1
|
Arkinson C, Dong KC, Gee CL, Martin A. Mechanisms and regulation of substrate degradation by the 26S proteasome. Nat Rev Mol Cell Biol 2025; 26:104-122. [PMID: 39362999 PMCID: PMC11772106 DOI: 10.1038/s41580-024-00778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/05/2024]
Abstract
The 26S proteasome is involved in degrading and regulating the majority of proteins in eukaryotic cells, which requires a sophisticated balance of specificity and promiscuity. In this Review, we discuss the principles that underly substrate recognition and ATP-dependent degradation by the proteasome. We focus on recent insights into the mechanisms of conventional ubiquitin-dependent and ubiquitin-independent protein turnover, and discuss the plethora of modulators for proteasome function, including substrate-delivering cofactors, ubiquitin ligases and deubiquitinases that enable the targeting of a highly diverse substrate pool. Furthermore, we summarize recent progress in our understanding of substrate processing upstream of the 26S proteasome by the p97 protein unfoldase. The advances in our knowledge of proteasome structure, function and regulation also inform new strategies for specific inhibition or harnessing the degradation capabilities of the proteasome for the treatment of human diseases, for instance, by using proteolysis targeting chimera molecules or molecular glues.
Collapse
Affiliation(s)
- Connor Arkinson
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Ken C Dong
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Wang J, Kjellgren A, DeMartino GN. PI31 is a positive regulator of 20S immunoproteasome assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633194. [PMID: 39868238 PMCID: PMC11761684 DOI: 10.1101/2025.01.15.633194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
PI31 (Proteasome Inhibitor of 31,000 Da) is a 20S proteasome-binding protein originally identified as an inhibitor of in vitro 20S proteasome activity. Although recent studies have provided a detailed structural basis for this activity, the physiologic significance of PI31-mediated proteasome inhibition remains uncertain and alternative cellular roles for PI31 have been described. Here we report a role for PI31 as a positive regulator for the assembly of the 20S immuno-proteasome (20Si), a compositionally and functionally distinct isoform of the proteasome that is poorly inhibited by PI31. Genetic ablation of PI31 in mammalian cells had no effect on the cellular content or activity of constitutively expressed proteasomes but reduced the cellular content and activity of interferon-γ-induced immuno-proteasomes. This selective effect is a consequence of defective 20Si assembly, as indicated by the accumulation of 20Si assembly intermediates. Our results highlight a distinction in the assembly pathways of constitutive and immuno-proteasomes and indicate that PI31 plays a chaperone-like role for the selective assembly of 20S immunoproteasomes.
Collapse
Affiliation(s)
| | - Abbey Kjellgren
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9040
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9040
| |
Collapse
|
3
|
Kaur M, Chen X, Lee SY, Weaver TM, Freudenthal BD, Walters KJ, Roelofs J. Structure of Blm10:13S proteasome intermediate reveals parallel assembly pathways for the proteasome core particle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621988. [PMID: 39574619 PMCID: PMC11580919 DOI: 10.1101/2024.11.04.621988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Proteasomes are formed by chaperone-assisted assembly of core particles (CPs) and regulatory particles (RPs). The CP chaperone dimer Pba1/Pba2 binds early to proteasome subunits, and is thought to be replaced by Blm10 to form Blm10:CP, which promotes ATP-independent degradation of disordered proteins. Here, we present evidence of distinct parallel assembly pathways for CP by solving five cryo-EM structures including a Blm10:13S pre-assembly intermediate. Our data conflict with the current model of Blm10 and Pba1/Pba2 sequential activity in a single assembly pathway, as we find their CP binding is mutually exclusive and both are present on early and late assembly intermediates. CP affinity for Pba1/Pba2 is reduced during maturation, promoting Pba1/Pba2 release. We find Blm10 undergoes no such affinity switch, suggesting this pathway predominantly yields mature Blm10-bound CP. Altogether, our findings conflict with the current paradigm of sequential CP binding to instead indicate parallel assembly pathways by Pba1/Pba2 and Blm10.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| | - Xiang Chen
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Stella Y. Lee
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| | - Tyler M. Weaver
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| | - Bret D. Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| | - Kylie J. Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| |
Collapse
|
4
|
Zhang H, Zhou C, Mohammad Z, Zhao J. Structural basis of human 20S proteasome biogenesis. Nat Commun 2024; 15:8184. [PMID: 39294158 PMCID: PMC11410832 DOI: 10.1038/s41467-024-52513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
New proteasomes are produced to accommodate increases in cellular catabolic demand and prevent the accumulation of cytotoxic proteins. Formation of the proteasomal 20S core complex relies on the function of the five chaperones PAC1-4 and POMP. Here, to understand how these chaperones facilitate proteasome assembly, we tagged the endogenous chaperones using CRISPR/Cas gene editing and examined the chaperone-bound complexes by cryo-EM. We observe an early α-ring intermediate subcomplex that is stabilized by PAC1-4, which transitions to β-ring assembly upon dissociation of PAC3/PAC4 and rearrangement of the PAC1 N-terminal tail. Completion of the β-ring and dimerization of half-proteasomes repositions critical lysine K33 to trigger cleavage of the β pro-peptides, leading to the concerted dissociation of POMP and PAC1/PAC2 to yield mature 20S proteasomes. This study reveals structural insights into critical points along the assembly pathway of the human proteasome and provides a molecular blueprint for 20S biogenesis.
Collapse
Affiliation(s)
- Hanxiao Zhang
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Chenyu Zhou
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Zarith Mohammad
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Jianhua Zhao
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA.
| |
Collapse
|
5
|
Al Rawi S, Simpson L, Agnarsdóttir G, McDonald NQ, Chernuha V, Elpeleg O, Zeviani M, Barker RA, Spiegel R, Laman H. Study of an FBXO7 patient mutation reveals Fbxo7 and PI31 co-regulate proteasomes and mitochondria. FEBS J 2024; 291:2565-2589. [PMID: 38466799 DOI: 10.1111/febs.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Mutations in FBXO7 have been discovered to be associated with an atypical parkinsonism. We report here a new homozygous missense mutation in a paediatric patient that causes an L250P substitution in the dimerisation domain of Fbxo7. This alteration selectively ablates the Fbxo7-PI31 interaction and causes a significant reduction in Fbxo7 and PI31 levels in patient cells. Consistent with their association with proteasomes, patient fibroblasts have reduced proteasome activity and proteasome subunits. We also show PI31 interacts with the MiD49/51 fission adaptor proteins, and unexpectedly, PI31 acts to facilitate SCFFbxo7-mediated ubiquitination of MiD49. The L250P mutation reduces the SCFFbxo7 ligase-mediated ubiquitination of a subset of its known substrates. Although MiD49/51 expression was reduced in patient cells, there was no effect on the mitochondrial network. However, patient cells show reduced levels of mitochondrial function and mitophagy, higher levels of ROS and are less viable under stress. Our study demonstrates that Fbxo7 and PI31 regulate proteasomes and mitochondria and reveals a new function for PI31 in enhancing the SCFFbxo7 E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Sara Al Rawi
- Department of Pathology, University of Cambridge, UK
| | - Lorna Simpson
- Department of Pathology, University of Cambridge, UK
| | | | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Biological Sciences, Institute of Structural and Molecular Biology, London, UK
| | - Veronika Chernuha
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Medical Centre and Sackler Faculty of Medicine, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Massimo Zeviani
- Mitochondrial Biology Unit, The MRC and University of Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, UK
| | - Ronen Spiegel
- Pediatric Department, Emek Medical Center, Afula, Israel
| | - Heike Laman
- Department of Pathology, University of Cambridge, UK
| |
Collapse
|
6
|
Wang J, Kjellgren A, DeMartino GN. Differential Interactions of the Proteasome Inhibitor PI31 with Constitutive and Immuno-20S Proteasomes. Biochemistry 2024; 63:1000-1015. [PMID: 38577872 DOI: 10.1021/acs.biochem.3c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
PI31 (Proteasome Inhibitor of 31,000 Da) is a 20S proteasome binding protein originally identified as an in vitro inhibitor of 20S proteasome proteolytic activity. Recently reported cryo-electron microscopy structures of 20S-PI31 complexes have revealed that the natively disordered proline-rich C-terminus of PI31 enters the central chamber in the interior of the 20S proteasome and interacts directly with the proteasome's multiple catalytic threonine residues in a manner predicted to inhibit their enzymatic function while evading its own proteolysis. Higher eukaryotes express an alternative form of the 20S proteasome (termed "immuno-proteasome") that features genetically and functionally distinct catalytic subunits. The effect of PI31 on immuno-proteasome function is unknown. We examine the relative inhibitory effects of PI31 on purified constitutive (20Sc) and immuno-(20Si) 20S proteasomes in vitro and show that PI31 inhibits 20Si hydrolytic activity to a significantly lesser degree than that of 20Sc. Unlike 20Sc, 20Si hydrolyzes the carboxyl-terminus of PI31 and this effect contributes to the reduced inhibitory activity of PI31 toward 20Si. Conversely, loss of 20Sc inhibition by PI31 point mutants leads to PI31 degradation by 20Sc. These results demonstrate unexpected differential interactions of PI31 with 20Sc and 20Si and document their functional consequences.
Collapse
Affiliation(s)
- Jason Wang
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| | - Abbey Kjellgren
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| | - George N DeMartino
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| |
Collapse
|
7
|
Sahoo MP, Lavy T, Cohen N, Sahu I, Kleifeld O. Activity-Guided Proteomic Profiling of Proteasomes Uncovers a Variety of Active (and Inactive) Proteasome Species. Mol Cell Proteomics 2024; 23:100728. [PMID: 38296025 PMCID: PMC10907802 DOI: 10.1016/j.mcpro.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Proteasomes are multisubunit, multicatalytic protein complexes present in eukaryotic cells that degrade misfolded, damaged, or unstructured proteins. In this study, we used an activity-guided proteomic methodology based on a fluorogenic peptide substrate to characterize the composition of proteasome complexes in WT yeast and the changes these complexes undergo upon the deletion of Pre9 (Δα3) or of Sem1 (ΔSem1). A comparison of whole-cell proteomic analysis to activity-guided proteasome profiling indicates that the amounts of proteasomal proteins and proteasome interacting proteins in the assembled active proteasomes differ significantly from their total amounts in the cell as a whole. Using this activity-guided profiling approach, we characterized the changes in the abundance of subunits of various active proteasome species in different strains, quantified the relative abundance of active proteasomes across these strains, and charted the overall distribution of different proteasome species within each strain. The distributions obtained by our mass spectrometry-based quantification were markedly higher for some proteasome species than those obtained by activity-based quantification alone, suggesting that the activity of some of these species is impaired. The impaired activity appeared mostly among 20SBlm10 proteasome species which account for 20% of the active proteasomes in WT. To identify the factors behind this impaired activity, we mapped and quantified known proteasome-interacting proteins. Our results suggested that some of the reduced activity might be due to the association of the proteasome inhibitor Fub1. Additionally, we provide novel evidence for the presence of nonmature and therefore inactive proteasomal protease subunits β2 and β5 in the fully assembled proteasomes.
Collapse
Affiliation(s)
| | - Tali Lavy
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Noam Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel.
| |
Collapse
|
8
|
Velez B, Razi A, Hubbard RD, Walsh R, Rawson S, Tian G, Finley D, Hanna J. Rational design of proteasome inhibitors based on the structure of the endogenous inhibitor PI31/Fub1. Proc Natl Acad Sci U S A 2023; 120:e2308417120. [PMID: 38091293 PMCID: PMC10743371 DOI: 10.1073/pnas.2308417120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Proteasome inhibitors are widely used anticancer drugs. The three clinically approved agents are modified small peptides that preferentially target one of the proteasome's three active sites (β5) at physiologic concentrations. In addition to these drugs, there is also an endogenous proteasome inhibitor, PI31/Fub1, that enters the proteasome's interior to simultaneously yet specifically inhibit all three active sites. Here, we have used PI31's evolutionarily optimized inhibitory mechanisms to develop a suite of potent and specific β2 inhibitors. The lead compound strongly inhibited growth of multiple myeloma cells as a standalone agent, indicating the compound's cell permeability and establishing β2 as a potential therapeutic target in multiple myeloma. The lead compound also showed strong synergy with the existing β5 inhibitor bortezomib; such combination therapies might help with existing challenges of resistance and severe side effects. These results represent an effective method for rational structure-guided development of proteasome inhibitors.
Collapse
Affiliation(s)
- Benjamin Velez
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA02115
| | - Aida Razi
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA02115
| | | | - Richard Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology,Harvard Medical School,Boston, MA02115
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology,Harvard Medical School,Boston, MA02115
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Geng Tian
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA02115
| |
Collapse
|
9
|
Nemec AA, Tomko RJ. An unstructured proteasome inhibitor comes into focus. J Biol Chem 2023; 299:105145. [PMID: 37562568 PMCID: PMC10463253 DOI: 10.1016/j.jbc.2023.105145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
The inhibitory mechanism of an intrinsically disordered proteasome inhibitor identified over 30 years ago has finally been revealed by cryo-electron microscopy by Hsu et al. in a recent report in the Journal of Biological Chemistry. The structure, coupled with biochemical and cell-based experiments, resolves lingering questions about how the inhibitor achieves multisite inhibition of proteasomal protease activity, while raising several exciting new questions on the nature of proteasome subpopulations in the process.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.
| |
Collapse
|
10
|
Hsu HC, Wang J, Kjellgren A, Li H, DeMartino GN. Ηigh-resolution structure of mammalian PI31-20S proteasome complex reveals mechanism of proteasome inhibition. J Biol Chem 2023; 299:104862. [PMID: 37236357 PMCID: PMC10319324 DOI: 10.1016/j.jbc.2023.104862] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Proteasome-catalyzed protein degradation mediates and regulates critical aspects of many cellular functions and is an important element of proteostasis in health and disease. Proteasome function is determined in part by the types of proteasome holoenzymes formed between the 20S core particle that catalyzes peptide bond hydrolysis and any of multiple regulatory proteins to which it binds. One of these regulators, PI31, was previously identified as an in vitro 20S proteasome inhibitor, but neither the molecular mechanism nor the possible physiologic significance of PI31-mediated proteasome inhibition has been clear. Here we report a high-resolution cryo-EM structure of the mammalian 20S proteasome in complex with PI31. The structure shows that two copies of the intrinsically disordered carboxyl terminus of PI31 are present in the central cavity of the closed-gate conformation of the proteasome and interact with proteasome catalytic sites in a manner that blocks proteolysis of substrates but resists their own degradation. The two inhibitory polypeptide chains appear to originate from PI31 monomers that enter the catalytic chamber from opposite ends of the 20S cylinder. We present evidence that PI31 can inhibit proteasome activity in mammalian cells and may serve regulatory functions for the control of cellular proteostasis.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jason Wang
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Abbey Kjellgren
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| | - George N DeMartino
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
11
|
Xiong Q, Feng R, Fischer S, Karow M, Stumpf M, Meßling S, Nitz L, Müller S, Clemen CS, Song N, Li P, Wu C, Eichinger L. Proteasomes of Autophagy-Deficient Cells Exhibit Alterations in Regulatory Proteins and a Marked Reduction in Activity. Cells 2023; 12:1514. [PMID: 37296637 PMCID: PMC10252828 DOI: 10.3390/cells12111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Autophagy and the ubiquitin proteasome system are the two major processes for the clearance and recycling of proteins and organelles in eukaryotic cells. Evidence is accumulating that there is extensive crosstalk between the two pathways, but the underlying mechanisms are still unclear. We previously found that autophagy 9 (ATG9) and 16 (ATG16) proteins are crucial for full proteasomal activity in the unicellular amoeba Dictyostelium discoideum. In comparison to AX2 wild-type cells, ATG9-and ATG16- cells displayed a 60%, and ATG9-/16- cells a 90%, decrease in proteasomal activity. Mutant cells also showed a significant increase in poly-ubiquitinated proteins and contained large ubiquitin-positive protein aggregates. Here, we focus on possible reasons for these results. Reanalysis of published tandem mass tag-based quantitative proteomic results of AX2, ATG9-, ATG16-, and ATG9-/16- cells revealed no change in the abundance of proteasomal subunits. To identify possible differences in proteasome-associated proteins, we generated AX2 wild-type and ATG16- cells expressing the 20S proteasomal subunit PSMA4 as GFP-tagged fusion protein, and performed co-immunoprecipitation experiments followed by mass spectrometric analysis. The results revealed no significant differences in the abundance of proteasomes between the two strains. However, we found enrichment as well as depletion of proteasomal regulators and differences in the ubiquitination of associated proteins for ATG16-, as compared to AX2 cells. Recently, proteaphagy has been described as a means to replace non-functional proteasomes. We propose that autophagy-deficient D. discoideum mutants suffer from inefficient proteaphagy, which results in the accumulation of modified, less-active, and also of inactive, proteasomes. As a consequence, these cells exhibit a dramatic decrease in proteasomal activity and deranged protein homeostasis.
Collapse
Affiliation(s)
- Qiuhong Xiong
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Rong Feng
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Sarah Fischer
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Malte Karow
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Maria Stumpf
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Susanne Meßling
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Leonie Nitz
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Stefan Müller
- CECAD Proteomics Facility, Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Christoph S. Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ning Song
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Ping Li
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Changxin Wu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Ludwig Eichinger
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| |
Collapse
|
12
|
Hsu HC, Wang J, Kjellgren A, Li H, DeMartino GN. High-resolution structure of mammalian PI31â€"20S proteasome complex reveals mechanism of proteasome inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535455. [PMID: 37066326 PMCID: PMC10103979 DOI: 10.1101/2023.04.03.535455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Proteasome-catalyzed protein degradation mediates and regulates critical aspects of many cellular functions and is an important element of proteostasis in health and disease. Proteasome function is determined in part by the types of proteasome holoenzymes formed between the 20S core particle that catalyzes peptide bond hydrolysis and any of multiple regulatory proteins to which it binds. One of these regulators, PI31, was previously identified as an in vitro 20S proteasome inhibitor, but neither the molecular mechanism nor the possible physiologic significance of PI31-mediated proteasome inhibition has been clear. Here we report a high- resolution cryo-EM structure of the mammalian 20S proteasome in complex with PI31. The structure shows that two copies of the intrinsically-disordered carboxyl-terminus of PI31 are present in the central cavity of the closed-gate conformation of the proteasome and interact with proteasome catalytic sites in a manner that blocks proteolysis of substrates but resists their own degradation. The two inhibitory polypeptide chains appear to originate from PI31 monomers that enter the catalytic chamber from opposite ends of the 20S cylinder. We present evidence that PI31 can inhibit proteasome activity in mammalian cells and may serve regulatory functions for the control of cellular proteostasis.
Collapse
|
13
|
Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores. Nat Commun 2022; 13:6962. [PMID: 36379934 PMCID: PMC9666519 DOI: 10.1038/s41467-022-34691-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Proteasomes play an essential role in the life cycle of intracellular pathogens with extracellular stages by ensuring proteostasis in environments with limited resources. In microsporidia, divergent parasites with extraordinarily streamlined genomes, the proteasome complexity and structure are unknown, which limits our understanding of how these unique pathogens adapt and compact essential eukaryotic complexes. We present cryo-electron microscopy structures of the microsporidian 20S and 26S proteasome isolated from dormant or germinated Vairimorpha necatrix spores. The discovery of PI31-like peptides, known to inhibit proteasome activity, bound simultaneously to all six active sites within the central cavity of the dormant spore proteasome, suggests reduced activity in the environmental stage. In contrast, the absence of the PI31-like peptides and the existence of 26S particles post-germination in the presence of ATP indicates that proteasomes are reactivated in nutrient-rich conditions. Structural and phylogenetic analyses reveal that microsporidian proteasomes have undergone extensive reductive evolution, lost at least two regulatory proteins, and compacted nearly every subunit. The highly derived structure of the microsporidian proteasome, and the minimized version of PI31 presented here, reinforce the feasibility of the development of specific inhibitors and provide insight into the unique evolution and biology of these medically and economically important pathogens.
Collapse
|