1
|
Cordero C, Mehta KPM, Weaver TM, Ling JA, Freudenthal BD, Cortez D, Roberts SA. Contributing factors to the oxidation-induced mutational landscape in human cells. Nat Commun 2024; 15:10722. [PMID: 39715760 DOI: 10.1038/s41467-024-55497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers. Potassium bromate (KBrO3)-induced 8-oxoGs occur with similar sequence preferences as their derived substitutions, indicating that the reactivity of specific oxidants dictates mutation sequence specificity. While 8-oxoG occurs uniformly across chromatin, 8-oxoG-induced mutations are elevated in compact genomic regions, within nucleosomes, and at inward facing guanines within strongly positioned nucleosomes. Cryo-electron microscopy structures of OGG1-nucleosome complexes indicate that these effects originate from OGG1's ability to flip outward positioned 8-oxoG lesions into the catalytic pocket while inward facing lesions are occluded by the histone octamer. Mutation spectra from human cells with DNA repair deficiencies reveals contributions of a DNA repair network limiting 8-oxoG mutagenesis, where OGG1- and MUTYH-mediated base excision repair is supplemented by the replication-associated factors Pol η and HMCES. Transcriptional asymmetry of KBrO3-induced mutations in OGG1- and Pol η-deficient cells also demonstrates transcription-coupled repair can prevent 8-oxoG-induced mutation. Thus, oxidant chemistry, chromatin structures, and DNA repair processes combine to dictate the oxidative mutational landscape in human genomes.
Collapse
Affiliation(s)
- Cameron Cordero
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, 05405, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Kavi P M Mehta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706, USA.
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Justin A Ling
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA.
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Steven A Roberts
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, 05405, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.
- Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
2
|
Sellés-Baiget S, Ambjørn SM, Carli A, Hendriks IA, Gallina I, Davey NE, Benedict B, Zarantonello A, Gadi SA, Meeusen B, Hertz EPT, Slappendel L, Semlow D, Sturla S, Nielsen ML, Nilsson J, Miller TCR, Duxin JP. Catalytic and noncatalytic functions of DNA polymerase κ in translesion DNA synthesis. Nat Struct Mol Biol 2024:10.1038/s41594-024-01395-3. [PMID: 39300172 DOI: 10.1038/s41594-024-01395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Translesion DNA synthesis (TLS) is a cellular process that enables the bypass of DNA lesions encountered during DNA replication and is emerging as a primary target of chemotherapy. Among vertebrate DNA polymerases, polymerase κ (Polκ) has the distinctive ability to bypass minor groove DNA adducts in vitro. However, Polκ is also required for cells to overcome major groove DNA adducts but the basis of this requirement is unclear. Here, we combine CRISPR base-editor screening technology in human cells with TLS analysis of defined DNA lesions in Xenopus egg extracts to unravel the functions and regulations of Polκ during lesion bypass. Strikingly, we show that Polκ has two main functions during TLS, which are differentially regulated by Rev1 binding. On the one hand, Polκ is essential to replicate across a minor groove DNA lesion in a process that depends on PCNA ubiquitylation but is independent of Rev1. On the other hand, through its cooperative interaction with Rev1 and ubiquitylated PCNA, Polκ appears to stabilize the Rev1-Polζ extension complex on DNA to allow extension past major groove DNA lesions and abasic sites, in a process that is independent of Polκ's catalytic activity. Together, our work identifies catalytic and noncatalytic functions of Polκ in TLS and reveals important regulatory mechanisms underlying the unique domain architecture present at the C-terminal end of Y-family TLS polymerases.
Collapse
Affiliation(s)
- Selene Sellés-Baiget
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Sara M Ambjørn
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Carli
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Irene Gallina
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandra Zarantonello
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sampath A Gadi
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bob Meeusen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Emil P T Hertz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Laura Slappendel
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Daniel Semlow
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shana Sturla
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thomas C R Miller
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
4
|
Oswalt LE, Eichman BF. NEIL3: A unique DNA glycosylase involved in interstrand DNA crosslink repair. DNA Repair (Amst) 2024; 139:103680. [PMID: 38663144 PMCID: PMC11162926 DOI: 10.1016/j.dnarep.2024.103680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
Endonuclease VIII-like 3 (NEIL3) is a versatile DNA glycosylase that repairs a diverse array of chemical modifications to DNA. Unlike other glycosylases, NEIL3 has a preference for lesions within single-strand DNA and at single/double-strand DNA junctions. Beyond its canonical role in base excision repair of oxidized DNA, NEIL3 initiates replication-dependent interstrand DNA crosslink repair as an alternative to the Fanconi Anemia pathway. This review outlines our current understanding of NEIL3's biological functions, role in disease, and three-dimensional structure as it pertains to substrate specificity and catalytic mechanism.
Collapse
Affiliation(s)
- Leah E Oswalt
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Wen T, Zhao S, Stingele J, Ravanat JL, Greenberg MM. Quantification of Intracellular DNA-Protein Cross-Links with N7-Methyl-2'-Deoxyguanosine and Their Contribution to Cytotoxicity. Chem Res Toxicol 2024; 37:814-823. [PMID: 38652696 PMCID: PMC11105979 DOI: 10.1021/acs.chemrestox.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The major product of DNA-methylating agents, N7-methyl-2'-deoxyguanosine (MdG), is a persistent lesion in vivo, but it is not believed to have a large direct physiological impact. However, MdG reacts with histone proteins to form reversible DNA-protein cross-links (DPCMdG), a family of DNA lesions that can significantly threaten cell survival. In this paper, we developed a tandem mass spectrometry method for quantifying the amounts of MdG and DPCMdG in nuclear DNA by taking advantage of their chemical lability and the concurrent release of N7-methylguanine. Using this method, we determined that DPCMdG is formed in less than 1% yield based upon the levels of MdG in methyl methanesulfonate (MMS)-treated HeLa cells. Despite its low chemical yield, DPCMdG contributes to MMS cytotoxicity. Consequently, cells that lack efficient DPC repair by the DPC protease SPRTN are hypersensitive to MMS. This investigation shows that the downstream chemical and biochemical effects of initially formed DNA damage can have significant biological consequences. With respect to MdG formation, the initial DNA lesion is only the beginning.
Collapse
Affiliation(s)
- Tingyu Wen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Price NE, Gates KS. Novel Processes Associated with the Repair of Interstrand Cross-Links Derived from Abasic Sites in Duplex DNA: Roles for the Base Excision Repair Glycosylase NEIL3 and the SRAP Protein HMCES. Chem Res Toxicol 2024; 37:199-207. [PMID: 38198604 DOI: 10.1021/acs.chemrestox.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Recent studies have defined a novel pathway for the repair of interstrand cross-links derived from the reaction of an adenine residue with an apurinic/apyrimidinic (AP) site on the opposing strand of DNA (dA-AP ICL). Stalling of a replication fork at the dA-AP ICL triggers TRAIP-dependent ubiquitylation of the CMG helicase that recruits the base excision repair glycosylase NEIL3 to the lesion. NEIL3 unhooks the dA-AP ICL to regenerate the native adenine residue on one strand and an AP site on the other strand. Covalent capture of the abasic site by the SRAP protein HMCES protects against genomic instability that would result from cleavage of the abasic site in the context of single-stranded DNA at the replication fork. After repair synthesis moves the HMCES-AP adduct into the context of double-stranded DNA, the DNA-protein cross-link is resolved by a nonproteolytic mechanism involving dissociation of thiazolidine attachment. The AP site in duplex DNA is then repaired by the base excision repair pathway.
Collapse
Affiliation(s)
- Nathan E Price
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
7
|
Gomina A, Islam T, Shim G, Lei Z, Gates KS. Formation and Properties of DNA Adducts Generated by Reactions of Abasic Sites with 1,2-Aminothiols Including Cysteamine, Cysteine Methyl Ester, and Peptides Containing N-Terminal Cysteine Residues. Chem Res Toxicol 2024; 37:395-406. [PMID: 38181204 DOI: 10.1021/acs.chemrestox.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The reaction of 1,2-aminothiol groups with aldehyde residues in aqueous solution generates thiazolidine products, and this process has been developed as a catalyst-free click reaction for bioconjugation. The work reported here characterized reactions of the biologically relevant 1,2-aminothiols including cysteamine, cysteine methyl ester, and peptides containing N-terminal cysteine residues with the aldehyde residue of apurinic/apyrimidinic (AP) sites in DNA oligomers. These 1,2-aminothiol-containing compounds rapidly generated adducts with AP sites in single-stranded and double-stranded DNA. NMR and MALDI-TOF-MS analyses provided evidence that the reaction generated a thiazolidine product. Conversion of an AP site to a thiazolidine-AP adduct protected against the rapid cleavage normally induced at AP sites by the endonuclease action of the enzyme APE1 and the AP-lyase activity of the biogenic amine spermine. In the presence of excess 1,2-aminothiols, the thiazolidine-AP adducts underwent slow strand cleavage via a β-lyase reaction that generated products with 1,2-aminothiol-modified sugar residues on the 3'-end of the strand break. In the absence of excess 1,2-aminothiols, the thiazolidine-AP adducts dissociated to release the parent AP-containing oligonucleotide. The properties of the thiazolidine-AP adducts described here mirror critical properties of SRAP proteins HMCES and YedK that capture AP sites in single-stranded regions of cellular DNA and protect them from cleavage.
Collapse
Affiliation(s)
- Anuoluwapo Gomina
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Tanhaul Islam
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Garam Shim
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Zhentian Lei
- MU Metabolomics Center, University of Missouri, 240F Christopher S. Bond Life Science Center, Columbia, Missouri 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
8
|
Essawy MM, Campbell C. Enzymatic Processing of DNA-Protein Crosslinks. Genes (Basel) 2024; 15:85. [PMID: 38254974 PMCID: PMC10815813 DOI: 10.3390/genes15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-protein crosslinks (DPCs) represent a unique and complex form of DNA damage formed by covalent attachment of proteins to DNA. DPCs are formed through a variety of mechanisms and can significantly impede essential cellular processes such as transcription and replication. For this reason, anti-cancer drugs that form DPCs have proven effective in cancer therapy. While cells rely on numerous different processes to remove DPCs, the molecular mechanisms responsible for orchestrating these processes remain obscure. Having this insight could potentially be harnessed therapeutically to improve clinical outcomes in the battle against cancer. In this review, we describe the ways cells enzymatically process DPCs. These processing events include direct reversal of the DPC via hydrolysis, nuclease digestion of the DNA backbone to delete the DPC and surrounding DNA, proteolytic processing of the crosslinked protein, as well as covalent modification of the DNA-crosslinked proteins with ubiquitin, SUMO, and Poly(ADP) Ribose (PAR).
Collapse
Affiliation(s)
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
9
|
Rua-Fernandez J, Lovejoy CA, Mehta KPM, Paulin KA, Toudji YT, Giansanti C, Eichman BF, Cortez D. Self-reversal facilitates the resolution of HMCES DNA-protein crosslinks in cells. Cell Rep 2023; 42:113427. [PMID: 37950866 PMCID: PMC10842721 DOI: 10.1016/j.celrep.2023.113427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023] Open
Abstract
Abasic sites are common DNA lesions stalling polymerases and threatening genome stability. When located in single-stranded DNA (ssDNA), they are shielded from aberrant processing by 5-hydroxymethyl cytosine, embryonic stem cell (ESC)-specific (HMCES) via a DNA-protein crosslink (DPC) that prevents double-strand breaks. Nevertheless, HMCES-DPCs must be removed to complete DNA repair. Here, we find that DNA polymerase α inhibition generates ssDNA abasic sites and HMCES-DPCs. These DPCs are resolved with a half-life of approximately 1.5 h. HMCES can catalyze its own DPC self-reversal reaction, which is dependent on glutamate 127 and is favored when the ssDNA is converted to duplex DNA. When the self-reversal mechanism is inactivated in cells, HMCES-DPC removal is delayed, cell proliferation is slowed, and cells become hypersensitive to DNA damage agents that increase AP (apurinic/apyrimidinic) site formation. In these circumstances, proteolysis may become an important mechanism of HMCES-DPC resolution. Thus, HMCES-DPC formation followed by self-reversal is an important mechanism for ssDNA AP site management.
Collapse
Affiliation(s)
- Jorge Rua-Fernandez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Courtney A Lovejoy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kavi P M Mehta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katherine A Paulin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Yasmine T Toudji
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Celeste Giansanti
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Donsbach M, Dürauer S, Grünert F, Nguyen KT, Nigam R, Yaneva D, Weickert P, Bezalel‐Buch R, Semlow DR, Stingele J. A non-proteolytic release mechanism for HMCES-DNA-protein crosslinks. EMBO J 2023; 42:e113360. [PMID: 37519246 PMCID: PMC10505908 DOI: 10.15252/embj.2022113360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
The conserved protein HMCES crosslinks to abasic (AP) sites in ssDNA to prevent strand scission and the formation of toxic dsDNA breaks during replication. Here, we report a non-proteolytic release mechanism for HMCES-DNA-protein crosslinks (DPCs), which is regulated by DNA context. In ssDNA and at ssDNA-dsDNA junctions, HMCES-DPCs are stable, which efficiently protects AP sites against spontaneous incisions or cleavage by APE1 endonuclease. In contrast, HMCES-DPCs are released in dsDNA, allowing APE1 to initiate downstream repair. Mechanistically, we show that release is governed by two components. First, a conserved glutamate residue, within HMCES' active site, catalyses reversal of the crosslink. Second, affinity to the underlying DNA structure determines whether HMCES re-crosslinks or dissociates. Our study reveals that the protective role of HMCES-DPCs involves their controlled release upon bypass by replication forks, which restricts DPC formation to a necessary minimum.
Collapse
Affiliation(s)
- Maximilian Donsbach
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Sophie Dürauer
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Florian Grünert
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Kha T Nguyen
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Richa Nigam
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Denitsa Yaneva
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Pedro Weickert
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| | - Rachel Bezalel‐Buch
- Department of Biological Chemistry and Molecular BiophysicsWashington University School of MedicalSaint LouisMOUSA
| | - Daniel R Semlow
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Julian Stingele
- Department of BiochemistryLudwig‐Maximilians‐University MunichMunichGermany
- Gene Center, Ludwig‐Maximilians‐University MunichMunichGermany
| |
Collapse
|
11
|
Eichman BF. Repair and tolerance of DNA damage at the replication fork: A structural perspective. Curr Opin Struct Biol 2023; 81:102618. [PMID: 37269798 PMCID: PMC10525001 DOI: 10.1016/j.sbi.2023.102618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
The replication machinery frequently encounters DNA damage and other structural impediments that inhibit progression of the replication fork. Replication-coupled processes that remove or bypass the barrier and restart stalled forks are essential for completion of replication and for maintenance of genome stability. Errors in replication-repair pathways lead to mutations and aberrant genetic rearrangements and are associated with human diseases. This review highlights recent structures of enzymes involved in three replication-repair pathways: translesion synthesis, template switching and fork reversal, and interstrand crosslink repair.
Collapse
Affiliation(s)
- Brandt F Eichman
- Vanderbilt University, Department of Biological Sciences and Department of Biochemistry, 5270A MRBIII, 465 21st Ave S, Nashville, TN 37232 USA.
| |
Collapse
|
12
|
Rua-Fernandez J, Lovejoy CA, Mehta KPM, Paulin KA, Toudji YT, Eichman BF, Cortez D. Self-reversal facilitates the resolution of HMCES-DNA protein crosslinks in cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544844. [PMID: 37398432 PMCID: PMC10312715 DOI: 10.1101/2023.06.14.544844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Abasic sites are common DNA lesions that stall polymerases and threaten genome stability. When located in single-stranded DNA (ssDNA), they are shielded from aberrant processing by HMCES via a DNA-protein crosslink (DPC) that prevents double-strand breaks. Nevertheless, the HMCES-DPC must be removed to complete DNA repair. Here, we found that DNA polymerase α inhibition generates ssDNA abasic sites and HMCES-DPCs. These DPCs are resolved with a half-life of approximately 1.5 hours. Resolution does not require the proteasome or SPRTN protease. Instead, HMCES-DPC self-reversal is important for resolution. Biochemically, self-reversal is favored when the ssDNA is converted to duplex DNA. When the self-reversal mechanism is inactivated, HMCES-DPC removal is delayed, cell proliferation is slowed, and cells become hypersensitive to DNA damage agents that increase AP site formation. Thus, HMCES-DPC formation followed by self-reversal is an important mechanism for ssDNA AP site management.
Collapse
|
13
|
Sugimoto Y, Masuda Y, Iwai S, Miyake Y, Kanao R, Masutani C. Novel mechanisms for the removal of strong replication-blocking HMCES- and thiazolidine-DNA adducts in humans. Nucleic Acids Res 2023; 51:4959-4981. [PMID: 37021581 PMCID: PMC10250235 DOI: 10.1093/nar/gkad246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are DNA lesions created under normal growth conditions that result in cytotoxicity, replication-blocks, and mutations. AP sites are susceptible to β-elimination and are liable to be converted to DNA strand breaks. HMCES (5-hydroxymethylcytosine binding, ES cell specific) protein interacts with AP sites in single stranded (ss) DNA exposed at DNA replication forks to generate a stable thiazolidine protein-DNA crosslink and protect cells against AP site toxicity. The crosslinked HMCES is resolved by proteasome-mediated degradation; however, it is unclear how HMCES-crosslinked ssDNA and the resulting proteasome-degraded HMCES adducts are processed and repaired. Here, we describe methods for the preparation of thiazolidine adduct-containing oligonucleotides and determination of their structure. We demonstrate that the HMCES-crosslink is a strong replication blocking adduct and that protease-digested HMCES adducts block DNA replication to a similar extent as AP sites. Moreover, we show that the human AP endonuclease APE1 incises DNA 5' to the protease-digested HMCES adduct. Interestingly, while HMCES-ssDNA crosslinks are stable, the crosslink is reversed upon the formation of dsDNA, possibly due to a catalytic reverse reaction. Our results shed new light on damage tolerance and repair pathways for HMCES-DNA crosslinks in human cells.
Collapse
Affiliation(s)
- Yohei Sugimoto
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yumi Miyake
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
14
|
Xu W, Tang J, Zhao L. DNA-protein cross-links between abasic DNA damage and mitochondrial transcription factor A (TFAM). Nucleic Acids Res 2023; 51:41-53. [PMID: 36583367 PMCID: PMC9841407 DOI: 10.1093/nar/gkac1214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
In higher eukaryotic cells, mitochondria are essential organelles for energy production, metabolism, and signaling. Mitochondrial DNA (mtDNA) encodes 13 protein subunits for oxidative phosphorylation and a set of tRNAs and rRNAs. mtDNA damage, sourced from endogenous chemicals and environmental factors, contributes to mitochondrial genomic instability, which has been associated with various mitochondrial diseases. DNA-protein cross-links (DPCs) are deleterious DNA lesions that threaten genomic integrity. Although much has been learned about the formation and repair of DPCs in the nucleus, little is known about DPCs in mitochondria. Here, we present in vitro and in cellulo data to demonstrate the formation of DPCs between a prevalent abasic (AP) DNA lesion and a DNA-packaging protein, mitochondrial transcription factor A (TFAM). TFAM cleaves AP-DNA and forms DPCs and single-strand breaks (SSB). Lys residues of TFAM are critical for the formation of TFAM-DPC and a reactive 3'-phospho-α,β-unsaturated aldehyde (3'pUA) residue on SSB. The 3'pUA residue reacts with two Cys of TFAM and contributes to the stable TFAM-DPC formation. Glutathione reacts with 3'pUA and competes with TFAM-DPC formation, corroborating our cellular experiments showing the accumulation of TFAM-DPCs under limiting glutathione. Our data point to the involvement of TFAM in AP-DNA turnover and fill a knowledge gap regarding the protein factors in processing damaged mtDNA.
Collapse
Affiliation(s)
- Wenyan Xu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Jin Tang
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
15
|
Yaneva D, Sparks JL, Donsbach M, Zhao S, Weickert P, Bezalel-Buch R, Stingele J, Walter JC. The FANCJ helicase unfolds DNA-protein crosslinks to promote their repair. Mol Cell 2023; 83:43-56.e10. [PMID: 36608669 PMCID: PMC9881729 DOI: 10.1016/j.molcel.2022.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/12/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
Endogenous and exogenous agents generate DNA-protein crosslinks (DPCs), whose replication-dependent degradation by the SPRTN protease suppresses aging and liver cancer. SPRTN is activated after the replicative CMG helicase bypasses a DPC and polymerase extends the nascent strand to the adduct. Here, we identify a role for the 5'-to-3' helicase FANCJ in DPC repair. In addition to supporting CMG bypass, FANCJ is essential for SPRTN activation. FANCJ binds ssDNA downstream of the DPC and uses its ATPase activity to unfold the protein adduct, which exposes the underlying DNA and enables cleavage of the adduct. FANCJ-dependent DPC unfolding is also essential for translesion DNA synthesis past DPCs that cannot be degraded. In summary, our results show that helicase-mediated protein unfolding enables multiple events in DPC repair.
Collapse
Affiliation(s)
- Denitsa Yaneva
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Justin L Sparks
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Maximilian Donsbach
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Shubo Zhao
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Pedro Weickert
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Rachel Bezalel-Buch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Julian Stingele
- Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute.
| |
Collapse
|
16
|
Amin SM, Islam T, Price NE, Wallace A, Guo X, Gomina A, Heidari M, Johnson KM, Lewis CD, Yang Z, Gates KS. Effects of Local Sequence, Reaction Conditions, and Various Additives on the Formation and Stability of Interstrand Cross-Links Derived from the Reaction of an Abasic Site with an Adenine Residue in Duplex DNA. ACS OMEGA 2022; 7:36888-36901. [PMID: 36278095 PMCID: PMC9583646 DOI: 10.1021/acsomega.2c05736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The experiments described here examined the effects of reaction conditions, various additives, and local sequence on the formation and stability interstrand cross-links (ICLs) derived from the reaction of an apurinic/apyrimidinic (AP) site with the exocyclic amino group of an adenine residue on the opposing strand in duplex DNA. Cross-link formation was observed in a range of different buffers, with faster formation rates observed at pH 5. Inclusion of the base excision repair enzyme alkyladenine DNA glycosylase (hAAG) which binds tightly to AP-containing duplexes decreased, but did not completely prevent, formation of the dA-AP ICL. Formation of the dA-AP ICL was not altered by the presence of the biological metal ion Mg2+ or the biological thiol, glutathione. Several organocatalysts of imine formation did not enhance the rate of dA-AP ICL formation. Duplex length did not have a large effect on dA-AP yield, so long as the melting temperature of the duplex was not significantly below the reaction temperature (the duplex must remain hybridized for efficient ICL formation). Formation of the dA-AP ICL was examined in over 40 different sequences that varied the neighboring and opposing bases at the cross-linking site. The results indicate that ICL formation can occur in a wide variety of sequence contexts under physiological conditions. Formation of the dA-AP ICL was strongly inhibited by the aldehyde-trapping agents methoxyamine and hydralazine, by NaBH3CN, by the intercalator ethidium bromide, and by the minor groove-binding agent netropsin. ICL formation was inhibited to some extent in bicarbonate and Tris buffers. The dA-AP ICL showed substantial inherent stability under a variety of conditions and was not a substrate for AP-processing enzymes APE1 or Endo IV. Finally, we characterized cross-link formation in a small (11 bp) stem-loop (hairpin) structure and in DNA-RNA hybrid duplexes.
Collapse
Affiliation(s)
- Saosan
Binth Md. Amin
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Tanhaul Islam
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Nathan E. Price
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Amanda Wallace
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Xu Guo
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Anuoluwapo Gomina
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Marjan Heidari
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kevin M. Johnson
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Calvin D. Lewis
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
17
|
Paulin KA, Cortez D, Eichman BF. The SOS response-associated peptidase (SRAP) domain of YedK catalyzes ring opening of abasic sites and reversal of its DNA-protein crosslink. J Biol Chem 2022; 298:102307. [PMID: 35934051 PMCID: PMC9436759 DOI: 10.1016/j.jbc.2022.102307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
Apurinic/apyrimidinic (AP, or abasic) sites in DNA are one of the most common forms of DNA damage. AP sites are reactive and form cross-links to both proteins and DNA, are prone to strand breakage, and inhibit DNA replication and transcription. The replication-associated AP site repair protein HMCES protects cells from strand breaks, inhibits mutagenic translesion synthesis, and participates in repair of interstrand DNA cross-links derived from AP sites by forming a stable thiazolidine DNA–protein cross-link (DPC) to AP sites in single-stranded DNA (ssDNA). Despite the importance of HMCES to genome maintenance and the evolutionary conservation of its catalytic SRAP (SOS Response Associated Peptidase) domain, the enzymatic mechanisms of DPC formation and resolution are unknown. Using the bacterial homolog YedK, we show that the SRAP domain catalyzes conversion of the AP site to its reactive, ring-opened aldehyde form, and we provide structural evidence for the Schiff base intermediate that forms prior to the more stable thiazolidine. We also report two new activities, whereby SRAP reacts with polyunsaturated aldehydes at DNA 3′-ends generated by bifunctional DNA glycosylases and catalyzes direct reversal of the DPC to regenerate the AP site, the latter of which we observe in both YedK and HMCES-SRAP proteins. Taken together, this work provides insights into possible mechanisms by which HMCES DPCs are resolved in cells.
Collapse
|
18
|
Leng X, Duxin JP. Targeting DNA-Protein Crosslinks via Post-Translational Modifications. Front Mol Biosci 2022; 9:944775. [PMID: 35860355 PMCID: PMC9289515 DOI: 10.3389/fmolb.2022.944775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Covalent binding of proteins to DNA forms DNA-protein crosslinks (DPCs), which represent cytotoxic DNA lesions that interfere with essential processes such as DNA replication and transcription. Cells possess different enzymatic activities to counteract DPCs. These include enzymes that degrade the adducted proteins, resolve the crosslinks, or incise the DNA to remove the crosslinked proteins. An important question is how DPCs are sensed and targeted for removal via the most suited pathway. Recent advances have shown the inherent role of DNA replication in triggering DPC removal by proteolysis. However, DPCs are also efficiently sensed and removed in the absence of DNA replication. In either scenario, post-translational modifications (PTMs) on DPCs play essential and versatile roles in orchestrating the repair routes. In this review, we summarize the current knowledge of the mechanisms that trigger DPC removal via PTMs, focusing on ubiquitylation, small ubiquitin-related modifier (SUMO) conjugation (SUMOylation), and poly (ADP-ribosyl)ation (PARylation). We also briefly discuss the current knowledge gaps and emerging hypotheses in the field.
Collapse
|