks and transcriptional regulatory networks (TRNs) by combining them into more complex circuitries of composite and bipartite networks. Results identified novel trans interactions linking transcription factors that are core to the regulatory circuitry of each cell type to RT changes occurring in those cell types. These core transcription factors were found to bind cooperatively to sites in the affected replication domains, providing provocative evidence that they constitute biologically significant directional interactions. Our findings suggest a regulatory link between the establishment of cell-type-specific TRNs and RT control during lineage specification.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Sebo Kim
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Haitham Gabr
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Abhijit Chakraborty
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
- School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Tamer Kahveci
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306-4295, USA
- Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|