1
|
Konermann L, Scrosati PM. Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities. Mol Cell Proteomics 2024; 23:100853. [PMID: 39383946 DOI: 10.1016/j.mcpro.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Matsuzaka Y, Yashiro R. Therapeutic Application and Structural Features of Adeno-Associated Virus Vector. Curr Issues Mol Biol 2024; 46:8464-8498. [PMID: 39194716 DOI: 10.3390/cimb46080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Adeno-associated virus (AAV) is characterized by non-pathogenicity, long-term infection, and broad tropism and is actively developed as a vector virus for gene therapy products. AAV is classified into more than 100 serotypes based on differences in the amino acid sequence of the capsid protein. Endocytosis involves the uptake of viral particles by AAV and accessory receptors during AAV infection. After entry into the cell, they are transported to the nucleus through the nuclear pore complex. AAVs mainly use proteoglycans as receptors to enter cells, but the types of sugar chains in proteoglycans that have binding ability are different. Therefore, it is necessary to properly evaluate the primary structure of receptor proteins, such as amino acid sequences and post-translational modifications, including glycosylation, and the higher-order structure of proteins, such as the folding of the entire capsid structure and the three-dimensional (3D) structure of functional domains, to ensure the efficacy and safety of biopharmaceuticals. To further enhance safety, it is necessary to further improve the efficiency of gene transfer into target cells, reduce the amount of vector administered, and prevent infection of non-target cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
3
|
Castel J, Delaux S, Hernandez-Alba O, Cianférani S. Recent advances in structural mass spectrometry methods in the context of biosimilarity assessment: from sequence heterogeneities to higher order structures. J Pharm Biomed Anal 2023; 236:115696. [PMID: 37713983 DOI: 10.1016/j.jpba.2023.115696] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Biotherapeutics and their biosimilar versions have been flourishing in the biopharmaceutical market for several years. Structural and functional characterization is needed to achieve analytical biosimilarity through the assessment of critical quality attributes as required by regulatory authorities. The role of analytical strategies, particularly mass spectrometry-based methods, is pivotal to gathering valuable information for the in-depth characterization of biotherapeutics and biosimilarity assessment. Structural mass spectrometry methods (native MS, HDX-MS, top-down MS, etc.) provide information ranging from primary sequence assessment to higher order structure evaluation. This review focuses on recent developments and applications in structural mass spectrometry for biotherapeutic and biosimilar characterization.
Collapse
Affiliation(s)
- Jérôme Castel
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Delaux
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France.
| |
Collapse
|
4
|
Zhuang H, He X, Li H, Chen Y, Wu T, Jiang X, Zhang H, Zhao P, Wang Y, Chen J, Zhang J, Liu Y, Bu W. MnS Nanocapsule Mediates Mitochondrial Membrane Permeability Transition for Tumor Ion-Interference Therapy. ACS NANO 2023; 17:13872-13884. [PMID: 37458394 DOI: 10.1021/acsnano.3c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
"Structure subserves function" is one fundamental biological maxim, and so the biological membrane that delimits the regions primarily serves as the margin between life and death for individual cells. Here, an Oswald ripening mechanism-guided solvothermal method was proposed for the synthesis of uniform MnS nanocapsules assembled with metastable γ-MnS nanocrystals. Through designing the physicochemical properties, MnS nanocapsules would disaggregate into small γ-MnS nanocrystals in a tumor acidic environment, with the surface potential switched from negative to positive, thus showing conspicuous delivery performance. More significantly, the specific accumulation of Mn2+ in mitochondria was promoted due to the downregulation of mitochondrial calcium uptake 1 (MICU1) by the formed H2S, thus leading to serious mitochondrial Mn-poisoning for membrane permeability increase and then tumor apoptosis. This study provides a synthesis strategy of metal sulfide nanocapsules and encourages multidisciplinary researchers to focus on ion-cancer crosstalk for the development of an antitumor strategy.
Collapse
Affiliation(s)
- Hongjun Zhuang
- Departments of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Xiaofang He
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Yang Chen
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Tong Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Huilin Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Ya Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Jian Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Jian Zhang
- Departments of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wenbo Bu
- Departments of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
5
|
Koehler Leman J, Künze G. Recent Advances in NMR Protein Structure Prediction with ROSETTA. Int J Mol Sci 2023; 24:ijms24097835. [PMID: 37175539 PMCID: PMC10178863 DOI: 10.3390/ijms24097835] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for studying the structure and dynamics of proteins in their native state. For high-resolution NMR structure determination, the collection of a rich restraint dataset is necessary. This can be difficult to achieve for proteins with high molecular weight or a complex architecture. Computational modeling techniques can complement sparse NMR datasets (<1 restraint per residue) with additional structural information to elucidate protein structures in these difficult cases. The Rosetta software for protein structure modeling and design is used by structural biologists for structure determination tasks in which limited experimental data is available. This review gives an overview of the computational protocols available in the Rosetta framework for modeling protein structures from NMR data. We explain the computational algorithms used for the integration of different NMR data types in Rosetta. We also highlight new developments, including modeling tools for data from paramagnetic NMR and hydrogen-deuterium exchange, as well as chemical shifts in CS-Rosetta. Furthermore, strategies are discussed to complement and improve structure predictions made by the current state-of-the-art AlphaFold2 program using NMR-guided Rosetta modeling.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Georg Künze
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
6
|
Yang HC, Li W, Sun J, Gross ML. Advances in Mass Spectrometry on Membrane Proteins. MEMBRANES 2023; 13:457. [PMID: 37233518 PMCID: PMC10220746 DOI: 10.3390/membranes13050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Understanding the higher-order structure of membrane proteins (MPs), which are vital for numerous biological processes, is crucial for comprehending their function. Although several biophysical approaches have been used to study the structure of MPs, limitations exist owing to the proteins' dynamic nature and heterogeneity. Mass spectrometry (MS) is emerging as a powerful tool for investigating membrane protein structure and dynamics. Studying MPs using MS, however, must meet several challenges including the lack of stability and solubility of MPs, the complexity of the protein-membrane system, and the difficulty of digestion and detection. To meet these challenges, recent advances in MS have engendered opportunities in resolving the dynamics and structures of MP. This article reviews achievements over the past few years that enable the study of MPs by MS. We first introduce recent advances in hydrogen deuterium exchange and native mass spectrometry for MPs and then focus on those footprinting methods that report on protein structure.
Collapse
Affiliation(s)
- Hsin-Chieh Yang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
7
|
Jia R, Bradshaw RT, Calvaresi V, Politis A. Integrating Hydrogen Deuterium Exchange-Mass Spectrometry with Molecular Simulations Enables Quantification of the Conformational Populations of the Sugar Transporter XylE. J Am Chem Soc 2023; 145:7768-7779. [PMID: 36976935 PMCID: PMC10103171 DOI: 10.1021/jacs.2c06148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
A yet unresolved challenge in structural biology is to quantify the conformational states of proteins underpinning function. This challenge is particularly acute for membrane proteins owing to the difficulties in stabilizing them for in vitro studies. To address this challenge, we present an integrative strategy that combines hydrogen deuterium exchange-mass spectrometry (HDX-MS) with ensemble modeling. We benchmark our strategy on wild-type and mutant conformers of XylE, a prototypical member of the ubiquitous Major Facilitator Superfamily (MFS) of transporters. Next, we apply our strategy to quantify conformational ensembles of XylE embedded in different lipid environments. Further application of our integrative strategy to substrate-bound and inhibitor-bound ensembles allowed us to unravel protein-ligand interactions contributing to the alternating access mechanism of secondary transport in atomistic detail. Overall, our study highlights the potential of integrative HDX-MS modeling to capture, accurately quantify, and subsequently visualize co-populated states of membrane proteins in association with mutations and diverse substrates and inhibitors.
Collapse
Affiliation(s)
- Ruyu Jia
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, U.K
| | - Richard T Bradshaw
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, U.K
| | - Valeria Calvaresi
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, U.K
| | - Argyris Politis
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, U.K
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, U.K
- Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
8
|
Hydrogen/deuterium exchange-mass spectrometry of integral membrane proteins in native-like environments: current scenario and the way forward. Essays Biochem 2023; 67:187-200. [PMID: 36876893 PMCID: PMC10070480 DOI: 10.1042/ebc20220173] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 03/07/2023]
Abstract
Integral membrane proteins (IMPs) perform a range of diverse functions and their dysfunction underlies numerous pathological conditions. Consequently, IMPs constitute most drug targets, and the elucidation of their mechanism of action has become an intense field of research. Historically, IMP studies have relied on their extraction from membranes using detergents, which have the potential to perturbate their structure and dynamics. To circumnavigate this issue, an array of membrane mimetics has been developed that aim to reconstitute IMPs into native-like lipid environments that more accurately represent the biological membrane. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has emerged as a versatile tool for probing protein dynamics in solution. The continued development of HDX-MS methodology has allowed practitioners to investigate IMPs using increasingly native-like membrane mimetics, and even pushing the study of IMPs into the in vivo cellular environment. Consequently, HDX-MS has come of age and is playing an ever-increasingly important role in the IMP structural biologist toolkit. In the present mini-review, we discuss the evolution of membrane mimetics in the HDX-MS context, focusing on seminal publications and recent innovations that have led to this point. We also discuss state-of-the-art methodological and instrumental advancements that are likely to play a significant role in the generation of high-quality HDX-MS data of IMPs in the future.
Collapse
|
9
|
Hammerschmid D, Calvaresi V, Bailey C, Russell Lewis B, Politis A, Morris M, Denbigh L, Anderson M, Reading E. Chromatographic Phospholipid Trapping for Automated H/D Exchange Mass Spectrometry of Membrane Protein-Lipid Assemblies. Anal Chem 2023; 95:3002-3011. [PMID: 36706021 PMCID: PMC9909672 DOI: 10.1021/acs.analchem.2c04876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lipid interactions modulate the function, folding, structure, and organization of membrane proteins. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) has emerged as a useful tool to understand the structural dynamics of these proteins within lipid environments. Lipids, however, have proven problematic for HDX-MS analysis of membrane-embedded proteins due to their presence of impairing proteolytic digestion, causing liquid chromatography column fouling, ion suppression, and/or mass spectral overlap. Herein, we describe the integration of a chromatographic phospholipid trap column into the HDX-MS apparatus to enable online sample delipidation prior to protease digestion of deuterium-labeled protein-lipid assemblies. We demonstrate the utility of this method on membrane scaffold protein-lipid nanodisc─both empty and loaded with the ∼115 kDa transmembrane protein AcrB─proving efficient and automated phospholipid capture with minimal D-to-H back-exchange, peptide carry-over, and protein loss. Our results provide insights into the efficiency of phospholipid capture by ZrO2-coated and TiO2 beads and describe how solution conditions can be optimized to maximize not only the performance of our online but also the existing offline, delipidation workflows for HDX-MS. We envision that this HDX-MS method will significantly ease membrane protein analysis, allowing to better interrogate their dynamics in artificial lipid bilayers or even native cell membranes.
Collapse
Affiliation(s)
- Dietmar Hammerschmid
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U.K.
| | - Valeria Calvaresi
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U.K.
| | - Chloe Bailey
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U.K.
| | | | - Argyris Politis
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U.K.
| | - Michael Morris
- Waters
Corporation, Stamford Avenue, Altrincham Road, SK9
4AX Wilmslow, U.K.
| | - Laetitia Denbigh
- Waters
Corporation, Stamford Avenue, Altrincham Road, SK9
4AX Wilmslow, U.K.
| | - Malcolm Anderson
- Waters
Corporation, Stamford Avenue, Altrincham Road, SK9
4AX Wilmslow, U.K.
| | - Eamonn Reading
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U.K.
| |
Collapse
|
10
|
Hydrogen-deuterium exchange coupled to mass spectrometry: A multifaceted tool to decipher the molecular mechanism of transporters. Biochimie 2023; 205:95-101. [PMID: 36037883 DOI: 10.1016/j.biochi.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Transporters regulate trafficking through the biological membrane of living cells and organelles. Therefore, these proteins play an important role in key cellular processes. Obtaining a molecular-level description of the mechanism of transporters is highly desirable to understand and modulate such processes. Different challenges currently complicate this effort, mostly due to transporters' intrinsic properties. They are dynamic and often averse to in vitro characterization. The crossing of the membrane via a transporter depends on both global and local structural changes that will enable substrate binding from one side of the membrane and release on the other. Dedicated approaches are required to monitor these dynamic changes, ideally within the complex membrane environment. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has recently emerged as a powerful biophysical tool to understand transporters' mechanism. This mini-review aims to offer to the reader an overview of the field of HDX-MS applied to transporters. It first summarizes the current workflow for HDX-MS measurements on transporters. It then provides illustrative examples on the molecular insights that are accessible thanks to the technique; following conformational transitions between different states, observing structural changes upon ligand binding and finally understanding the role of lipid-protein interactions.
Collapse
|
11
|
Shin G, Lim SI. Unveiling the biological interface of protein complexes by mass spectrometry-coupled methods. Proteins 2022; 91:593-607. [PMID: 36573681 DOI: 10.1002/prot.26459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Most biomolecules become functional and bioactive by forming protein complexes through interaction with ligands that are diverse in size, shape, and physicochemical properties. In the complex biological milieu, the interaction is ligand-specific, driven by molecular sensing, and involves the recognition of a binding interface localized within a protein structure. Mapping interfaces of protein complexes is a highly sought area of research as it delivers fundamental insights into proteomes and pathology and hence strategies for therapeutics. While X-ray crystallography and electron microscopy remain the gold standard for structural elucidation of protein complexes, their artificial and static analytic nature often produces a non-native interface that otherwise might be negligible or non-existent in a biological environment. Recently, the mass spectrometry-coupled approaches, chemical crosslinking (CLMS) and hydrogen-deuterium exchange (HDMS) have become valuable analytic complements to the traditional techniques. These methods explicitly identify hot residues and motifs embedded in binding interfaces, especially when the interaction is predominantly dynamic, transient, and/or caused by an intrinsically disordered domain. Here, we review the principal role of CLMS and HDMS in protein structural biology with a particular emphasis on the contribution of recent examples to exploring biological interfaces. Additionally, we describe recent studies that utilized these methods to expand our understanding of protein complex formation and the related biological processes, to increase the probability of structure-based drug design.
Collapse
Affiliation(s)
- Goeun Shin
- Department of Chemical Engineering, Pukyong National University, Busan, South Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan, South Korea
| |
Collapse
|
12
|
Yen HY, Liko I, Song W, Kapoor P, Almeida F, Toporowska J, Gherbi K, Hopper JTS, Charlton SJ, Politis A, Sansom MSP, Jazayeri A, Robinson CV. Mass spectrometry captures biased signalling and allosteric modulation of a G-protein-coupled receptor. Nat Chem 2022; 14:1375-1382. [PMID: 36357787 PMCID: PMC9758051 DOI: 10.1038/s41557-022-01041-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/09/2022] [Indexed: 11/12/2022]
Abstract
G-protein-coupled receptors signal through cognate G proteins. Despite the widespread importance of these receptors, their regulatory mechanisms for G-protein selectivity are not fully understood. Here we present a native mass spectrometry-based approach to interrogate both biased signalling and allosteric modulation of the β1-adrenergic receptor in response to various ligands. By simultaneously capturing the effects of ligand binding and receptor coupling to different G proteins, we probed the relative importance of specific interactions with the receptor through systematic changes in 14 ligands, including isoprenaline derivatives, full and partial agonists, and antagonists. We observed enhanced dynamics of the intracellular loop 3 in the presence of isoprenaline, which is capable of acting as a biased agonist. We also show here that endogenous zinc ions augment the binding in receptor-Gs complexes and propose a zinc ion-binding hotspot at the TM5/TM6 intracellular interface of the receptor-Gs complex. Further interrogation led us to propose a mechanism in which zinc ions facilitate a structural transition of the intermediate complex towards the stable state.
Collapse
Affiliation(s)
- Hsin-Yung Yen
- Chemical Research Laboratory, University of Oxford, Oxford, UK.
- OMass Therapeutics, Oxford, UK.
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | - Idlir Liko
- Chemical Research Laboratory, University of Oxford, Oxford, UK
- OMass Therapeutics, Oxford, UK
| | - Wanling Song
- Department of Biochemistry, University of Oxford, Oxford, UK
- Rahko, London, UK
| | | | | | | | | | | | - Steven J Charlton
- OMass Therapeutics, Oxford, UK
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Argyris Politis
- Department of Chemistry, King's College London, London, UK
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Carol V Robinson
- Chemical Research Laboratory, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, Oxford, UK.
| |
Collapse
|
13
|
Fundamentals of HDX-MS. Essays Biochem 2022; 67:301-314. [PMID: 36251047 PMCID: PMC10070489 DOI: 10.1042/ebc20220111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is becoming part of the standard repertoire of techniques used by molecular biologists to investigate protein structure and dynamics. This is partly due to the increased use of automation in all stages of the technique and its versatility of application-many proteins that present challenges with techniques such as X-ray crystallography and cryoelectron microscopy are amenable to investigation with HDX-MS. The present review is aimed at scientists who are curious about the technique, and how it may aid their research. It describes the fundamental basis of solvent exchange, the basics of a standard HDX-MS experiment, as well as highlighting emerging novel experimental advances, which point to where the field is heading.
Collapse
|
14
|
Lane BJ, Wang B, Ma Y, Calabrese AN, El Mkami H, Pliotas C. HDX-guided EPR spectroscopy to interrogate membrane protein dynamics. STAR Protoc 2022; 3:101562. [PMID: 35874470 PMCID: PMC9304679 DOI: 10.1016/j.xpro.2022.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Solvent accessibilities of and distances between protein residues measured by pulsed-EPR approaches provide high-resolution information on dynamic protein motions. We describe protocols for the purification and site-directed spin labeling of integral membrane proteins. In our protocol, peptide-level HDX-MS is used as a precursor to guide single-residue resolution ESEEM accessibility measurements and spin labeling strategies for EPR applications. Exploiting the pentameric MscL channel as a model, we discuss the use of cwEPR, DEER/PELDOR, and ESEEM spectroscopies to interrogate membrane protein dynamics. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022). Protocols for an integrated EPR-based approach to study membrane protein dynamics Instructions for the sample preparation of spin-labeled membrane proteins Used HDX-MS as a precursor to guide spin labeling strategies for EPR methods Probed solvent accessibility at the single-residue level by ESEEM
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
15
|
Dafun AS, Marcoux J. Structural mass spectrometry of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140813. [PMID: 35750312 DOI: 10.1016/j.bbapap.2022.140813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
16
|
Insights into the structure and function of the human organic anion transporter 1 in lipid bilayer membranes. Sci Rep 2022; 12:7057. [PMID: 35488116 PMCID: PMC9054760 DOI: 10.1038/s41598-022-10755-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
The human SLC22A6/OAT1 plays an important role in the elimination of a broad range of endogenous substances and xenobiotics thus attracting attention from the pharmacological community. Furthermore, OAT1 is also involved in key physiological events such as the remote inter-organ communication. Despite its significance, the knowledge about hOAT1 structure and the transport mechanism at the atomic level remains fragmented owing to the lack of resolved structures. By means of protein-threading modeling refined by μs-scaled Molecular Dynamics simulations, the present study provides the first robust model of hOAT1 in outward-facing conformation. Taking advantage of the AlphaFold 2 predicted structure of hOAT1 in inward-facing conformation, we here provide the essential structural and functional features comparing both states. The intracellular motifs conserved among Major Facilitator Superfamily members create a so-called “charge-relay system” that works as molecular switches modulating the conformation. The principal element of the event points at interactions of charged residues that appear crucial for the transporter dynamics and function. Moreover, hOAT1 model was embedded in different lipid bilayer membranes highlighting the crucial structural dependence on lipid-protein interactions. MD simulations supported the pivotal role of phosphatidylethanolamine components to the protein conformation stability. The present model is made available to decipher the impact of any observed polymorphism and mutation on drug transport as well as to understand substrate binding modes.
Collapse
|
17
|
Wang B, Lane BJ, Kapsalis C, Ault JR, Sobott F, El Mkami H, Calabrese AN, Kalli AC, Pliotas C. Pocket delipidation induced by membrane tension or modification leads to a structurally analogous mechanosensitive channel state. Structure 2022; 30:608-622.e5. [PMID: 34986323 PMCID: PMC9033278 DOI: 10.1016/j.str.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023]
Abstract
The mechanosensitive ion channel of large conductance MscL gates in response to membrane tension changes. Lipid removal from transmembrane pockets leads to a concerted structural and functional MscL response, but it remains unknown whether there is a correlation between the tension-mediated state and the state derived by pocket delipidation in the absence of tension. Here, we combined pulsed electron paramagnetic resonance spectroscopy and hydrogen-deuterium exchange mass spectrometry, coupled with molecular dynamics simulations under membrane tension, to investigate the structural changes associated with the distinctively derived states. Whether it is tension- or modification-mediated pocket delipidation, we find that MscL samples a similar expanded subconducting state. This is the final step of the delipidation pathway, but only an intermediate stop on the tension-mediated path, with additional tension triggering further channel opening. Our findings hint at synergistic modes of regulation by lipid molecules in membrane tension-activated mechanosensitive channels.
Collapse
Affiliation(s)
- Bolin Wang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Benjamin J Lane
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Charalampos Kapsalis
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hassane El Mkami
- School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9NL, UK
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK.
| |
Collapse
|
18
|
Sun J, Li W, Gross ML. Advances in mass spectrometry-based footprinting of membrane proteins. Proteomics 2022; 22:e2100222. [PMID: 35290716 PMCID: PMC10493193 DOI: 10.1002/pmic.202100222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins (MPs) are determined regularly. These advances have been driven by over 15 years of technological improvements, first in macromolecular crystallography, and recently in cryo-electron microscopy. Obtaining information about MP higher order structure and interactions is also a frontier, important but challenging owing to their unique properties and the need to choose suitable detergents/lipids for their study. The development of mass spectrometry (MS), both instruments and methodology in the past 10 years, has also advanced it as a complementary method to study MP structure and interactions. In this review, we discuss advances in MS-based footprinting for MPs and highlight recent methodologies that offer new promise for MP study by chemical footprinting and mass spectrometry.
Collapse
Affiliation(s)
- Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Devaurs D, Antunes DA, Borysik AJ. Computational Modeling of Molecular Structures Guided by Hydrogen-Exchange Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:215-237. [PMID: 35077179 DOI: 10.1021/jasms.1c00328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Data produced by hydrogen-exchange monitoring experiments have been used in structural studies of molecules for several decades. Despite uncertainties about the structural determinants of hydrogen exchange itself, such data have successfully helped guide the structural modeling of challenging molecular systems, such as membrane proteins or large macromolecular complexes. As hydrogen-exchange monitoring provides information on the dynamics of molecules in solution, it can complement other experimental techniques in so-called integrative modeling approaches. However, hydrogen-exchange data have often only been used to qualitatively assess molecular structures produced by computational modeling tools. In this paper, we look beyond qualitative approaches and survey the various paradigms under which hydrogen-exchange data have been used to quantitatively guide the computational modeling of molecular structures. Although numerous prediction models have been proposed to link molecular structure and hydrogen exchange, none of them has been widely accepted by the structural biology community. Here, we present as many hydrogen-exchange prediction models as we could find in the literature, with the aim of providing the first exhaustive list of its kind. From purely structure-based models to so-called fractional-population models or knowledge-based models, the field is quite vast. We aspire for this paper to become a resource for practitioners to gain a broader perspective on the field and guide research toward the definition of better prediction models. This will eventually improve synergies between hydrogen-exchange monitoring and molecular modeling.
Collapse
Affiliation(s)
- Didier Devaurs
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77005, United States
| | - Antoni J Borysik
- Department of Chemistry, King's College London, London SE1 1DB, U.K
| |
Collapse
|
20
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
21
|
Anderson KW, Bergonzo C, Scott K, Karageorgos IL, Gallagher ES, Tayi VS, Butler M, Hudgens JW. HDX-MS and MD Simulations Provide Evidence for Stabilization of the IgG1-FcγRIa (CD64a) Immune Complex Through Intermolecular Glycoprotein Bonds. J Mol Biol 2021; 434:167391. [PMID: 34890647 DOI: 10.1016/j.jmb.2021.167391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
Previous reports present different models for the stabilization of the Fc-FcγRI immune complex. Although accord exists on the importance of L235 in IgG1 and some hydrophobic contacts for complex stabilization, discord exists regarding the existence of stabilizing glycoprotein contacts between glycans of IgG1 and a conserved FG-loop (171MGKHRY176) of FcγRIa. Complexes formed from the FcγRIa receptor and IgG1s containing biantennary glycans with N-acetylglucosamine, galactose, and α2,6-N-acetylneuraminic terminations were measured by hydrogen-deuterium exchange mass spectrometry (HDX-MS), classified for dissimilarity with Welch's ANOVA and Games-Howell post hoc procedures, and modeled with molecular dynamics (MD) simulations. For each glycoform of the IgG1-FcγRIa complex peptic peptides of Fab, Fc and FcγRIa report distinct H/D exchange rates. MD simulations corroborate the differences in the peptide deuterium content through calculation of the percent of time that transient glycan-peptide bonds exist. These results indicate that stability of IgG1-FcγRIa complexes correlate with the presence of intermolecular glycoprotein interactions between the IgG1 glycans and the 173KHR175 motif within the FG-loop of FcγRIa. The results also indicate that intramolecular glycan-protein bonds stabilize the Fc region in isolated and complexed IgG1. Moreover, HDX-MS data evince that the Fab domain has glycan-protein binding contacts within the IgG1-FcγRI complex.
Collapse
Affiliation(s)
- Kyle W Anderson
- National Institute of Standards and Technology, Bioprocess Measurements Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA; National Institute of Standards and Technology, Biomolecular Structure and Function Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Kerry Scott
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA; National Institute of Standards and Technology, Bioanalytical Science Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Ioannis L Karageorgos
- National Institute of Standards and Technology, Bioprocess Measurements Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Elyssia S Gallagher
- National Institute of Standards and Technology, Bioprocess Measurements Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Venkata S Tayi
- University of Manitoba, Department of Microbiology, Winnipeg, MB R3T 2N2, Canada.
| | - Michael Butler
- University of Manitoba, Department of Microbiology, Winnipeg, MB R3T 2N2, Canada; National Institute for Bioprocessing Research and Training, 26 Foster's Ave, Belfield, Blackrock, Co. Dublin A94 F5D5, Ireland.
| | - Jeffrey W Hudgens
- National Institute of Standards and Technology, Bioprocess Measurements Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| |
Collapse
|
22
|
Nguyen TT, Marzolf DR, Seffernick JT, Heinze S, Lindert S. Protein structure prediction using residue-resolved protection factors from hydrogen-deuterium exchange NMR. Structure 2021; 30:313-320.e3. [PMID: 34739840 DOI: 10.1016/j.str.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
Hydrogen-deuterium exchange (HDX) measured by nuclear magnetic resonance (NMR) provides structural information for proteins relating to solvent accessibility and flexibility. While this structural information is beneficial, the data cannot be used exclusively to elucidate structures. However, the structural information provided by the HDX-NMR data can be supplemented by computational methods. In previous work, we developed an algorithm in Rosetta to predict structures using qualitative HDX-NMR data (categories of exchange rate). Here we expand on the effort, and utilize quantitative protection factors (PFs) from HDX-NMR for structure prediction. From observed correlations between PFs and solvent accessibility/flexibility measures, we present a scoring function to quantify the agreement with HDX data. Using a benchmark set of 10 proteins, an average improvement of 5.13 Å in root-mean-square deviation (RMSD) is observed for cases of inaccurate Rosetta predictions. Ultimately, seven out of 10 predictions are accurate without including HDX data, and nine out of 10 are accurate when using our PF-based HDX score.
Collapse
Affiliation(s)
- Tung T Nguyen
- Department of Chemistry and Biochemistry, Denison University, Granville, OH 43023, USA
| | - Daniel R Marzolf
- Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18(th) Avenue, Columbus, OH 43210, USA
| | - Justin T Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18(th) Avenue, Columbus, OH 43210, USA
| | - Sten Heinze
- Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18(th) Avenue, Columbus, OH 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
23
|
Abstract
Knowledge of protein structure is crucial to our understanding of biological function and is routinely used in drug discovery. High-resolution techniques to determine the three-dimensional atomic coordinates of proteins are available. However, such methods are frequently limited by experimental challenges such as sample quantity, target size, and efficiency. Structural mass spectrometry (MS) is a technique in which structural features of proteins are elucidated quickly and relatively easily. Computational techniques that convert sparse MS data into protein models that demonstrate agreement with the data are needed. This review features cutting-edge computational methods that predict protein structure from MS data such as chemical cross-linking, hydrogen-deuterium exchange, hydroxyl radical protein footprinting, limited proteolysis, ion mobility, and surface-induced dissociation. Additionally, we address future directions for protein structure prediction with sparse MS data. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah E Biehn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA;
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
24
|
Scrosati PM, Yin V, Konermann L. Hydrogen/Deuterium Exchange Measurements May Provide an Incomplete View of Protein Dynamics: a Case Study on Cytochrome c. Anal Chem 2021; 93:14121-14129. [PMID: 34644496 DOI: 10.1021/acs.analchem.1c02471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many aspects of protein function rely on conformational fluctuations. Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) provides a window into these dynamics. Despite the widespread use of HDX-MS, it remains unclear whether this technique provides a truly comprehensive view of protein dynamics. HDX is mediated by H-bond-opening/closing events, implying that HDX methods provide an H-bond-centric view. This raises the question if there could be fluctuations that leave the H-bond network unaffected, thereby rendering them undetectable by HDX-MS. We explore this issue in experiments on cytochrome c (cyt c). Compared to the Fe(II) protein, Fe(III) cyt c shows enhanced deuteration on both the distal and proximal sides of the heme. Previous studies have attributed the enhanced dynamics of Fe(III) cyt c to the facile and reversible rupture of the distal M80-Fe(III) bond. Using molecular dynamics (MD) simulations, we conducted a detailed analysis of various cyt c conformers. Our MD data confirm that rupture of the M80-Fe(III) contact triggers major reorientation of the distal Ω loop. Surprisingly, this event takes place with only miniscule H-bonding alterations. In other words, the distal loop dynamics are almost "HDX-silent". Moreover, distal loop movements cannot account for enhanced dynamics on the opposite (proximal) side of the heme. Instead, enhanced deuteration of Fe(III) cyt c is attributed to sparsely populated conformers where both the distal (M80) and proximal (H18) coordination bonds have been ruptured, along with opening of numerous H-bonds on both sides of the heme. We conclude that there can be major structural fluctuations that are only weakly coupled to changes in H-bonding, making them virtually impossible to track by HDX-MS. In such cases, HDX-MS may provide an incomplete view of protein dynamics.
Collapse
Affiliation(s)
- Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Victor Yin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
25
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
26
|
Huang L, So PK, Chen YW, Leung YC, Yao ZP. Interdomain flexibility and interfacial integrity of β-lactamase inhibitory protein (BLIP) modulate its binding to class A β-lactamases. J Biol Chem 2021; 297:100980. [PMID: 34302811 PMCID: PMC8363833 DOI: 10.1016/j.jbc.2021.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 11/05/2022] Open
Abstract
β-Lactamase inhibitory protein (BLIP) consists of a tandem repeat of αβ domains conjugated by an interdomain loop and can effectively bind and inactivate class A β-lactamases, which are responsible for resistance of bacteria to β-lactam antibiotics. The varied ability of BLIP to bind different β-lactamases and the structural determinants for significant enhancement of BLIP variants with a point mutation are poorly understood. Here, we investigated the conformational dynamics of BLIP upon binding to three clinically prevalent class A β-lactamases (TEM1, SHV1, and PC1) with dissociation constants between subnanomolar and micromolar. Hydrogen deuterium exchange mass spectrometry revealed that the flexibility of the interdomain region was significantly suppressed upon strong binding to TEM1, but was not significantly changed upon weak binding to SHV1 or PC1. E73M and K74G mutations in the interdomain region improved binding affinity toward SHV1 and PC1, respectively, showing significantly increased flexibility of the interdomain region compared to the wild-type and favorable conformational changes upon binding. In contrast, more rigidity of the interfacial loop 135–145 was observed in these BLIP mutants in both free and bound states. Consistently, molecular dynamics simulations of BLIP exhibited drastic changes in the flexibility of the loop 135–145 in all complexes. Our results indicated for the first time that higher flexibility of the interdomain linker, as well as more rigidity of the interfacial loop 135–145, could be desirable determinants for enhancing inhibition of BLIP to class A β-lactamases. Together, these findings provide unique insights into the design of enhanced inhibitors.
Collapse
Affiliation(s)
- Liwen Huang
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, China
| | - Pui-Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Yu Wai Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Yun-Chung Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, China.
| |
Collapse
|
27
|
Jodaitis L, van Oene T, Martens C. Assessing the Role of Lipids in the Molecular Mechanism of Membrane Proteins. Int J Mol Sci 2021; 22:7267. [PMID: 34298884 PMCID: PMC8306737 DOI: 10.3390/ijms22147267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Membrane proteins have evolved to work optimally within the complex environment of the biological membrane. Consequently, interactions with surrounding lipids are part of their molecular mechanism. Yet, the identification of lipid-protein interactions and the assessment of their molecular role is an experimental challenge. Recently, biophysical approaches have emerged that are compatible with the study of membrane proteins in an environment closer to the biological membrane. These novel approaches revealed specific mechanisms of regulation of membrane protein function. Lipids have been shown to play a role in oligomerization, conformational transitions or allosteric coupling. In this review, we summarize the recent biophysical approaches, or combination thereof, that allow to decipher the role of lipid-protein interactions in the mechanism of membrane proteins.
Collapse
Affiliation(s)
| | | | - Chloé Martens
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (L.J.); (T.v.O.)
| |
Collapse
|
28
|
Lloyd JR, Hogan A, Paschalis V, Bellamy-Carter J, Bottley A, Seymour GB, Hayes CJ, Oldham NJ. Mapping the interaction between eukaryotic initiation factor 4A (eIF4A) and the inhibitor hippuristanol using carbene footprinting and mass spectrometry. Proteomics 2021; 21:e2000288. [PMID: 34028182 DOI: 10.1002/pmic.202000288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022]
Abstract
Protein-ligand interactions are central to protein activity and cell functionality. Improved knowledge of these relationships greatly benefits our understanding of key biological processes and aids in rational drug design towards the treatment of clinically relevant diseases. Carbene footprinting is a recently developed mass spectrometry-based chemical labelling technique that provides valuable information relating to protein-ligand interactions, such as the mapping of binding sites and associated conformational change. Here, we show the application of carbene footprinting to the interaction between eIF4A helicase and a natural product inhibitor, hippuristanol, found in the coral Isis hippuris. Upon addition of hippuristanol we identified reduced carbene labelling (masking) in regions of eIF4A previously implicated in ligand binding. Additionally, we detected hippuristanol-associated increased carbene labelling (unmasking) around the flexible hinge region of eIF4A, indicating ligand-induced conformational change. This work represents further development of the carbene footprinting technique and demonstrates its potential in characterising medicinally relevant protein-ligand interactions.
Collapse
Affiliation(s)
- James R Lloyd
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Amy Hogan
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Vasileios Paschalis
- School of Chemistry, University of Nottingham, Nottingham, UK.,Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Jeddidiah Bellamy-Carter
- School of Chemistry, University of Nottingham, Nottingham, UK.,School of Biosciences, University of Birmingham, Birmingham, UK
| | - Andrew Bottley
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Graham B Seymour
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | | | - Neil J Oldham
- School of Chemistry, University of Nottingham, Nottingham, UK
| |
Collapse
|
29
|
Scratching the surface: native mass spectrometry of peripheral membrane protein complexes. Biochem Soc Trans 2021; 48:547-558. [PMID: 32129823 PMCID: PMC7192793 DOI: 10.1042/bst20190787] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
A growing number of integral membrane proteins have been shown to tune their activity by selectively interacting with specific lipids. The ability to regulate biological functions via lipid interactions extends to the diverse group of proteins that associate only peripherally with the lipid bilayer. However, the structural basis of these interactions remains challenging to study due to their transient and promiscuous nature. Recently, native mass spectrometry has come into focus as a new tool to investigate lipid interactions in membrane proteins. Here, we outline how the native MS strategies developed for integral membrane proteins can be applied to generate insights into the structure and function of peripheral membrane proteins. Specifically, native MS studies of proteins in complex with detergent-solubilized lipids, bound to lipid nanodiscs, and released from native-like lipid vesicles all shed new light on the role of lipid interactions. The unique ability of native MS to capture and interrogate protein–protein, protein–ligand, and protein–lipid interactions opens exciting new avenues for the study of peripheral membrane protein biology.
Collapse
|
30
|
Bagheri Y, Ali AA, You M. Current Methods for Detecting Cell Membrane Transient Interactions. Front Chem 2020; 8:603259. [PMID: 33365301 PMCID: PMC7750205 DOI: 10.3389/fchem.2020.603259] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/16/2020] [Indexed: 12/28/2022] Open
Abstract
Short-lived cell membrane complexes play a key role in regulating cell signaling and communication. Many of these complexes are formed based on low-affinity and transient interactions among various lipids and proteins. New techniques have emerged to study these previously overlooked membrane transient interactions. Exciting functions of these transient interactions have been discovered in cellular events such as immune signaling, host-pathogen interactions, and diseases such as cancer. In this review, we have summarized current experimental methods that allow us to detect and analyze short-lived cell membrane protein-protein, lipid-protein, and lipid-lipid interactions. These methods can provide useful information about the strengths, kinetics, and/or spatial patterns of membrane transient interactions. However, each method also has its own limitations. We hope this review can be used as a guideline to help the audience to choose proper approaches for studying membrane transient interactions in different membrane trafficking and cell signaling events.
Collapse
Affiliation(s)
| | | | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
31
|
Hydrogen-deuterium exchange mass spectrometry captures distinct dynamics upon substrate and inhibitor binding to a transporter. Nat Commun 2020; 11:6162. [PMID: 33268777 PMCID: PMC7710758 DOI: 10.1038/s41467-020-20032-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Proton-coupled transporters use transmembrane proton gradients to power active transport of nutrients inside the cell. High-resolution structures often fail to capture the coupling between proton and ligand binding, and conformational changes associated with transport. We combine HDX-MS with mutagenesis and MD simulations to dissect the molecular mechanism of the prototypical transporter XylE. We show that protonation of a conserved aspartate triggers conformational transition from outward-facing to inward-facing state. This transition only occurs in the presence of substrate xylose, while the inhibitor glucose locks the transporter in the outward-facing state. MD simulations corroborate the experiments by showing that only the combination of protonation and xylose binding, and not glucose, sets up the transporter for conformational switch. Overall, we demonstrate the unique ability of HDX-MS to distinguish between the conformational dynamics of inhibitor and substrate binding, and show that a specific allosteric coupling between substrate binding and protonation is a key step to initiate transport. XylE is a bacterial xylose transporter and homologue of human glucose transporters GLUTs 1-4. HDX-MS, mutagenesis and MD simulations suggest that protonation of a conserved aspartate triggers conformational transition from outward- to inward facing state only in the presence of substrate xylose. In contrast, inhibitor glucose locks the transporter in the outward facing state.
Collapse
|
32
|
Marty MT. Nanodiscs and Mass Spectrometry: Making Membranes Fly. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 458:116436. [PMID: 33100891 PMCID: PMC7584149 DOI: 10.1016/j.ijms.2020.116436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cells are surrounded by a protective lipid bilayer membrane, and membrane proteins in the bilayer control the flow of chemicals, information, and energy across this barrier. Many therapeutics target membrane proteins, and some directly target the lipid membrane itself. However, interactions within biological membranes are challenging to study due to their heterogeneity and insolubility. Mass spectrometry (MS) has become a powerful technique for studying membrane proteins, especially how membrane proteins interact with their surrounding lipid environment. Although detergent micelles are the most common membrane mimetic, nanodiscs are emerging as a promising platform for MS. Nanodiscs, nanoscale lipid bilayers encircled by two scaffold proteins, provide a controllable lipid bilayer for solubilizing membrane proteins. This Young Scientist Perspective focuses on native MS of intact nanodiscs and highlights the unique experiments enabled by making membranes fly, including studying membrane protein-lipid interactions and exploring the specificity of fragile transmembrane peptide complexes. It will also explore current challenges and future perspectives for interfacing nanodiscs with MS.
Collapse
Affiliation(s)
- Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
33
|
Sligar SG, Denisov IG. Nanodiscs: A toolkit for membrane protein science. Protein Sci 2020; 30:297-315. [PMID: 33165998 DOI: 10.1002/pro.3994] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
Membrane proteins are involved in numerous vital biological processes, including transport, signal transduction and the enzymes in a variety of metabolic pathways. Integral membrane proteins account for up to 30% of the human proteome and they make up more than half of all currently marketed therapeutic targets. Unfortunately, membrane proteins are inherently recalcitrant to study using the normal toolkit available to scientists, and one is most often left with the challenge of finding inhibitors, activators and specific antibodies using a denatured or detergent solubilized aggregate. The Nanodisc platform circumvents these challenges by providing a self-assembled system that renders typically insoluble, yet biologically and pharmacologically significant, targets such as receptors, transporters, enzymes, and viral antigens soluble in aqueous media in a native-like bilayer environment that maintain a target's functional activity. By providing a bilayer surface of defined composition and structure, Nanodiscs have found great utility in the study of cellular signaling complexes that assemble on a membrane surface. Nanodiscs provide a nanometer scale vehicle for the in vivo delivery of amphipathic drugs, therapeutic lipids, tethered nucleic acids, imaging agents and active protein complexes. This means for generating nanoscale lipid bilayers has spawned the successful use of numerous other polymer and peptide amphipathic systems. This review, in celebration of the Anfinsen Award, summarizes some recent results and provides an inroad into the current and historical literature.
Collapse
Affiliation(s)
- Stephen G Sligar
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ilia G Denisov
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
34
|
Engen JR, Botzanowski T, Peterle D, Georgescauld F, Wales TE. Developments in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal Chem 2020; 93:567-582. [DOI: 10.1021/acs.analchem.0c04281] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas Botzanowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Florian Georgescauld
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
35
|
Structural predictions of the functions of membrane proteins from HDX-MS. Biochem Soc Trans 2020; 48:971-979. [PMID: 32597490 PMCID: PMC7329338 DOI: 10.1042/bst20190880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
HDX-MS has emerged as a powerful tool to interrogate the structure and dynamics of proteins and their complexes. Recent advances in the methodology and instrumentation have enabled the application of HDX-MS to membrane proteins. Such targets are challenging to investigate with conventional strategies. Developing new tools are therefore pertinent for improving our fundamental knowledge of how membrane proteins function in the cell. Importantly, investigating this central class of biomolecules within their native lipid environment remains a challenge but also a key goal ahead. In this short review, we outline recent progresses in dissecting the conformational mechanisms of membrane proteins using HDX-MS. We further describe how the use of computational strategies can aid the interpretation of experimental data and enable visualisation of otherwise intractable membrane protein states. This unique integration of experiments with computations holds significant potential for future applications.
Collapse
|
36
|
Tajoddin NN, Konermann L. Analysis of Temperature-Dependent H/D Exchange Mass Spectrometry Experiments. Anal Chem 2020; 92:10058-10067. [DOI: 10.1021/acs.analchem.0c01828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nastaran N. Tajoddin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
37
|
Martens C, Politis A. A glimpse into the molecular mechanism of integral membrane proteins through hydrogen-deuterium exchange mass spectrometry. Protein Sci 2020; 29:1285-1301. [PMID: 32170968 PMCID: PMC7255514 DOI: 10.1002/pro.3853] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 01/07/2023]
Abstract
Integral membrane proteins (IMPs) control countless fundamental biological processes and constitute the majority of drug targets. For this reason, uncovering their molecular mechanism of action has long been an intense field of research. They are, however, notoriously difficult to work with, mainly due to their localization within the heterogeneous of environment of the biological membrane and the instability once extracted from the lipid bilayer. High‐resolution structures have unveiled many mechanistic aspects of IMPs but also revealed that the elucidation of static pictures has limitations. Hydrogen–deuterium exchange coupled to mass spectrometry (HDX‐MS) has recently emerged as a powerful biophysical tool for interrogating the conformational dynamics of proteins and their interactions with ligands. Its versatility has proven particularly useful to reveal mechanistic aspects of challenging classes of proteins such as IMPs. This review recapitulates the accomplishments of HDX‐MS as it has matured into an essential tool for membrane protein structural biologists.
Collapse
Affiliation(s)
- Chloe Martens
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|