1
|
Peters DI, Shin IJ, Deever AN, Kaspar JR. Design, Development and Validation of New Fluorescent Strains for Studying Oral Streptococci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632972. [PMID: 39868180 PMCID: PMC11761503 DOI: 10.1101/2025.01.14.632972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Bacterial strains that are genetically engineered to constitutively produce fluorescent proteins have aided our study of bacterial physiology, biofilm formation, and interspecies interactions. Here, we report on the construction and utilization of new strains that produce the blue fluorescent protein mTagBFP2, the green fluorescent protein sfGFP, and the red fluorescent protein mScarlet-I3 in species Streptococcus gordonii, Streptococcus mutans, and Streptococcus sanguinis. Gene fragments, developed to contain the constitutive promoter Pveg, the fluorescent gene of interest as well as aad9, providing resistance to the antibiotic spectinomycin, were inserted into selected open reading frames on the chromosome that were both transcriptionally silent and whose loss caused no measurable changes in fitness. All strains, except for sfGFP in S. sanguinis, were validated to produce a detectable and specific fluorescent signal. Individual stains, along with extracellular polymeric substances (EPS) within biofilms, were visualized and quantified through either widefield or super-resolution confocal microscopy approaches. Finally, to validate the ability to perform single cell-level analysis using the strains, we imaged and analyzed a triculture mixed-species biofilm of S. gordonii, S. mutans, and S. sanguinis grown with and without addition of human saliva. Quantification of the loss in membrane integrity using a SYTOX dye revealed that all strains had increased loss of membrane integrity with water or human saliva added to the growth media, but the proportion of the population stained by the SYTOX dye varied by species. In all, these fluorescent strains will be a valuable resource for the continued study of oral microbial ecology.
Collapse
Affiliation(s)
- Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Iris J. Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Alyssa N. Deever
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|
2
|
Xu S, Xiao X, Manshaii F, Chen J. Injectable Fluorescent Neural Interfaces for Cell-Specific Stimulating and Imaging. NANO LETTERS 2024. [PMID: 38606614 DOI: 10.1021/acs.nanolett.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Building on current explorations in chronic optical neural interfaces, it is essential to address the risk of photothermal damage in traditional optogenetics. By focusing on calcium fluorescence for imaging rather than stimulation, injectable fluorescent neural interfaces significantly minimize photothermal damage and improve the accuracy of neuronal imaging. Key advancements including the use of injectable microelectronics for targeted electrical stimulation and their integration with cell-specific genetically encoded calcium indicators have been discussed. These injectable electronics that allow for post-treatment retrieval offer a minimally invasive solution, enhancing both usability and reliability. Furthermore, the integration of genetically encoded fluorescent calcium indicators with injectable bioelectronics enables precise neuronal recording and imaging of individual neurons. This shift not only minimizes risks such as photothermal conversion but also boosts safety, specificity, and effectiveness of neural imaging. Embracing these advancements represents a significant leap forward in biomedical engineering and neuroscience, paving the way for advanced brain-machine interfaces.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Goedhart J, Gadella TWJ. Breaking up the StayGold dimer yields three photostable monomers. Nat Methods 2024; 21:558-559. [PMID: 38485740 DOI: 10.1038/s41592-024-02223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, the Netherlands.
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Luteijn RD, van Terwisga SR, Ver Eecke JE, Onia L, Zaver SA, Woodward JJ, Wubbolts RW, Raulet DH, van Kuppeveld FJM. The activation of the adaptor protein STING depends on its interactions with the phospholipid PI4P. Sci Signal 2024; 17:eade3643. [PMID: 38470955 PMCID: PMC11003704 DOI: 10.1126/scisignal.ade3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Activation of the endoplasmic reticulum (ER)-resident adaptor protein STING, a component of a cytosolic DNA-sensing pathway, induces the transcription of genes encoding type I interferons (IFNs) and other proinflammatory factors. Because STING is activated at the Golgi apparatus, control of the localization and activation of STING is important in stimulating antiviral and antitumor immune responses. Through a genome-wide CRISPR interference screen, we found that STING activation required the Golgi-resident protein ACBD3, which promotes the generation of phosphatidylinositol 4-phosphate (PI4P) at the trans-Golgi network, as well as other PI4P-associated proteins. Appropriate localization and activation of STING at the Golgi apparatus required ACBD3 and the PI4P-generating kinase PI4KB. In contrast, STING activation was enhanced when the lipid-shuttling protein OSBP, which removes PI4P from the Golgi apparatus, was inhibited by the US Food and Drug Administration-approved antifungal itraconazole. The increase in the abundance of STING-activating phospholipids at the trans-Golgi network resulted in the increased production of IFN-β and other cytokines in THP-1 cells. Furthermore, a mutant STING that could not bind to PI4P failed to traffic from the ER to the Golgi apparatus in response to a STING agonist, whereas forced relocalization of STING to PI4P-enriched areas elicited STING activation in the absence of stimulation with a STING agonist. Thus, PI4P is critical for STING activation, and manipulating PI4P abundance may therapeutically modulate STING-dependent immune responses.
Collapse
Affiliation(s)
- Rutger D Luteijn
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Sypke R van Terwisga
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jill E Ver Eecke
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Liberty Onia
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
| | - Shivam A Zaver
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Richard W Wubbolts
- Centre for Cell Imaging, Division of Cell Biology, Metabolism and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - David H Raulet
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Mukherjee S, Douglas N, Jimenez R. Influence of Fluorescence Lifetime Selections and Conformational Flexibility on Brightness of FusionRed Variants. J Phys Chem Lett 2024; 15:1644-1651. [PMID: 38315162 DOI: 10.1021/acs.jpclett.3c02765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Fluorescent proteins (FPs) for bioimaging are typically developed by screening mutant libraries for clones with improved photophysical properties. This approach has resulted in FPs with high brightness, but the mechanistic origins of the improvements are often unclear. We focused on improving the molecular brightness in the FusionRed family of FPs with fluorescence lifetime selections on targeted libraries, with the aim of reducing nonradiative decay rates. Our new variants show fluorescence quantum yields of up to 75% and lifetimes >3.5 ns. We present a comprehensive analysis of these new FPs, including trends in spectral shifts, photophysical data, photostability, and cellular brightness resulting from codon optimization. We also performed all-atom molecular dynamics simulations to investigate the impact of side chain mutations. The trajectories reveal that individual mutations reduce the flexibility of the chromophore and side chains, leading to an overall reduction in nonradiative rates.
Collapse
Affiliation(s)
- Srijit Mukherjee
- JILA, University of Colorado, Boulder, and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Nancy Douglas
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Ralph Jimenez
- JILA, University of Colorado, Boulder, and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Mo Y, Zhou H, Xu J, Chen X, Li L, Zhang S. Genetically encoded fluorescence lifetime biosensors: overview, advances, and opportunities. Analyst 2023; 148:4939-4953. [PMID: 37721109 DOI: 10.1039/d3an01201h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) are powerful tools for tracking analytes and cellular events with high spatial and temporal resolution in living cells and organisms. Compared with intensiometric readout and ratiometric readout, fluorescence lifetime readout provides absolute measurements, independent of the biosensor expression level and instruments. Thus, genetically encoded fluorescence lifetime biosensors play a vital role in facilitating accurate quantitative assessments within intricate biological systems. In this review, we first provide a concise description of the categorization and working mechanism of genetically encoded fluorescence lifetime biosensors. Subsequently, we elaborate on the combination of the fluorescence lifetime imaging technique and lifetime analysis methods with fluorescence lifetime biosensors, followed by their application in monitoring the dynamics of environment parameters, analytes and cellular events. Finally, we discuss worthwhile considerations for the design, optimization and development of fluorescence lifetime-based biosensors from three representative cases.
Collapse
Affiliation(s)
- Yidan Mo
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Xihang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Lei Li
- School of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Institute of Physics at NYU Shanghai, No. 3663, North Zhongshan Rd, Shanghai 200062, China.
| |
Collapse
|
7
|
Gadella TWJ, van Weeren L, Stouthamer J, Hink MA, Wolters AHG, Giepmans BNG, Aumonier S, Dupuy J, Royant A. mScarlet3: a brilliant and fast-maturing red fluorescent protein. Nat Methods 2023; 20:541-545. [PMID: 36973546 DOI: 10.1038/s41592-023-01809-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/27/2023] [Indexed: 03/29/2023]
Abstract
We report the evolution of mScarlet3, a cysteine-free monomeric red fluorescent protein with fast and complete maturation, as well as record brightness, quantum yield (75%) and fluorescence lifetime (4.0 ns). The mScarlet3 crystal structure reveals a barrel rigidified at one of its heads by a large hydrophobic patch of internal residues. mScarlet3 behaves well as a fusion tag, displays no apparent cytotoxicity and it surpasses existing red fluorescent proteins as a Förster resonance energy transfer acceptor and as a reporter in transient expression systems.
Collapse
Affiliation(s)
- Theodorus W J Gadella
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Laura van Weeren
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Jente Stouthamer
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark A Hink
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Anouk H G Wolters
- Biomedical Sciences of Cells & Systems, University of Groningen UMC Groningen, Groningen, the Netherlands
| | - Ben N G Giepmans
- Biomedical Sciences of Cells & Systems, University of Groningen UMC Groningen, Groningen, the Netherlands
| | - Sylvain Aumonier
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Jérôme Dupuy
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Antoine Royant
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
- European Synchrotron Radiation Facility, Grenoble, France
| |
Collapse
|
8
|
A brilliant monomeric red fluorescent protein combining high brightness and fast maturation. Nat Methods 2023; 20:497-498. [PMID: 36973550 DOI: 10.1038/s41592-023-01810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Lace B, Su C, Invernot Perez D, Rodriguez-Franco M, Vernié T, Batzenschlager M, Egli S, Liu CW, Ott T. RPG acts as a central determinant for infectosome formation and cellular polarization during intracellular rhizobial infections. eLife 2023; 12:80741. [PMID: 36856086 PMCID: PMC9991063 DOI: 10.7554/elife.80741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Host-controlled intracellular accommodation of nitrogen-fixing bacteria is essential for the establishment of a functional Root Nodule Symbiosis (RNS). In many host plants, this occurs via transcellular tubular structures (infection threads - ITs) that extend across cell layers via polar tip-growth. Comparative phylogenomic studies have identified RPG (RHIZOBIUM-DIRECTED POLAR GROWTH) among the critical genetic determinants for bacterial infection. In Medicago truncatula, RPG is required for effective IT progression within root hairs but the cellular and molecular function of the encoded protein remains elusive. Here, we show that RPG resides in the protein complex formed by the core endosymbiotic components VAPYRIN (VPY) and LUMPY INFECTION (LIN) required for IT polar growth, co-localizes with both VPY and LIN in IT tip- and perinuclear-associated puncta of M. truncatula root hairs undergoing infection and is necessary for VPY recruitment into these structures. Fluorescence Lifetime Imaging Microscopy (FLIM) of phosphoinositide species during bacterial infection revealed that functional RPG is required to sustain strong membrane polarization at the advancing tip of the IT. In addition, loss of RPG functionality alters the cytoskeleton-mediated connectivity between the IT tip and the nucleus and affects the polar secretion of the cell wall modifying enzyme NODULE PECTATE LYASE (NPL). Our results integrate RPG into a core host machinery required to support symbiont accommodation, suggesting that its occurrence in plant host genomes is essential to co-opt a multimeric protein module committed to endosymbiosis to sustain IT-mediated bacterial infection.
Collapse
Affiliation(s)
- Beatrice Lace
- University of Freiburg, Faculty of BiologyFreiburgGermany
| | - Chao Su
- University of Freiburg, Faculty of BiologyFreiburgGermany
| | | | | | - Tatiana Vernié
- LRSV, Université de Toulouse, CNRS, UPS, INP ToulouseCastanet-TolosanFrance
| | | | - Sabrina Egli
- University of Freiburg, Faculty of BiologyFreiburgGermany
| | - Cheng-Wu Liu
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of ChinaHefeiChina
| | - Thomas Ott
- University of Freiburg, Faculty of BiologyFreiburgGermany
- CIBSS – Centre of Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| |
Collapse
|
10
|
Xue J, Zhou J, Li J, Du G, Chen J, Wang M, Zhao X. Systematic engineering of Saccharomyces cerevisiae for efficient synthesis of hemoglobins and myoglobins. BIORESOURCE TECHNOLOGY 2023; 370:128556. [PMID: 36586429 DOI: 10.1016/j.biortech.2022.128556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 05/26/2023]
Abstract
Hemoglobin (Hb) and myoglobin (Mb) are kinds of heme-binding proteins that play crucial physiological roles in different organisms. With rapid application development in food processing and biocatalysis, the requirement of biosynthetic Hb and Mb is increasing. However, the production of Hb and Mb is limited by the lower expressional level of globins and insufficient or improper heme supply. After selecting an inducible strategy for the expression of globins, removing the spatial barrier during heme synthesis, increasing the synthesis of 5-aminolevulinate and moderately enhancing heme synthetic rate-limiting steps, the microbial synthesis of bovine and porcine Hb was firstly achieved. Furthermore, an engineered Saccharomyces cerevisiae obtained a higher titer of soybean (108.2 ± 3.5 mg/L) and clover (13.7 ± 0.5 mg/L) Hb and bovine (68.9 ± 1.6 mg/L) and porcine (85.9 ± 5.0 mg/L) Mb. Therefore, this systematic engineering strategy will be useful to produce other hemoproteins or hemoenzymes with high activities.
Collapse
Affiliation(s)
- Jike Xue
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Miao Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Mukherjee S, Manna P, Douglas N, Chapagain PP, Jimenez R. Conformational Dynamics of mCherry Variants: A Link between Side-Chain Motions and Fluorescence Brightness. J Phys Chem B 2023; 127:52-61. [PMID: 36574626 DOI: 10.1021/acs.jpcb.2c05584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The 3-fold higher brightness of the recently developed mCherry-XL red fluorescent protein (FP) compared to its progenitor, mCherry, is due to a significant decrease in the nonradiative decay rate underlying its increased fluorescence quantum yield. To examine the structural and dynamic role of the four mutations that distinguish the two FPs and closely related variants, we employed microsecond time scale, all-atom molecular dynamics simulations. The simulations revealed that the I197R mutation leads to the formation of multiple hydrogen-bonded contacts and increased rigidity of the β-barrel. In particular, mCherryXL showed reduced nanosecond time scale breathing of the gap between the β7 and β10-strands, which was previously shown to be the most flexible region of mCherry. Together with experimental results, the simulations also reveal steric interactions of residue 161 and a network of hydrogen-bonding interactions of the chromophore with residues at positions 59, 143, and 163 that are critical in perturbing the chromophore electronic structure. Finally, we shed light on the conformational dynamics of the conserved residues R95 and S146, which are hydrogen-bonded to the chromophore, and provide physical insights into the observed photophysics. To the best of our knowledge, this is the first study that evaluates the conformational space for a set of closely related FPs generated by directed evolution.
Collapse
Affiliation(s)
- Srijit Mukherjee
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Premashis Manna
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nancy Douglas
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Prem P Chapagain
- Department of Physics, Florida International University, 11200 SW Eighth Street, CP204, Miami, Florida 33199, United States
| | - Ralph Jimenez
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Wei T, Huang S, Hu Q, Wang J, Huo Z, Liu C, Lu S, Chen H. Directed evolution of the genetically encoded zinc(II) FRET sensor ZapCY1. Biochim Biophys Acta Gen Subj 2022; 1866:130201. [PMID: 35835349 DOI: 10.1016/j.bbagen.2022.130201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Zinc(II) ions (Zn2+) play an essential role in living systems, with their delicate concentration balance differing among the various intracellular organelles. The spatiotemporal distribution and homeostasis of Zn2+ can be monitored through photoluminescence imaging using zinc sensors. Among such biosensors, genetically encoded fluorescent sensor proteins are attractive tools owing to their subcellular localization advantage and high biocompatibility. However, the limited fluorescent properties of these proteins, such as their insufficient quantum yield and dynamic range, restrict their practical use. In this study, we developed an expression-screening-directed evolution system and used it to improve ZapCY1, a genetically encoded fluorescence resonance energy transfer (FRET) sensor. After four rounds of directed evolution, the FRET dynamic range of the modified sensor (designated ZapTV-EH) was increased by 1.5-1.7-fold. With its enhanced signal-to-noise ratio and ability to detect a wide Zn2+ concentration range, ZapTV-EH proves to be a better visualization tool for monitoring Zn2+ at the subcellular level. Combined with the simplified subcloning and expression steps and sufficient mutant libraries, this directed evolution system may provide a more simple and efficient way to develop and optimize genetically encoded FRET sensors through high-throughput screening.
Collapse
Affiliation(s)
- Tianbiao Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Shanqing Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Qingyuan Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jue Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Zhongzhong Huo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Chunhong Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Shuyu Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Hao Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
13
|
Mukherjee S, Manna P, Hung ST, Vietmeyer F, Friis P, Palmer AE, Jimenez R. Directed Evolution of a Bright Variant of mCherry: Suppression of Nonradiative Decay by Fluorescence Lifetime Selections. J Phys Chem B 2022; 126:4659-4668. [PMID: 35709514 DOI: 10.1021/acs.jpcb.2c01956] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The approximately linear scaling of fluorescence quantum yield (ϕ) with fluorescence lifetime (τ) in fluorescent proteins (FPs) has inspired engineering of brighter fluorophores based on screening for increased lifetimes. Several recently developed FPs such as mTurquoise2, mScarlet, and FusionRed-MQV which have become useful for live cell imaging are products of lifetime selection strategies. However, the underlying photophysical basis of the improved brightness has not been scrutinized. In this study, we focused on understanding the outcome of lifetime-based directed evolution of mCherry, which is a popular red-FP (RFP). We identified four positions (W143, I161, Q163, and I197) near the FP chromophore that can be mutated to create mCherry-XL (eXtended Lifetime: ϕ = 0.70; τ = 3.9 ns). The 3-fold higher quantum yield of mCherry-XL is on par with that of the brightest RFP to date, mScarlet. We examined selected variants within the evolution trajectory and found a near-linear scaling of lifetime with quantum yield and consistent blue-shifts of the absorption and emission spectra. We find that the improvement in brightness is primarily due to a decrease in the nonradiative decay of the excited state. In addition, our analysis revealed the decrease in nonradiative rate is not limited to the blue-shift of the energy gap and changes in the excited state reorganization energy. Our findings suggest that nonradiative mechanisms beyond the scope of energy-gap models such the Englman-Jortner model are suppressed in this lifetime evolution trajectory.
Collapse
Affiliation(s)
- Srijit Mukherjee
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Premashis Manna
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sheng-Ting Hung
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Felix Vietmeyer
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
| | - Pia Friis
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
| | - Amy E Palmer
- Department of Biochemistry, University of Colorado at Boulder, 596 UCB, Boulder, Colorado 80309, United States
- BioFrontiers Institute, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80309, United States
| | - Ralph Jimenez
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
Dual-expression system for blue fluorescent protein optimization. Sci Rep 2022; 12:10190. [PMID: 35715437 PMCID: PMC9206027 DOI: 10.1038/s41598-022-13214-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Spectrally diverse fluorescent proteins (FPs) provide straightforward means for multiplexed imaging of biological systems. Among FPs fitting standard color channels, blue FPs (BFPs) are characterized by lower brightness compared to other spectral counterparts. Furthermore, available BFPs were not systematically characterized for imaging in cultured mammalian cells and common model organisms. Here we introduce a pair of new BFPs, named Electra1 and Electra2, developed through hierarchical screening in bacterial and mammalian cells using a novel dual-expression vector. We performed systematic benchmarking of Electras against state-of-art BFPs in cultured mammalian cells and demonstrated their utility as fluorescent tags for structural proteins. The Electras variants were validated for multicolor neuroimaging in Caenorhabditis elegans, zebrafish larvae, and mice in comparison with one of the best in the class BFP mTagBFP2 using one-photon and two-photon microscopy. The developed BFPs are suitable for multicolor imaging of cultured cells and model organisms in vivo. We believe that the described dual-expression vector has a great potential to be adopted by protein engineers for directed molecular evolution of FPs.
Collapse
|
15
|
Babakhanova S, Jung EE, Namikawa K, Zhang H, Wang Y, Subach OM, Korzhenevskiy DA, Rakitina TV, Xiao X, Wang W, Shi J, Drobizhev M, Park D, Eisenhard L, Tang H, Köster RW, Subach FV, Boyden ES, Piatkevich KD. Rapid directed molecular evolution of fluorescent proteins in mammalian cells. Protein Sci 2022; 31:728-751. [PMID: 34913537 PMCID: PMC8862398 DOI: 10.1002/pro.4261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
In vivo imaging of model organisms is heavily reliant on fluorescent proteins with high intracellular brightness. Here we describe a practical method for rapid optimization of fluorescent proteins via directed molecular evolution in cultured mammalian cells. Using this method, we were able to perform screening of large gene libraries containing up to 2 × 107 independent random genes of fluorescent proteins expressed in HEK cells, completing one iteration of directed evolution in a course of 8 days. We employed this approach to develop a set of green and near-infrared fluorescent proteins with enhanced intracellular brightness. The developed near-infrared fluorescent proteins demonstrated high performance for fluorescent labeling of neurons in culture and in vivo in model organisms such as Caenorhabditis elegans, Drosophila, zebrafish, and mice. Spectral properties of the optimized near-infrared fluorescent proteins enabled crosstalk-free multicolor imaging in combination with common green and red fluorescent proteins, as well as dual-color near-infrared fluorescence imaging. The described method has a great potential to be adopted by protein engineers due to its simplicity and practicality. We also believe that the new enhanced fluorescent proteins will find wide application for in vivo multicolor imaging of small model organisms.
Collapse
|
16
|
Mukherjee S, Jimenez R. Photophysical Engineering of Fluorescent Proteins: Accomplishments and Challenges of Physical Chemistry Strategies. J Phys Chem B 2022; 126:735-750. [DOI: 10.1021/acs.jpcb.1c05629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Srijit Mukherjee
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Ralph Jimenez
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
17
|
van der Linden FH, Mahlandt EK, Arts JJG, Beumer J, Puschhof J, de Man SMA, Chertkova AO, Ponsioen B, Clevers H, van Buul JD, Postma M, Gadella TWJ, Goedhart J. A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium. Nat Commun 2021; 12:7159. [PMID: 34887382 PMCID: PMC8660884 DOI: 10.1038/s41467-021-27249-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Abstract
The most successful genetically encoded calcium indicators (GECIs) employ an intensity or ratiometric readout. Despite a large calcium-dependent change in fluorescence intensity, the quantification of calcium concentrations with GECIs is problematic, which is further complicated by the sensitivity of all GECIs to changes in the pH in the biological range. Here, we report on a sensing strategy in which a conformational change directly modifies the fluorescence quantum yield and fluorescence lifetime of a circular permutated turquoise fluorescent protein. The fluorescence lifetime is an absolute parameter that enables straightforward quantification, eliminating intensity-related artifacts. An engineering strategy that optimizes lifetime contrast led to a biosensor that shows a 3-fold change in the calcium-dependent quantum yield and a fluorescence lifetime change of 1.3 ns. We dub the biosensor Turquoise Calcium Fluorescence LIfeTime Sensor (Tq-Ca-FLITS). The response of the calcium sensor is insensitive to pH between 6.2-9. As a result, Tq-Ca-FLITS enables robust measurements of intracellular calcium concentrations by fluorescence lifetime imaging. We demonstrate quantitative imaging of calcium concentrations with the turquoise GECI in single endothelial cells and human-derived organoids.
Collapse
Affiliation(s)
- Franka H van der Linden
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eike K Mahlandt
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Janine J G Arts
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Hematology at Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Joep Beumer
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands
| | - Jens Puschhof
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands
| | - Saskia M A de Man
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna O Chertkova
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas Ponsioen
- Center for Molecular Medicine, Oncode Institute, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands
| | - Jaap D van Buul
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Hematology at Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marten Postma
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Theodorus W J Gadella
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Mamontova AV, Shakhov AM, Lukyanov KA, Bogdanov AM. Deciphering the Role of Positions 145 and 165 in Fluorescence Lifetime Shortening in the EGFP Variants. Biomolecules 2020; 10:biom10111547. [PMID: 33202759 PMCID: PMC7696298 DOI: 10.3390/biom10111547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 01/15/2023] Open
Abstract
The bright ultimately short lifetime enhanced emitter (BrUSLEE) green fluorescent protein, which differs from the enhanced green fluorescent protein (EGFP) in three mutations, exhibits an extremely short fluorescence lifetime at a relatively high brightness. An important contribution to shortening the BrUSLEE fluorescence lifetime compared to EGFP is provided by the T65G substitution of chromophore-forming residue and the Y145M mutation touching the chromophore environment. Although the influence of the T65G mutation was studied previously, the role of the 145th position in determining the GFPs physicochemical characteristics remains unclear. In this work, we show that the Y145M substitution, both alone and in combination with the F165Y mutation, does not shorten the fluorescence lifetime of EGFP-derived mutants. Thus, the unlocking of Y145M as an important determinant of lifetime tuning is possible only cooperatively with mutations at position 65. We also show here that the introduction of a T65G substitution into EGFP causes complex photobehavior of the respective mutants in the lifetime domain, namely, the appearance of two fluorescent states with different lifetimes, preserved in any combination with the Y145M and F165Y substitutions.
Collapse
Affiliation(s)
- Anastasia V. Mamontova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.V.M.); (K.A.L.)
| | | | - Konstantin A. Lukyanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.V.M.); (K.A.L.)
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|