1
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
2
|
Fasciani I, Petragnano F, Wang Z, Edwards R, Telugu N, Pietrantoni I, Zabel U, Zauber H, Grieben M, Terzenidou ME, Di Gregorio J, Pellegrini C, Santini S, Taddei AR, Pohl B, Aringhieri S, Carli M, Aloisi G, Marampon F, Charlesworth E, Roman A, Diecke S, Flati V, Giorgi F, Amicarelli F, Tobin AB, Scarselli M, Tokatlidis K, Rossi M, Lohse MJ, Annibale P, Maggio R. The C-terminus of the prototypical M2 muscarinic receptor localizes to the mitochondria and regulates cell respiration under stress conditions. PLoS Biol 2024; 22:e3002582. [PMID: 38683874 PMCID: PMC11093360 DOI: 10.1371/journal.pbio.3002582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/14/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
Muscarinic acetylcholine receptors are prototypical G protein-coupled receptors (GPCRs), members of a large family of 7 transmembrane receptors mediating a wide variety of extracellular signals. We show here, in cultured cells and in a murine model, that the carboxyl terminal fragment of the muscarinic M2 receptor, comprising the transmembrane regions 6 and 7 (M2tail), is expressed by virtue of an internal ribosome entry site localized in the third intracellular loop. Single-cell imaging and import in isolated yeast mitochondria reveals that M2tail, whose expression is up-regulated in cells undergoing integrated stress response, does not follow the normal route to the plasma membrane, but is almost exclusively sorted to the mitochondria inner membrane: here, it controls oxygen consumption, cell proliferation, and the formation of reactive oxygen species (ROS) by reducing oxidative phosphorylation. Crispr/Cas9 editing of the key methionine where cap-independent translation begins in human-induced pluripotent stem cells (hiPSCs), reveals the physiological role of this process in influencing cell proliferation and oxygen consumption at the endogenous level. The expression of the C-terminal domain of a GPCR, capable of regulating mitochondrial function, constitutes a hitherto unknown mechanism notably unrelated to its canonical signaling function as a GPCR at the plasma membrane. This work thus highlights a potential novel mechanism that cells may use for controlling their metabolism under variable environmental conditions, notably as a negative regulator of cell respiration.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Ziming Wang
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ruairidh Edwards
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Ilaria Pietrantoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Ulrike Zabel
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Henrik Zauber
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Maria E. Terzenidou
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jacopo Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Silvano Santini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Anna R. Taddei
- Section of Electron Microscopy, Great Equipment Center, University of Tuscia, Viterbo, Italy
| | - Bärbel Pohl
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefano Aringhieri
- Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy
| | - Marco Carli
- Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Eve Charlesworth
- School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | | | | | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Franco Giorgi
- Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Andrew B. Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marco Scarselli
- Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy
| | - Kostas Tokatlidis
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mario Rossi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Martin J. Lohse
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- ISAR Bioscience Institute, Munich, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
3
|
Bestsennaia E, Maslov I, Balandin T, Alekseev A, Yudenko A, Abu Shamseye A, Zabelskii D, Baumann A, Catapano C, Karathanasis C, Gordeliy V, Heilemann M, Gensch T, Borshchevskiy V. Channelrhodopsin-2 Oligomerization in Cell Membrane Revealed by Photo-Activated Localization Microscopy. Angew Chem Int Ed Engl 2024; 63:e202307555. [PMID: 38226794 DOI: 10.1002/anie.202307555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Microbial rhodopsins are retinal membrane proteins that found a broad application in optogenetics. The oligomeric state of rhodopsins is important for their functionality and stability. Of particular interest is the oligomeric state in the cellular native membrane environment. Fluorescence microscopy provides powerful tools to determine the oligomeric state of membrane proteins directly in cells. Among these methods is quantitative photoactivated localization microscopy (qPALM) allowing the investigation of molecular organization at the level of single protein clusters. Here, we apply qPALM to investigate the oligomeric state of the first and most used optogenetic tool Channelrhodopsin-2 (ChR2) in the plasma membrane of eukaryotic cells. ChR2 appeared predominantly as a dimer in the cell membrane and did not form higher oligomers. The disulfide bonds between Cys34 and Cys36 of adjacent ChR2 monomers were not required for dimer formation and mutations disrupting these bonds resulted in only partial monomerization of ChR2. The monomeric fraction increased when the total concentration of mutant ChR2 in the membrane was low. The dissociation constant was estimated for this partially monomerized mutant ChR2 as 2.2±0.9 proteins/μm2 . Our findings are important for understanding the mechanistic basis of ChR2 activity as well as for improving existing and developing future optogenetic tools.
Collapse
Affiliation(s)
- Ekaterina Bestsennaia
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Ivan Maslov
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and the Biomedical Research Institute, Hasselt University, B3590, Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Taras Balandin
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alexey Alekseev
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Anna Yudenko
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Assalla Abu Shamseye
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Dmitrii Zabelskii
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
- European XFEL, 22869, Schenefeld, Germany
| | - Arnd Baumann
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Claudia Catapano
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Valentin Gordeliy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Valentin Borshchevskiy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| |
Collapse
|
4
|
Nagl M, Mönnich D, Rosier N, Schihada H, Sirbu A, Konar N, Reyes-Resina I, Navarro G, Franco R, Kolb P, Annibale P, Pockes S. Fluorescent Tools for the Imaging of Dopamine D 2 -Like Receptors. Chembiochem 2024; 25:e202300659. [PMID: 37942961 DOI: 10.1002/cbic.202300659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
The family of dopamine D2 -like receptors represents an interesting target for a variety of neurological diseases, e. g. Parkinson's disease (PD), addiction, or schizophrenia. In this study we describe the synthesis of a new set of fluorescent ligands as tools for visualization of dopamine D2 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-MN212 (20) as a high-affinity ligand for D2 -like receptors (pKi (D2long R)=8.24, pKi (D3 R)=8.58, pKi (D4 R)=7.78) with decent selectivity towards D1 -like receptors. Compound 20 is a neutral antagonist in a Go1 activation assay at the D2long R, D3 R, and D4 R, which is an important feature for studies using whole cells. The neutral antagonist 20, equipped with a 5-TAMRA dye, displayed rapid association to the D2long R in binding studies using confocal microscopy demonstrating its suitability for fluorescence microscopy. Furthermore, in molecular brightness studies, the ligand's binding affinity could be determined in a single-digit nanomolar range that was in good agreement with radioligand binding data. Therefore, the fluorescent compound can be used for quantitative characterization of native D2 -like receptors in a broad variety of experimental setups.
Collapse
Affiliation(s)
- Martin Nagl
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Niklas Rosier
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Alexei Sirbu
- Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
| | - Nergis Konar
- Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
| | - Irene Reyes-Resina
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| |
Collapse
|
5
|
Rosier N, Mönnich D, Nagl M, Schihada H, Sirbu A, Konar N, Reyes-Resina I, Navarro G, Franco R, Kolb P, Annibale P, Pockes S. Shedding Light on the D 1 -Like Receptors: A Fluorescence-Based Toolbox for Visualization of the D 1 and D 5 Receptors. Chembiochem 2024; 25:e202300658. [PMID: 37983731 DOI: 10.1002/cbic.202300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Dopamine D1 -like receptors are the most abundant type of dopamine receptors in the central nervous system and, even after decades of discovery, still highly interesting for the study of neurological diseases. We herein describe the synthesis of a new set of fluorescent ligands, structurally derived from D1 R antagonist SCH-23390 and labeled with two different fluorescent dyes, as tool compounds for the visualization of D1 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-NR435 (25) as a high-affinity ligand for D1 -like receptors (pKi (D1 R)=8.34, pKi (D5 R)=7.62) with excellent selectivity towards D2 -like receptors. Compound 25 proved to be a neutral antagonist at the D1 R and D5 R in a Gs heterotrimer dissociation assay, an important feature to avoid receptor internalization and degradation when working with whole cells. The neutral antagonist 25 displayed rapid association and complete dissociation to the D1 R in kinetic binding studies using confocal microscopy verifying its applicability for fluorescence microscopy. Moreover, molecular brightness studies determined a single-digit nanomolar binding affinity of the ligand, which was in good agreement with radioligand binding data. For this reason, this fluorescent ligand is a useful tool for a sophisticated characterization of native D1 receptors in a variety of experimental setups.
Collapse
Affiliation(s)
- Niklas Rosier
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Martin Nagl
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Alexei Sirbu
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Nergis Konar
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Irene Reyes-Resina
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Scotland, UK
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
6
|
McKenzie DM, Wirth D, Pogorelov TV, Hristova K. Utility of FRET in studies of membrane protein oligomerization: The concept of the effective dissociation constant. Biophys J 2023; 122:4113-4120. [PMID: 37735871 PMCID: PMC10598290 DOI: 10.1016/j.bpj.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
The activity of many membrane receptors is controlled through their lateral association into dimers or higher-order oligomers. Although Förster resonance energy transfer (FRET) measurements have been used extensively to characterize the stability of receptor dimers, the utility of FRET in studies of larger oligomers has been limited. Here we introduce an effective equilibrium dissociation constant that can be extracted from FRET measurements for EphA2, a receptor tyrosine kinase (RTK) known to form active oligomers of heterogeneous distributions in response to its ligand ephrinA1-Fc. The newly introduced effective equilibrium dissociation constant has a well-defined physical meaning and biological significance. It denotes the receptor concentration for which half of the receptors are monomeric and inactive, and the other half are associated into oligomers and are active, irrespective of the exact oligomer size. This work introduces a new dimension to the utility of FRET in studies of membrane receptor association and signaling in the plasma membrane.
Collapse
Affiliation(s)
- Daniel M McKenzie
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland
| | - Daniel Wirth
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland
| | - Taras V Pogorelov
- Department of Chemistry, Center for Biophysics and Quantitative Biology, School of Chemical Sciences, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland.
| |
Collapse
|
7
|
Nguyen TD, Chen YI, Chen LH, Yeh HC. Recent Advances in Single-Molecule Tracking and Imaging Techniques. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:253-284. [PMID: 37314878 DOI: 10.1146/annurev-anchem-091922-073057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the early 1990s, single-molecule detection in solution at room temperature has enabled direct observation of single biomolecules at work in real time and under physiological conditions, providing insights into complex biological systems that the traditional ensemble methods cannot offer. In particular, recent advances in single-molecule tracking techniques allow researchers to follow individual biomolecules in their native environments for a timescale of seconds to minutes, revealing not only the distinct pathways these biomolecules take for downstream signaling but also their roles in supporting life. In this review, we discuss various single-molecule tracking and imaging techniques developed to date, with an emphasis on advanced three-dimensional (3D) tracking systems that not only achieve ultrahigh spatiotemporal resolution but also provide sufficient working depths suitable for tracking single molecules in 3D tissue models. We then summarize the observables that can be extracted from the trajectory data. Methods to perform single-molecule clustering analysis and future directions are also discussed.
Collapse
Affiliation(s)
- Trung Duc Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Limin H Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
- Texas Materials Institute, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
8
|
Stoneman MR, Raicu V. Fluorescence-Based Detection of Proteins and Their Interactions in Live Cells. J Phys Chem B 2023. [PMID: 37205844 DOI: 10.1021/acs.jpcb.3c01419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in fluorescence-based microscopy techniques, such as single molecule fluorescence, Förster resonance energy transfer (FRET), fluorescence intensity fluctuations analysis, and super-resolution microscopy have expanded our ability to study proteins in greater detail within their native cellular environment and to investigate the roles that protein interactions play in biological functions, such as inter- and intracellular signaling and cargo transport. In this Perspective, we provide an up-to-date overview of the current state of the art in fluorescence-based detection of proteins and their interactions in living cells with an emphasis on recent developments that have facilitated the characterization of the spatial and temporal organization of proteins into oligomeric complexes in the presence and absence of natural and artificial ligands. Further advancements in this field will only deepen our understanding of the underlying mechanisms of biological processes and help develop new therapeutic targets.
Collapse
Affiliation(s)
- Michael R Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
9
|
Steiert F, Schultz P, Höfinger S, Müller TD, Schwille P, Weidemann T. Insights into receptor structure and dynamics at the surface of living cells. Nat Commun 2023; 14:1596. [PMID: 36949079 PMCID: PMC10033668 DOI: 10.1038/s41467-023-37284-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Evaluating protein structures in living cells remains a challenge. Here, we investigate Interleukin-4 receptor alpha (IL-4Rα) into which the non-canonical amino acid bicyclo[6.1.0]nonyne-lysine (BCNK) is incorporated by genetic code expansion. Bioorthogonal click labeling is performed with tetrazine-conjugated dyes. To quantify the reaction yield in situ, we develop brightness-calibrated ratiometric imaging, a protocol where fluorescent signals in confocal multi-color images are ascribed to local concentrations. Screening receptor mutants bearing BCNK in the extracellular domain uncovered site-specific variations of both click efficiency and Interleukin-4 binding affinity, indicating subtle well-defined structural perturbations. Molecular dynamics and continuum electrostatics calculations suggest solvent polarization to determine site-specific variations of BCNK reactivity. Strikingly, signatures of differential click efficiency, measured for IL-4Rα in ligand-bound and free form, mirror sub-angstrom deformations of the protein backbone at corresponding locations. Thus, click efficiency by itself represents a remarkably informative readout linked to protein structure and dynamics in the native plasma membrane.
Collapse
Affiliation(s)
- Frederik Steiert
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Department of Physics, Technical University Munich, 85748, Garching, Germany
| | - Peter Schultz
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Siegfried Höfinger
- VSC Research Center, TU Wien, Operngasse 11 / E057-09, 1040, Wien, Austria
- Department of Physics, Michigan Technological University, 1400 Townsend Drive, 49931, Houghton, MI, USA
| | - Thomas D Müller
- Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik - Botanik I, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Thomas Weidemann
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
10
|
Dimerization of β 2-adrenergic receptor is responsible for the constitutive activity subjected to inverse agonism. Cell Chem Biol 2022; 29:1532-1540.e5. [PMID: 36167077 DOI: 10.1016/j.chembiol.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Dimerization of beta 2-adrenergic receptor (β2-AR) has been observed across various physiologies. However, the function of dimeric β2-AR is still elusive. Here, we revealed that dimerization of β2-AR is responsible for the constitutive activity of β2-AR generating inverse agonism. Using a co-immunoimmobilization assay, we found that transient β2-AR dimers exist in a resting state, and the dimer was disrupted by the inverse agonists. A Gαs preferentially interacts with dimeric β2-AR, but not monomeric β2-AR, in a resting state, resulting in the production of a resting cAMP level. The formation of β2-AR dimers requires cholesterol on the plasma membrane. The cholesterol did not interfere with the agonist-induced activation of monomeric β2-AR, unlike the inverse agonists, implying that the cholesterol is a specific factor regulating the dimerization of β2-AR. Our model not only shows the function of dimeric β2-AR but also provides a molecular insight into the mechanism of the inverse agonism of β2-AR.
Collapse
|
11
|
Fluorescence Spectroscopy of Low-Level Endogenous β-adrenergic Receptor Expression at the Plasma Membrane of Differentiating Human iPSC-Derived Cardiomyocytes. Int J Mol Sci 2022; 23:ijms231810405. [PMID: 36142320 PMCID: PMC9499492 DOI: 10.3390/ijms231810405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The potential of human-induced pluripotent stem cells (hiPSCs) to be differentiated into cardiomyocytes (CMs) mimicking adult CMs functional morphology, marker genes and signaling characteristics has been investigated since over a decade. The evolution of the membrane localization of CM-specific G protein-coupled receptors throughout differentiation has received, however, only limited attention to date. We employ here advanced fluorescent spectroscopy, namely linescan Fluorescence Correlation Spectroscopy (FCS), to observe how the plasma membrane abundance of the β1- and β2-adrenergic receptors (β1/2-ARs), labelled using a bright and photostable fluorescent antagonist, evolves during the long-term monolayer culture of hiPSC-derived CMs. We compare it to the kinetics of observed mRNA levels in wildtype (WT) hiPSCs and in two CRISPR/Cas9 knock-in clones. We conduct these observations against the backdrop of our recent report of cell-to-cell expression variability, as well as of the subcellular localization heterogeneity of β-ARs in adult CMs.
Collapse
|
12
|
Balakrishnan A, Hemmen K, Choudhury S, Krohn JH, Jansen K, Friedrich M, Beliu G, Sauer M, Lohse MJ, Heinze KG. Unraveling the hidden temporal range of fast β 2-adrenergic receptor mobility by time-resolved fluorescence. Commun Biol 2022; 5:176. [PMID: 35228644 PMCID: PMC8885909 DOI: 10.1038/s42003-022-03106-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/02/2022] [Indexed: 12/29/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are hypothesized to possess molecular mobility over a wide temporal range. Until now the temporal range has not been fully accessible due to the crucially limited temporal range of available methods. This in turn, may lead relevant dynamic constants to remain masked. Here, we expand this dynamic range by combining fluorescent techniques using a spot confocal setup. We decipher mobility constants of β2-adrenergic receptor over a wide time range (nanosecond to second). Particularly, a translational mobility (10 µm²/s), one order of magnitude faster than membrane associated lateral mobility that explains membrane protein turnover and suggests a wider picture of the GPCR availability on the plasma membrane. And a so far elusive rotational mobility (1-200 µs) which depicts a previously overlooked dynamic component that, despite all complexity, behaves largely as predicted by the Saffman-Delbrück model.
Collapse
Affiliation(s)
- Ashwin Balakrishnan
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Susobhan Choudhury
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Jan-Hagen Krohn
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Kerstin Jansen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Mike Friedrich
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Markus Sauer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
13
|
Wang Q, Zhang Q, He H, Feng Z, Mao J, Hu X, Wei X, Bi S, Qin G, Wang X, Ge B, Yu D, Ren H, Huang F. Carbon Dot Blinking Fingerprint Uncovers Native Membrane Receptor Organizations via Deep Learning. Anal Chem 2022; 94:3914-3921. [PMID: 35188385 DOI: 10.1021/acs.analchem.1c04947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oligomeric organization of G protein-coupled receptors is proposed to regulate receptor signaling and function, yet rapid and precise identification of the oligomeric status especially for native receptors on a cell membrane remains an outstanding challenge. By using blinking carbon dots (CDs), we now develop a deep learning (DL)-based blinking fingerprint recognition method, named deep-blinking fingerprint recognition (BFR), which allows automatic classification of CD-labeled receptor organizations on a cell membrane. This DL model integrates convolutional layers, long-short-term memory, and fully connected layers to extract time-dependent blinking features of CDs and is trained to a high accuracy (∼95%) for identifying receptor organizations. Using deep blinking fingerprint recognition, we found that CXCR4 mainly exists as 87.3% monomers, 12.4% dimers, and <1% higher-order oligomers on a HeLa cell membrane. We further demonstrate that the heterogeneous organizations can be regulated by various stimuli at different degrees. The receptor-binding ligands, agonist SDF-1α and antagonist AMD3100, can induce the dimerization of CXCR4 to 33.1 and 20.3%, respectively. In addition, cytochalasin D, which inhibits actin polymerization, similarly prompts significant dimerization of CXCR4 to 30.9%. The multi-pathway organization regulation will provide an insight for understanding the oligomerization mechanism of CXCR4 as well as for elucidating their physiological functions.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Zhang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Feng
- Technical Center of Qingdao Customs District, Qingdao 266500, China
| | - Jian Mao
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiang Hu
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoyun Wei
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Simin Bi
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guangyong Qin
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
14
|
Wang J, Kang G, Yuan H, Cao X, Huang H, de Marco A. Research Progress and Applications of Multivalent, Multispecific and Modified Nanobodies for Disease Treatment. Front Immunol 2022; 12:838082. [PMID: 35116045 PMCID: PMC8804282 DOI: 10.3389/fimmu.2021.838082] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recombinant antibodies such as nanobodies are progressively demonstrating to be a valid alternative to conventional monoclonal antibodies also for clinical applications. Furthermore, they do not solely represent a substitute for monoclonal antibodies but their unique features allow expanding the applications of biotherapeutics and changes the pattern of disease treatment. Nanobodies possess the double advantage of being small and simple to engineer. This combination has promoted extremely diversified approaches to design nanobody-based constructs suitable for particular applications. Both the format geometry possibilities and the functionalization strategies have been widely explored to provide macromolecules with better efficacy with respect to single nanobodies or their combination. Nanobody multimers and nanobody-derived reagents were developed to image and contrast several cancer diseases and have shown their effectiveness in animal models. Their capacity to block more independent signaling pathways simultaneously is considered a critical advantage to avoid tumor resistance, whereas the mass of these multimeric compounds still remains significantly smaller than that of an IgG, enabling deeper penetration in solid tumors. When applied to CAR-T cell therapy, nanobodies can effectively improve the specificity by targeting multiple epitopes and consequently reduce the side effects. This represents a great potential in treating malignant lymphomas, acute myeloid leukemia, acute lymphoblastic leukemia, multiple myeloma and solid tumors. Apart from cancer treatment, multispecific drugs and imaging reagents built with nanobody blocks have demonstrated their value also for detecting and tackling neurodegenerative, autoimmune, metabolic, and infectious diseases and as antidotes for toxins. In particular, multi-paratopic nanobody-based constructs have been developed recently as drugs for passive immunization against SARS-CoV-2 with the goal of impairing variant survival due to resistance to antibodies targeting single epitopes. Given the enormous research activity in the field, it can be expected that more and more multimeric nanobody molecules will undergo late clinical trials in the next future. Systematic Review Registration.
Collapse
Affiliation(s)
- Jiewen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Haibin Yuan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
15
|
Song W, Duncan AL, Sansom MSP. Modulation of adenosine A2a receptor oligomerization by receptor activation and PIP 2 interactions. Structure 2021; 29:1312-1325.e3. [PMID: 34270937 PMCID: PMC8581623 DOI: 10.1016/j.str.2021.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022]
Abstract
GPCRs have been shown to form oligomers, which generate distinctive signaling outcomes. However, the structural nature of the oligomerization process remains uncertain. We have characterized oligomeric configurations of the adenosine A2a receptor (A2aR) by combining large-scale molecular dynamics simulations with Markov state models. These oligomeric structures may also serve as templates for studying oligomerization of other class A GPCRs. Our simulation data revealed that receptor activation results in enhanced oligomerization, more diverse oligomer populations, and a more connected oligomerization network. The active state conformation of the A2aR shifts protein-protein association interfaces to those involving intracellular loop ICL3 and transmembrane helix TM6. Binding of PIP2 to A2aR stabilizes protein-protein interactions via PIP2-mediated association interfaces. These results indicate that A2aR oligomerization is responsive to the local membrane lipid environment. This, in turn, suggests a modulatory effect on A2aR whereby a given oligomerization profile favors the dynamic formation of specific supramolecular signaling complexes.
Collapse
Affiliation(s)
- Wanling Song
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
16
|
Wolf P, Mohr A, Gavins G, Behr V, Mörl K, Seitz O, Beck-Sickinger AG. Orthogonal Peptide-Templated Labeling Elucidates Lateral ET A R/ET B R Proximity and Reveals Altered Downstream Signaling. Chembiochem 2021; 23:e202100340. [PMID: 34699123 PMCID: PMC9298254 DOI: 10.1002/cbic.202100340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/03/2021] [Indexed: 12/21/2022]
Abstract
Fine‐tuning of G protein‐coupled receptor (GPCR) signaling is important to maintain cellular homeostasis. Recent studies demonstrated that lateral GPCR interactions in the cell membrane can impact signaling profiles. Here, we report on a one‐step labeling method of multiple membrane‐embedded GPCRs. Based on short peptide tags, complementary probes transfer the cargo (e. g. a fluorescent dye) by an acyl transfer reaction with high spatial and temporal resolution within 5 min. We applied this approach to four receptors of the cardiovascular system: the endothelin receptor A and B (ETAR and ETBR), angiotensin II receptor type 1, and apelin. Wild type‐like G protein activation after N‐terminal modification was demonstrated for all receptor species. Using FRET‐competent dyes, a constitutive proximity between hetero‐receptors was limited to ETAR/ETBR. Further, we demonstrate, that ETAR expression regulates the signaling of co‐expressed ETBR. Our orthogonal peptide‐templated labeling of different GPCRs provides novel insight into the regulation of GPCR signaling.
Collapse
Affiliation(s)
- Philipp Wolf
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Alexander Mohr
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Georgina Gavins
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Victoria Behr
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Karin Mörl
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Oliver Seitz
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Annette G Beck-Sickinger
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| |
Collapse
|
17
|
Cerutti E, D'Amico M, Cainero I, Dellino GI, Faretta M, Vicidomini G, Pelicci PG, Bianchini P, Diaspro A, Lanzanò L. Evaluation of sted super-resolution image quality by image correlation spectroscopy (QuICS). Sci Rep 2021; 11:20782. [PMID: 34675304 PMCID: PMC8531054 DOI: 10.1038/s41598-021-00301-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/08/2021] [Indexed: 12/05/2022] Open
Abstract
Quantifying the imaging performances in an unbiased way is of outmost importance in super-resolution microscopy. Here, we describe an algorithm based on image correlation spectroscopy (ICS) that can be used to assess the quality of super-resolution images. The algorithm is based on the calculation of an autocorrelation function and provides three different parameters: the width of the autocorrelation function, related to the spatial resolution; the brightness, related to the image contrast; the relative noise variance, related to the signal-to-noise ratio of the image. We use this algorithm to evaluate the quality of stimulated emission depletion (STED) images of DNA replication foci in U937 cells acquired under different imaging conditions. Increasing the STED depletion power improves the resolution but may reduce the image contrast. Increasing the number of line averages improves the signal-to-noise ratio but facilitates the onset of photobleaching and subsequent reduction of the image contrast. Finally, we evaluate the performances of two different separation of photons by lifetime tuning (SPLIT) approaches: the method of tunable STED depletion power and the commercially available Leica Tau-STED. We find that SPLIT provides an efficient way to improve the resolution and contrast in STED microscopy.
Collapse
Affiliation(s)
- Elena Cerutti
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy.,Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Morgana D'Amico
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy
| | - Isotta Cainero
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy.,DIFILAB, Department of Physics, University of Genoa, via Dodecaneso 33, 16143, Genoa, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy. .,Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy.
| |
Collapse
|
18
|
Joseph MD, Tomas Bort E, Grose RP, McCormick PJ, Simoncelli S. Quantitative Super-Resolution Imaging for the Analysis of GPCR Oligomerization. Biomolecules 2021; 11:biom11101503. [PMID: 34680136 PMCID: PMC8533726 DOI: 10.3390/biom11101503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are known to form homo- and hetero- oligomers which are considered critical to modulate their function. However, studying the existence and functional implication of these complexes is not straightforward as controversial results are obtained depending on the method of analysis employed. Here, we use a quantitative single molecule super-resolution imaging technique named qPAINT to quantify complex formation within an example GPCR. qPAINT, based upon DNA-PAINT, takes advantage of the binding kinetics between fluorescently labelled DNA imager strands to complementary DNA docking strands coupled to protein targeting antibodies to quantify the protein copy number in nanoscale dimensions. We demonstrate qPAINT analysis via a novel pipeline to study the oligomerization of the purinergic receptor Y2 (P2Y2), a rhodopsin-like GPCR, highly expressed in the pancreatic cancer cell line AsPC-1, under control, agonistic and antagonistic conditions. Results reveal that whilst the density of P2Y2 receptors remained unchanged, antagonistic conditions displayed reduced percentage of oligomers, and smaller numbers of receptors in complexes. Yet, the oligomeric state of the receptors was not affected by agonist treatment, in line with previous reports. Understanding P2Y2 oligomerization under agonistic and antagonistic conditions will contribute to unravelling P2Y2 mechanistic action and therapeutic targeting.
Collapse
Affiliation(s)
- Megan D. Joseph
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK;
| | - Elena Tomas Bort
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.T.B.); (R.P.G.)
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.T.B.); (R.P.G.)
| | - Peter J. McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Sabrina Simoncelli
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK;
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Correspondence:
| |
Collapse
|
19
|
Dunsing V, Petrich A, Chiantia S. Multicolor fluorescence fluctuation spectroscopy in living cells via spectral detection. eLife 2021; 10:e69687. [PMID: 34494547 PMCID: PMC8545396 DOI: 10.7554/elife.69687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Signaling pathways in biological systems rely on specific interactions between multiple biomolecules. Fluorescence fluctuation spectroscopy provides a powerful toolbox to quantify such interactions directly in living cells. Cross-correlation analysis of spectrally separated fluctuations provides information about intermolecular interactions but is usually limited to two fluorophore species. Here, we present scanning fluorescence spectral correlation spectroscopy (SFSCS), a versatile approach that can be implemented on commercial confocal microscopes, allowing the investigation of interactions between multiple protein species at the plasma membrane. We demonstrate that SFSCS enables cross-talk-free cross-correlation, diffusion, and oligomerization analysis of up to four protein species labeled with strongly overlapping fluorophores. As an example, we investigate the interactions of influenza A virus (IAV) matrix protein 2 with two cellular host factors simultaneously. We furthermore apply raster spectral image correlation spectroscopy for the simultaneous analysis of up to four species and determine the stoichiometry of ternary IAV polymerase complexes in the cell nucleus.
Collapse
Affiliation(s)
- Valentin Dunsing
- Universität Potsdam, Institute of Biochemistry and BiologyPotsdamGermany
| | - Annett Petrich
- Universität Potsdam, Institute of Biochemistry and BiologyPotsdamGermany
| | - Salvatore Chiantia
- Universität Potsdam, Institute of Biochemistry and BiologyPotsdamGermany
| |
Collapse
|
20
|
Bernabé-Rubio M, Bosch-Fortea M, Alonso MA, Bernardino de la Serna J. Multi-dimensional and spatiotemporal correlative imaging at the plasma membrane of live cells to determine the continuum nano-to-micro scale lipid adaptation and collective motion. Methods 2021; 193:136-147. [PMID: 34126167 DOI: 10.1016/j.ymeth.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
The primary cilium is a specialized plasma membrane protrusion with important receptors for signalling pathways. In polarized epithelial cells, the primary cilium assembles after the midbody remnant (MBR) encounters the centrosome at the apical surface. The membrane surrounding the MBR, namely remnant-associated membrane patch (RAMP), once situated next to the centrosome, releases some of its lipid components to form a centrosome-associated membrane patch (CAMP) from which the ciliary membrane stems. The RAMP undergoes a spatiotemporal membrane refinement during the formation of the CAMP, which becomes highly enriched in condensed membranes with low lateral mobility. To better understand this process, we have developed a correlative imaging approach that yields quantitative information about the lipid lateral packing, its mobility and collective assembly at the plasma membrane at different spatial scales over time. Our work paves the way towards a quantitative understanding of the spatiotemporal lipid collective assembly at the plasma membrane as a functional determinant in cell biology and its direct correlation with the membrane physicochemical state. These findings allowed us to gain a deeper insight into the mechanisms behind the biogenesis of the ciliary membrane of polarized epithelial cells.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid 28049, Spain; King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Minerva Bosch-Fortea
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid 28049, Spain; Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jorge Bernardino de la Serna
- Central Laser Facility, Rutherford Appleton Laboratory, MRC-Research Complex at Harwell, Science and Technology Facilities Council, Harwell OX11 0QX, UK; National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; NIHR Imperial Biomedical Research Centre, London SW7 2AZ, UK.
| |
Collapse
|