1
|
Harris MC, Gary HE, Cooper SK, Ackart DF, DiLisio JE, Basaraba RJ, Cheng TY, van Rhijn I, Branch Moody D, Podell BK. Establishment of CD1b-restricted immunity to lipid antigens in the pulmonary response to Mycobacterium tuberculosis infection. Infect Immun 2024; 92:e0038024. [PMID: 39494875 PMCID: PMC11629625 DOI: 10.1128/iai.00380-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
CD1 is an antigen-presenting glycoprotein homologous to MHC I; however, CD1 proteins present lipid rather than peptide antigens. CD1 proteins are well established to present lipid antigens of Mycobacterium tuberculosis (Mtb) to T cells, but understanding the role of CD1-restricted immunity in vivo in response to Mtb infection has been limited by the availability of animal models naturally expressing the CD1 proteins implicated in human response: CD1a, CD1b, and CD1c. Guinea pigs, in contrast to other rodent models, express four CD1b orthologs, and here we utilize the guinea pig to establish the kinetics of gene and protein expression of CD1b orthologs, as well as the Mtb lipid-antigen and CD1b-restricted immune response at the tissue level over the course of Mtb infection. Our results indicate transient upregulation of CD1b expression during the effector phase of adaptive immunity that wanes with disease chronicity. Gene expression indicates that the upregulation of CD1b is the result of transcriptional induction across all CD1b orthologs. We show high CD1b3 expression on B cells, and identify CD1b3 as the predominant CD1b ortholog in pulmonary granuloma lesions. We identify ex vivo cytotoxic activity directed against CD1b that parallels the kinetic changes in CD1b expression in Mtb-infected lungs and spleen. This study confirms that CD1b expression is modulated by Mtb infection in lung and spleen, leading to pulmonary and extrapulmonary CD1b-restricted immunity as a component of the antigen-specific response to Mtb infection.
Collapse
Affiliation(s)
- Macallister C. Harris
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Hadley E. Gary
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah K. Cooper
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - David F. Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James E. DiLisio
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Randall J. Basaraba
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Tan-Yun Cheng
- Brigham and Women’s Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - Ildiko van Rhijn
- Brigham and Women’s Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Branch Moody
- Brigham and Women’s Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - Brendan K. Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Co IL, Fomina A, Nurse M, McGuigan AP. Applications and evolution of 3D cancer-immune cell models. Trends Biotechnol 2024; 42:1615-1627. [PMID: 39025680 DOI: 10.1016/j.tibtech.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Understanding the highly complex tumor-immune landscape is an important goal for developing novel immune therapies for solid cancers. To this end, 3D cancer-immune models have emerged as patient-relevant in vitro tools for modeling the tumor-immune landscape and the cellular interactions within it. In this review, we provide an overview of the components and applications of 3D cancer-immune models and discuss their evolution from 2015 to 2023. Specifically, we observe trends in primary cell-sourced, T cell-based complex models used for therapy evaluation and biological discovery. Finally, we describe the challenges of implementing 3D cancer-immune models and the opportunities for maximizing their potential for deciphering the complex tumor-immune microenvironment and identifying novel, clinically relevant drug targets.
Collapse
Affiliation(s)
- Ileana L Co
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Aleksandra Fomina
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Michelle Nurse
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
3
|
Park M, Safford M, Scheers J, Hammill L, Pleitez D, Jerbi T, Koudji EM, Yelity S, Campion S, Miller MM, Gibb SL, Sargent A. Automation preserves product consistency and quality for the formulation, fill, and finish of T cell-based therapies. Cytotherapy 2024; 26:1566-1570. [PMID: 39078352 DOI: 10.1016/j.jcyt.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Scaling up the manufacture of cell therapies can be complex and challenging. Maintaining critical quality attributes of the cell product during its final formulation and fill-finish into multiple containers can be especially difficult and laborious. Here, we tested the automated Finia™ Fill and Finish System to efficiently scale up the formulation and fill-finish of a T cell product, and then assessed cell quality and product consistency across different sub-lots filled during this expanded process. We found that this automated system could be effectively scaled to 4 times its singular capacity in a 2-h time interval, with variation in cell number and product volume less than 12% across all containers. Analysis of the different sub-lots of the final product revealed high cell viability and consistent T cell phenotype, with a high proportion of effector memory and central memory T cells and low expression of T cell senescence and exhaustion markers. The functionality of the T cell product was compared by measuring cytokine response after restimulation, with secreted levels of effector cytokines like IFN-γ and TNF-α being similar across the different sub-lots. Collectively, these results show that automation can scale up the formulation and fill-finish of a cell manufacturing process while maintaining the phenotype and functionality of the cell product. Better understanding of how to maintain product uniformity and quality during final manufacturing is important to the further scale-up and development of successful cell therapies.
Collapse
Affiliation(s)
- Minsung Park
- Process and Assay Development, Cell and Gene Therapy, Charles River Laboratories, Hanover, Maryland, USA
| | - Meredith Safford
- Process and Assay Development, Cell and Gene Therapy, Charles River Laboratories, Hanover, Maryland, USA
| | - Jade Scheers
- Process and Assay Development, Cell and Gene Therapy, Charles River Laboratories, Hanover, Maryland, USA
| | - Lora Hammill
- Process and Assay Development, Cell and Gene Therapy, Charles River Laboratories, Hanover, Maryland, USA
| | - Despina Pleitez
- Process and Assay Development, Cell and Gene Therapy, Charles River Laboratories, Hanover, Maryland, USA
| | - Terri Jerbi
- Process and Assay Development, Cell and Gene Therapy, Charles River Laboratories, Hanover, Maryland, USA
| | - Eyram Marcelle Koudji
- Process and Assay Development, Cell and Gene Therapy, Charles River Laboratories, Hanover, Maryland, USA
| | - Shanelle Yelity
- Process and Assay Development, Cell and Gene Therapy, Charles River Laboratories, Hanover, Maryland, USA
| | - Sarah Campion
- Process and Assay Development, Cell and Gene Therapy, Charles River Laboratories, Hanover, Maryland, USA
| | - Mindy M Miller
- Terumo Blood and Cell Technologies Inc., Lakewood, Colarado, USA
| | - Stuart L Gibb
- Terumo Blood and Cell Technologies Inc., Lakewood, Colarado, USA
| | - Alex Sargent
- Process and Assay Development, Cell and Gene Therapy, Charles River Laboratories, Hanover, Maryland, USA.
| |
Collapse
|
4
|
Butler SE, Ackerman ME. Challenges and future perspectives for high-throughput chimeric antigen receptor T cell discovery. Curr Opin Biotechnol 2024; 90:103216. [PMID: 39437676 PMCID: PMC11627592 DOI: 10.1016/j.copbio.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Novel chimeric antigen receptor (CAR) T cell designs are being developed to overcome challenges with tumor recognition, trafficking, on-target but off-tumor binding, cytotoxicity, persistence, and immune suppression within the tumor microenvironment. Whereas traditional CAR engineering is an iterative, hypothesis-driven process in which novel designs are rationally constructed and tested for in vivo efficacy, drawing from the fields of small-molecule and protein-based therapeutic discovery, we consider how high-throughput, functional screening technologies are beginning to be applied for the development of promising CAR candidates. We review how the development of high-throughput screening methods has the potential to streamline the CAR discovery process, ultimately improving efficiency and clinical efficacy.
Collapse
Affiliation(s)
- Savannah E Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
5
|
Golikova EA, Alshevskaya AA, Alrhmoun S, Sivitskaya NA, Sennikov SV. TCR-T cell therapy: current development approaches, preclinical evaluation, and perspectives on regulatory challenges. J Transl Med 2024; 22:897. [PMID: 39367419 PMCID: PMC11451006 DOI: 10.1186/s12967-024-05703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
TCR-T cell therapy represents a promising advancement in adoptive immunotherapy for cancer treatment. Despite its potential, the development and preclinical testing of TCR-T cells face significant challenges. This review provides a structured overview of the key stages in preclinical testing, including in silico, in vitro, and in vivo methods, within the context of the sequential development of novel therapies. This review aimed to systematically outline the processes for evaluating TCR-T cells at each stage: from in silico approaches used to predict target antigens, assess cross-reactivity, and minimize off-target effects, to in vitro assays designed to measure cell functionality, cytotoxicity, and activation. Additionally, the review discusses the limitations of in vivo testing in animal models, particularly in accurately reflecting the human tumor microenvironment and immune responses. Performed analysis emphasizes the importance of these preclinical stages in the safe and effective development of TCR-T cell therapies. While current models provide valuable insights, we identify critical gaps, particularly in in vivo biodistribution and toxicity assessments, and propose the need for enhanced standardization and the development of more representative models. This structured approach aims to improve the predictability and safety of TCR-T cell therapy as it advances towards clinical application.
Collapse
Affiliation(s)
- Elena A Golikova
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
| | - Alina A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia.
| | - Saleh Alrhmoun
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099, Novosibirsk, Russia
| | - Natalia A Sivitskaya
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
| | - Sergey V Sennikov
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099, Novosibirsk, Russia
| |
Collapse
|
6
|
Ploch W, Sadowski K, Olejarz W, Basak GW. Advancement and Challenges in Monitoring of CAR-T Cell Therapy: A Comprehensive Review of Parameters and Markers in Hematological Malignancies. Cancers (Basel) 2024; 16:3339. [PMID: 39409959 PMCID: PMC11475293 DOI: 10.3390/cancers16193339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment for relapsed/refractory B-cell lymphomas. Despite its success, this therapy is accompanied by a significant frequency of adverse events, including cytokine release syndrome (CRS), immune-effector-cell-associated neurotoxicity syndrome (ICANS), or cytopenias, reaching even up to 80% of patients following CAR-T cell therapy. CRS results from the uncontrolled overproduction of proinflammatory cytokines, which leads to symptoms such as fever, headache, hypoxia, or neurological complications. CAR-T cell detection is possible by the use of flow cytometry (FC) or quantitative polymerase chain reaction (qPCR) assays, the two primary techniques used for CAR-T evaluation in peripheral blood, bone marrow (BM), and cerebrospinal fluid (CSF). State-of-the-art imaging technologies play a crucial role in monitoring the distribution and persistence of CAR-T cells in clinical trials. Still, they can also be extended with the use of FC and digital PCR (dPCR). Monitoring the changes in cell populations during disease progression and treatment gives an important insight into how the response to CAR-T cell therapy develops on a cellular level. It can help improve the therapeutic design and optimize CAR-T cell therapy to make it more precise and personalized, which is crucial to overcoming the problem of tumor relapse.
Collapse
Affiliation(s)
- Weronika Ploch
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grzegorz W. Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
7
|
Prikhodko IV, Guria GT. The method for assessing the specificity of developing CAR therapies. BIOPHYSICAL REPORTS 2024; 4:100172. [PMID: 39025235 PMCID: PMC11344002 DOI: 10.1016/j.bpr.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The effectiveness of antitumor chimeric antigen receptor (CAR) therapy mainly dealt with an elevated sensitivity of CAR cells to target cells. However, CAR therapies are associated with nonspecific side effects: on-target off-tumor toxicity. Sensitivity and specificity of CAR cells are the most important properties of the recognition process of target cells among other cells. Current developments are mainly concentrated on exploring molecular biology methods for designing CAR cells with the highest sensitivity, while the problem of the CAR cell specificity is rarely considered. For the assessment of CAR cell specificity, we suggest that, in addition to an elevated level of CAR-antigen affinity, the ability of CARs for clustering should be taken into account. We assume that the CAR cell cytotoxicity is determined by CAR clustering. The latter is treated within the framework of nucleation theory. The master equation for the probability of CAR cell cytotoxicity is derived. The size of a critical CAR cluster is found to be one of two most essential parameters. The conditions for necessary sensitivity and sufficient specificity are explored. Relevant parametric diagrams are derived. Possible applications of the method for assessing the specificity of developing CAR therapies are discussed.
Collapse
Affiliation(s)
- Ivan V Prikhodko
- Laboratory for Mathematical Modelling of Biological Processes, National Medical Research Center for Hematology, Moscow, Russia
| | - Georgy Th Guria
- Laboratory for Mathematical Modelling of Biological Processes, National Medical Research Center for Hematology, Moscow, Russia; Chair of the Living Systems Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
8
|
Chen S, Zhang S, Zhu R. Biophysical phenotyping of single-cell based on impedance and application for individualized precision medicine. Biosens Bioelectron 2024; 259:116410. [PMID: 38781697 DOI: 10.1016/j.bios.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Single-cell biophysical characterization based on impedance measurement is an advantageous approach due to its label-free, high-efficiency, cost-effective and real-time capability. Biophysical phenotyping can yield timely and rich information on physiological and pathological state of cells for disease diagnosis, drug screening, precision medicine, etc. However, precise measurement on single-cell impedance is challenging, particularly hard to figure out the detailed biophysical parameters of single cell due to coupling and complexity of impedance model. Here, we propose an analytic determination method to decode single-cell electrophysiological parameters (including cell-substrate interface capacitance, cell membrane capacitance, cell membrane conductivity, and cytoplasm conductivity) from the impedances measured at optimized frequencies by using analytic solution rather than spectrum fitting. With this simple and fast analytic solution method, the physiological parameters of single cell in natural adhesion state can be accurately determined in real time. We validate this cell parameter determination method in monitoring the change of cell adhesion under hydraulic effects and exploring electrophysiological differences among MCF-7, HeLa, Huh7, and MDA-MB-231 cell lines. Particularly, we apply the approach to optimize tumor treating fields (TTFields) therapy, realizing individualized precision medicine. Our work provides an accurate and efficient approach for characterizing single-cell biophysical properties with real-time, in-situ, label-free, and less invasive advantages.
Collapse
Affiliation(s)
- Shengjie Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Shengsen Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Rong Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Sharma G, Round J, Teng F, Ali Z, May C, Yung E, Holt RA. A synthetic cytotoxic T cell platform for rapidly prototyping TCR function. NPJ Precis Oncol 2024; 8:182. [PMID: 39160299 PMCID: PMC11333705 DOI: 10.1038/s41698-024-00669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Current tools for functionally profiling T cell receptors with respect to cytotoxic potency and cross-reactivity are hampered by difficulties in establishing model systems to test these proteins in the contexts of different HLA alleles and against broad arrays of potential antigens. We have implemented a granzyme-activatable sensor of T cell cytotoxicity in a universal prototyping platform which enables facile recombinant expression of any combination of TCR-, peptide-, and class I MHC-coding sequences and direct assessment of resultant responses. This system consists of an engineered cell platform based on the immortalized natural killer cell line, YT-Indy, and the MHC-null antigen-presenting cell line, K562. These cells were engineered to furnish the YT-Indy/K562 pair with appropriate protein domains required for recombinant TCR expression and function in a non-T cell chassis, integrate a fluorescence-based target-centric early detection reporter of cytotoxic function, and deploy a set of protective genetic interventions designed to preserve antigen-presenting cells for subsequent capture and downstream characterization. Our data show successful reconstitution of the surface TCR complex in the YT-Indy cell line at biologically relevant levels. We also demonstrate successful induction and highly sensitive detection of antigen-specific response in multiple distinct model TCRs. Additionally, we monitored destruction of targets in co-culture and found that our survival-optimized system allowed for complete preservation after 24 h exposure to cytotoxic effectors. With this bioplatform, we anticipate investigators will be empowered to rapidly express and characterize T cell receptor responses, generate knowledge regarding the patterns of T cell receptor recognition, and optimize therapeutic T cell receptors.
Collapse
Affiliation(s)
- Govinda Sharma
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - James Round
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Fei Teng
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Zahra Ali
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Chris May
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Eric Yung
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Robert A Holt
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
10
|
Feng P, Bai X, Ma X, Kong H, Yang R. Interfacial-engineered living drugs with "ON/OFF" switching for oral delivery. NANOSCALE 2024; 16:13399-13406. [PMID: 38953700 DOI: 10.1039/d4nr01927j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Living drugs offer a new frontier in medicine, paving the way for personalized and potentially curative treatments. A customized living drug generally requires specialized technologies for highly effective and selective delivery to lesion locations. In this study, we explored an interfacial engineering method for living drugs by wrapping them with a "stealth coating", achieving "ON/OFF" switching of the communications between probiotics and the gastrointesinal (GI) tract. This maximized the bioactivity of living drugs following oral administration to exempt acidic insults and then significantly improved the retention through the gastrointestinal tract. With the notable ability to improve oral availability, the interfacial-engineered living drugs represent remarkable effects for enhanced oral delivery and treatment efficacy in the dextran sulfate sodium (DSS)-induced acute colitis model. We believe that this work has the potential to revolutionize medicine by precisely targeting and increasing curative activity in the future of disease treatment.
Collapse
Affiliation(s)
- Pingping Feng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, No. 292 Chengfu Road, Haidian District, Beijing, 100871 P. R. China.
| | - Xuefei Bai
- College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, P. R. China.
| | - Xiaofei Ma
- College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, P. R. China.
| | - Han Kong
- College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, P. R. China.
| | - Rui Yang
- College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, P. R. China.
| |
Collapse
|
11
|
Foulke JG, Chen L, Chang H, McManus CE, Tian F, Gu Z. Optimizing Ex Vivo CAR-T Cell-Mediated Cytotoxicity Assay through Multimodality Imaging. Cancers (Basel) 2024; 16:2497. [PMID: 39061136 PMCID: PMC11274748 DOI: 10.3390/cancers16142497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
CAR-T cell-based therapies have demonstrated remarkable efficacy in treating malignant cancers, especially liquid tumors, and are increasingly being evaluated in clinical trials for solid tumors. With the FDA's initiative to advance alternative methods for drug discovery and development, full human ex vivo assays are increasingly essential for precision CAR-T development. However, prevailing ex vivo CAR-T cell-mediated cytotoxicity assays are limited by their use of radioactive materials, lack of real-time measurement, low throughput, and inability to automate, among others. To address these limitations, we optimized the assay using multimodality imaging methods, including bioluminescence, impedance tracking, phase contrast, and fluorescence, to track CAR-T cells co-cultured with CD19, CD20, and HER2 luciferase reporter cancer cells in real-time. Additionally, we varied the ratio of CAR-T cells to cancer cells to determine optimal cytotoxicity readouts. Our findings demonstrated that the CAR-T cell group effectively attacked cancer cells, and the optimized assay provided superior temporal and spatial precision measurements of ex vivo CAR-T killing of cancer cells, confirming the reliability, consistency, and high throughput of the optimized assay.
Collapse
Affiliation(s)
| | | | | | | | - Fang Tian
- American Type Culture Collection (ATCC), Manassas, VA 20110, USA
| | - Zhizhan Gu
- American Type Culture Collection (ATCC), Manassas, VA 20110, USA
| |
Collapse
|
12
|
Piccinini C, Carloni S, Arienti C, Pancisi E, Fanini F, Pignatta S, Soldati V, Stefanelli M, Granato AM, Martinelli G, Ridolfi L, Petrini M. In vitro CAR-T cell killing: validation of the potency assay. Cancer Immunol Immunother 2024; 73:168. [PMID: 38953939 PMCID: PMC11219661 DOI: 10.1007/s00262-024-03753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
For advanced therapy medicinal products, the development and validation of potency assays are required, in accordance with international guidelines, to characterise the product and obtain reliable and consistent data. Our purpose was to validate the killing assay for the evaluation of autologous anti-CD19 chimeric antigen receptor (CAR) T potency. We used CD4 + and CD8 + lymphocytes or anti-CD19 CAR-T cells as effector cells and REH (CD19 +) or MOLM-13 (CD19 -) cell lines as target cells. After co-culturing target and effector cells (1:1 ratio) for 24 h, samples were labelled with 7-AAD, anti-CD3 and anti-CD19 antibodies and the frequency of CD19 + dead cells was evaluated by flow cytometry. In order to verify the CAR-T specificity for the CD19 + target, the co-culture between CAR-T and REH or MOLM-13 at different effector-to-target ratios was scheduled. Moreover, not transduced CD4 + and CD8 + lymphocytes were tested in comparison with CAR-T from the same donor to demonstrate the assay specificity. Linearity and accuracy were evaluated, and established acceptance criteria were compiled for both parameters (r2 ≥ 0.97 for linearity and average relative error ≤ 10% for accuracy). Furthermore, the method was considered robust when performed between 23 and 25 h of co-culture, and the intra-assay, inter-assay and inter-day precision was obtained. Finally, in order to verify the inter-analyst precision, the test was executed by three different operators and the intra-class correlation coefficient was > 0.4 in both cases. In conclusion, we consider this CAR-T potency assay as validated and usable in all steps of product development and quality control.
Collapse
Affiliation(s)
- Claudia Piccinini
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Maroncelli 40, 47014, Meldola, Italy
| | - Silvia Carloni
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Maroncelli 40, 47014, Meldola, Italy
| | - Chiara Arienti
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Maroncelli 40, 47014, Meldola, Italy
| | - Elena Pancisi
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Maroncelli 40, 47014, Meldola, Italy
| | - Francesca Fanini
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Maroncelli 40, 47014, Meldola, Italy
| | - Sara Pignatta
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Maroncelli 40, 47014, Meldola, Italy.
| | - Valentina Soldati
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Maroncelli 40, 47014, Meldola, Italy
| | - Monica Stefanelli
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Maroncelli 40, 47014, Meldola, Italy
| | - Anna Maria Granato
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Maroncelli 40, 47014, Meldola, Italy
| | - Giovanni Martinelli
- Scientific Direction, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Laura Ridolfi
- Experimental and Clinical Oncology of Immunotherapy and Rare Cancer Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Massimiliano Petrini
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via Maroncelli 40, 47014, Meldola, Italy
| |
Collapse
|
13
|
Chen Q, Sun X, Li Y, Yang X, Yang X, Xu H, Cai H, Hu J. The potential of organoids in renal cell carcinoma research. BMC Urol 2024; 24:120. [PMID: 38858665 PMCID: PMC11165752 DOI: 10.1186/s12894-024-01511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Renal cell carcinoma, a leading cause of death in urological malignancies, arises from the nephron. Its characteristics include diversity in disease biology, varied clinical behaviors, different prognoses, and diverse responses to systemic therapies. The term 'organoids' is used to describe structures resembling tissues created through the three-dimensional cultivation of stem cells in vitro. These organoids, when derived from tumor tissues, can retain the diversity of the primary tumor, mirror its spatial tissue structure, and replicate similar organ-like functions. In contrast to conventional two-dimensional cell cultures and the transplantation of tumor tissues into other organisms, organoids derived from tumors maintain the complexity and microenvironment of the original tumor tissue. This fidelity makes them a more reliable model for the development of cancer drugs, potentially accelerating the translation of these drugs to clinical use and facilitating personalized treatment options for patients. This review aims to summarize the recent advancements in the use of organoids for studying renal cell carcinoma, focusing on their cultivation, potential applications, and inherent limitations.
Collapse
Affiliation(s)
- Qiuyang Chen
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Sun
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yubei Li
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyue Yang
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejian Yang
- Department of Urology, Suqian First Hospital, Suqian, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital, Nantong, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Jun Hu
- Department of Nursing, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
14
|
Zhao JM, Wang YK, Shi BW, Wang YX, Jiang YF, Yang GL, Gao XD, Qiang T. Microwave biosensor for the detection of growth inhibition of human liver cancer cells at different concentrations of chemotherapeutic drug. Front Bioeng Biotechnol 2024; 12:1398189. [PMID: 38803847 PMCID: PMC11128630 DOI: 10.3389/fbioe.2024.1398189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Cytotoxicity assays are crucial for assessing the efficacy of drugs in killing cancer cells and determining their potential therapeutic value. Measurement of the effect of drug concentration, which is an influence factor on cytotoxicity, is of great importance. This paper proposes a cytotoxicity assay using microwave sensors in an end-point approach based on the detection of the number of live cells for the first time. In contrast to optical methods like fluorescent labeling, this research uses a resonator-type microwave biosensor to evaluate the effects of drug concentrations on cytotoxicity by monitoring electrical parameter changes due to varying cell densities. Initially, the feasibility of treating cells with ultrapure water for cell counting by a microwave biosensor is confirmed. Subsequently, inhibition curves generated by both the CCK-8 method and the new microwave biosensor for various drug concentrations were compared and found to be congruent. This agreement supports the potential of microwave-based methods to quantify cell growth inhibition by drug concentrations.
Collapse
Affiliation(s)
- Jun-Ming Zhao
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, China
| | - Yi-Ke Wang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, China
| | - Bo-Wen Shi
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, China
| | - Yan-Xiong Wang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, China
| | - Yan-Feng Jiang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, China
| | - Gang-Long Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Dong Gao
- School of Biotechnology, the Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Tian Qiang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, China
- School of Biotechnology, the Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Simon CG, Bozenhardt EH, Celluzzi CM, Dobnik D, Grant ML, Lakshmipathy U, Nebel T, Peltier L, Ratcliffe A, Sherley JL, Stacey GN, Taghizadeh RR, Tan EHP, Vessillier S. Mechanism of action, potency and efficacy: considerations for cell therapies. J Transl Med 2024; 22:416. [PMID: 38698408 PMCID: PMC11067168 DOI: 10.1186/s12967-024-05179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
One of the most challenging aspects of developing advanced cell therapy products (CTPs) is defining the mechanism of action (MOA), potency and efficacy of the product. This perspective examines these concepts and presents helpful ways to think about them through the lens of metrology. A logical framework for thinking about MOA, potency and efficacy is presented that is consistent with the existing regulatory guidelines, but also accommodates what has been learned from the 27 US FDA-approved CTPs. Available information regarding MOA, potency and efficacy for the 27 FDA-approved CTPs is reviewed to provide background and perspective. Potency process and efficacy process charts are introduced to clarify and illustrate the relationships between six key concepts: MOA, potency, potency test, efficacy, efficacy endpoint and efficacy endpoint test. Careful consideration of the meaning of these terms makes it easier to discuss the challenges of correlating potency test results with clinical outcomes and to understand how the relationships between the concepts can be misunderstood during development and clinical trials. Examples of how a product can be "potent but not efficacious" or "not potent but efficacious" are presented. Two example applications of the framework compare how MOA is assessed in cell cultures, animal models and human clinical trials and reveals the challenge of establishing MOA in humans. Lastly, important considerations for the development of potency tests for a CTP are discussed. These perspectives can help product developers set appropriate expectations for understanding a product's MOA and potency, avoid unrealistic assumptions and improve communication among team members during the development of CTPs.
Collapse
Affiliation(s)
- Carl G Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.
| | - Erich H Bozenhardt
- United Therapeutics Corporation, Regenerative Medicine Operations, Research Triangle Park, NC, USA
| | - Christina M Celluzzi
- Association for the Advancement of Blood and Biotherapies (AABB), Bethesda, MD, USA
| | - David Dobnik
- Niba Labs, Ljubljana, Slovenia
- National Institute of Biology, Ljubljana, Slovenia
| | - Melanie L Grant
- Department of Pediatrics, Children's Healthcare of Atlanta, Marcus Center for Cellular and Gene Therapies, Correlative Studies Laboratory, Emory University School of Medicine, Atlanta, GA, USA
| | - Uma Lakshmipathy
- Pharma Services, Science and Technology, Thermo Fisher Scientific, San Diego, CA, USA
| | - Thiana Nebel
- Medical Education, Sports Medicine and Orthobiologics, Medical Sales Institute, San Diego, CA, USA
| | - Linda Peltier
- Cellular Therapy Lab, Research Institute of McGill University Health Center, Montreal, QC, Canada
| | | | | | - Glyn N Stacey
- International Stem Cell Banking Initiative, Barley, Herts, UK
- National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cells and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | | | - Eddie H P Tan
- Cell and Gene Therapy Facility, Health Sciences Authority, Singapore, Singapore
| | - Sandrine Vessillier
- Science, Research and Innovation Group, Biotherapeutics and Advanced Therapies Division, Medicines and Healthcare Products Regulatory Agency, South Mimms, Hertfordshire, UK
| |
Collapse
|
16
|
Sun Q, Li Y, Shen W, Shang W, Xu Y, Yang J, Chen J, Gao W, Wu Q, Xu F, Yang Y, Yin D. Breaking-Down Tumoral Physical Barrier by Remotely Unwrapping Metal-Polyphenol-Packaged Hyaluronidase for Optimizing Photothermal/Photodynamic Therapy-Induced Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310673. [PMID: 38284224 DOI: 10.1002/adma.202310673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The therapy of solid tumors is often hindered by the compact and rigid tumoral extracellular matrix (TECM). Precise reduction of TECM by hyaluronidase (HAase) in combination with nanotechnology is promising for solid tumor therapeutics, yet remains an enormous challenge. Inspired by the treatment of iron poisoning, here a remotely unwrapping strategy is proposed of metal-polyphenol-packaged HAase (named PPFH) by sequentially injecting PPFH and a clinically used iron-chelator deferoxamine (DFO). The in situ dynamic disassembly of PPFH can be triggered by the intravenously injected DFO, resulting in the release, reactivation, and deep penetration of encapsulated HAase inside tumors. Such a cost-effective HAase delivery strategy memorably improves the subsequent photothermal and photodynamic therapy (PTT/PDT)-induced intratumoral infiltration of cytotoxic T lymphocyte cells and the cross-talk between tumor and tumor-draining lymph nodes (TDLN), thereby decreasing the immunosuppression and optimizing tumoricidal immune response that can efficiently protect mice from tumor growth, metastasis, and recurrence in multiple mouse cancer models. Overall, this work presents a proof-of-concept of the dynamic disassembly of metal-polyphenol nanoparticles for extracellular drug delivery as well as the modulation of TECM and immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yunlong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230021, China
| | - Wencui Shang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yujing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jinming Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Wenheng Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230031, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230021, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, China
| |
Collapse
|
17
|
Torres Chavez AG, McKenna MK, Balasubramanian K, Riffle L, Patel NL, Kalen JD, St. Croix B, Leen AM, Bajgain P. A dual-luciferase bioluminescence system for the assessment of cellular therapies. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200763. [PMID: 38596291 PMCID: PMC10869576 DOI: 10.1016/j.omton.2024.200763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 04/11/2024]
Abstract
Bioluminescence imaging is a well-established platform for evaluating engineered cell therapies in preclinical studies. However, despite the discovery of new luciferases and substrates, optimal combinations to simultaneously monitor two cell populations remain limited. This makes the functional assessment of cellular therapies cumbersome and expensive, especially in preclinical in vivo models. In this study, we explored the potential of using a green bioluminescence-emitting click beetle luciferase, CBG99, and a red bioluminescence-emitting firefly luciferase mutant, Akaluc, together to simultaneously monitor two cell populations. Using various chimeric antigen receptor T cells and tumor pairings, we demonstrate that these luciferases are suitable for real-time tracking of two cell types using 2D and 3D cultures in vitro and experimental models in vivo. Our data show the broad compatibility of this dual-luciferase (duo-luc) system with multiple bioluminescence detection equipment ranging from benchtop spectrophotometers to live animal imaging systems. Although this study focused on investigating complex CAR T cells and tumor cell interactions, this duo-luc system has potential utility for the simultaneous monitoring of any two cellular components-for example, to unravel the impact of a specific genetic variant on clonal dominance in a mixed population of tumor cells.
Collapse
Affiliation(s)
| | - Mary K. McKenna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Lisa Riffle
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Nimit L. Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Joseph D. Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Brad St. Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ann M. Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pradip Bajgain
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
18
|
Kirouac DC, Zmurchok C, Morris D. Making drugs from T cells: The quantitative pharmacology of engineered T cell therapeutics. NPJ Syst Biol Appl 2024; 10:31. [PMID: 38499572 PMCID: PMC10948391 DOI: 10.1038/s41540-024-00355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Engineered T cells have emerged as highly effective treatments for hematological cancers. Hundreds of clinical programs are underway in efforts to expand the efficacy, safety, and applications of this immuno-therapeutic modality. A primary challenge in developing these "living drugs" is the complexity of their pharmacology, as the drug product proliferates, differentiates, traffics between tissues, and evolves through interactions with patient immune systems. Using publicly available clinical data from Chimeric Antigen Receptor (CAR) T cells, we demonstrate how mathematical models can be used to quantify the relationships between product characteristics, patient physiology, pharmacokinetics and clinical outcomes. As scientists work to develop next-generation cell therapy products, mathematical models will be integral for contextualizing data and facilitating the translation of product designs to clinical strategy.
Collapse
Affiliation(s)
- Daniel C Kirouac
- Notch Therapeutics, Vancouver, BC, Canada.
- The University of British Columbia, School of Biomedical Engineering, Vancouver, BC, Canada.
- Metrum Research Group, Tariffville, CT, USA.
| | | | | |
Collapse
|
19
|
Levstek L, Janžič L, Ihan A, Kopitar AN. Biomarkers for prediction of CAR T therapy outcomes: current and future perspectives. Front Immunol 2024; 15:1378944. [PMID: 38558801 PMCID: PMC10979304 DOI: 10.3389/fimmu.2024.1378944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy holds enormous potential for the treatment of hematologic malignancies. Despite its benefits, it is still used as a second line of therapy, mainly because of its severe side effects and patient unresponsiveness. Numerous researchers worldwide have attempted to identify effective predictive biomarkers for early prediction of treatment outcomes and adverse effects in CAR T cell therapy, albeit so far only with limited success. This review provides a comprehensive overview of the current state of predictive biomarkers. Although existing predictive metrics correlate to some extent with treatment outcomes, they fail to encapsulate the complexity of the immune system dynamics. The aim of this review is to identify six major groups of predictive biomarkers and propose their use in developing improved and efficient prediction models. These groups include changes in mitochondrial dynamics, endothelial activation, central nervous system impairment, immune system markers, extracellular vesicles, and the inhibitory tumor microenvironment. A comprehensive understanding of the multiple factors that influence therapeutic efficacy has the potential to significantly improve the course of CAR T cell therapy and patient care, thereby making this advanced immunotherapy more appealing and the course of therapy more convenient and favorable for patients.
Collapse
Affiliation(s)
| | | | | | - Andreja Nataša Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
20
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
21
|
Colina AS, Shah V, Shah RK, Kozlik T, Dash RK, Terhune S, Zamora AE. Current advances in experimental and computational approaches to enhance CAR T cell manufacturing protocols and improve clinical efficacy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1310002. [PMID: 39086435 PMCID: PMC11285593 DOI: 10.3389/fmmed.2024.1310002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 08/02/2024]
Abstract
Since the FDA's approval of chimeric antigen receptor (CAR) T cells in 2017, significant improvements have been made in the design of chimeric antigen receptor constructs and in the manufacturing of CAR T cell therapies resulting in increased in vivo CAR T cell persistence and improved clinical outcome in certain hematological malignancies. Despite the remarkable clinical response seen in some patients, challenges remain in achieving durable long-term tumor-free survival, reducing therapy associated malignancies and toxicities, and expanding on the types of cancers that can be treated with this therapeutic modality. Careful analysis of the biological factors demarcating efficacious from suboptimal CAR T cell responses will be of paramount importance to address these shortcomings. With the ever-expanding toolbox of experimental approaches, single-cell technologies, and computational resources, there is renowned interest in discovering new ways to streamline the development and validation of new CAR T cell products. Better and more accurate prognostic and predictive models can be developed to help guide and inform clinical decision making by incorporating these approaches into translational and clinical workflows. In this review, we provide a brief overview of recent advancements in CAR T cell manufacturing and describe the strategies used to selectively expand specific phenotypic subsets. Additionally, we review experimental approaches to assess CAR T cell functionality and summarize current in silico methods which have the potential to improve CAR T cell manufacturing and predict clinical outcomes.
Collapse
Affiliation(s)
- Alfredo S. Colina
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Viren Shah
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Ravi K. Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tanya Kozlik
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Scott Terhune
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Anthony E. Zamora
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
22
|
Lazarski CA, Hanley PJ. Review of flow cytometry as a tool for cell and gene therapy. Cytotherapy 2024; 26:103-112. [PMID: 37943204 PMCID: PMC10872958 DOI: 10.1016/j.jcyt.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Quality control testing and analytics are critical for the development and manufacture of cell and gene therapies, and flow cytometry is a key quality control and analytical assay that is used extensively. However, the technical scope of characterization assays and safety assays must keep apace as the breadth of cell therapy products continues to expand beyond hematopoietic stem cell products into producing novel adoptive immune therapies and gene therapy products. Flow cytometry services are uniquely positioned to support the evolving needs of cell therapy facilities, as access to flow cytometers, new antibody clones and improved fluorochrome reagents becomes more egalitarian. This report will outline the features, logistics, limitations and the current state of flow cytometry within the context of cellular therapy.
Collapse
Affiliation(s)
- Christopher A Lazarski
- Program for Cell Enhancement and Technology for Immunotherapy, Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; The George Washington University, Washington, DC, USA.
| | - Patrick J Hanley
- Program for Cell Enhancement and Technology for Immunotherapy, Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; The George Washington University, Washington, DC, USA.
| |
Collapse
|
23
|
Eugene-Norbert M, Cuffel A, Riou G, Jean L, Blondel C, Dehayes J, Bisson A, Giverne C, Brotin E, Denoyelle C, Poulain L, Boyer O, Martinet J, Latouche JB. Development of optimized cytotoxicity assays for assessing the antitumor potential of CAR-T cells. J Immunol Methods 2024; 525:113603. [PMID: 38147898 DOI: 10.1016/j.jim.2023.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
CAR-T cells are T cells expressing a chimeric antigen receptor (CAR) rendering them capable of killing tumor cells after recognition of a target antigen. CD19 CAR-T cells have revolutionized the treatment of hematological malignancies. Their function is typically assessed by cytotoxicity assays using human allogeneic cell lines expressing the target antigen CD19 such as Nalm-6. However, an alloreactive reaction is observed with these cells, leading to a CD19-independent killing. To address this issue, we developed a fluorescence microscopy-based potency assay using murine target cells to provide an optimized cytotoxicity assay with enhanced specificity towards CD19. Murine NIH/3T3 (3T3) fibroblast-derived cell line and EL4 T-cell lymphoma-derived cell line were used as targets (no xenoreactivity was observed after coculture with human T cells). 3T3 and EL4 cells were engineered to express eGFP (enhanced Green Fluorescent Protein) and CD19 or CD22 using retroviral vectors. CD19 CAR-T cells and non-transduced (NT) control T cells were produced from several donors. After 4 h or 24 h, alloreactive cytotoxicity against CD19+ Nalm-6-GFP cells and CD19- Jurkat-GFP cells was observed with NT or CAR-T cells. In the same conditions, CAR-T but not NT cells specifically killed CD19+ but not CD19- 3T3-GFP or EL4-GFP cells. Both microscope- and flow cytometry-based assays revealed as sensitive as impedance-based assay. Using flow cytometry, we could further determine that CAR-T cells had mostly a stem cell-like memory phenotype after contact with EL4 target cells. Therefore, CD19+ 3T3-GFP or EL4-GFP cells and fluorescence microscopy- or flow cytometry-based assays provide convenient, sensitive and specific tools to evaluate CAR-T cell function with no alloreactivity.
Collapse
Affiliation(s)
- Misa Eugene-Norbert
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Alexis Cuffel
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Gaetan Riou
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Laetitia Jean
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Clara Blondel
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Justine Dehayes
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Aurélie Bisson
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Camille Giverne
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Emilie Brotin
- Université de Caen Normandie, Unité de Service PLATON, ImpedanCELL Core Facility, Caen F-14000, France
| | - Christophe Denoyelle
- Université de Caen Normandie, Unité de Service PLATON, ImpedanCELL Core Facility, Caen F-14000, France; Université de Caen Normandie, Inserm, ANTICIPE UMR (1086), Structure Fédérative 4207 Normandie Oncologie, Normandie Univ, Caen F-14000, France; Comprehensive Cancer Center F. Baclesse, Unicancer, Caen F-14000, France
| | - Laurent Poulain
- Université de Caen Normandie, Inserm, ANTICIPE UMR (1086), Structure Fédérative 4207 Normandie Oncologie, Normandie Univ, Caen F-14000, France; Comprehensive Cancer Center F. Baclesse, Unicancer, Caen F-14000, France
| | - Olivier Boyer
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Jérémie Martinet
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France.
| | - Jean-Baptiste Latouche
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| |
Collapse
|
24
|
Caicedo A, Morales E, Moyano A, Peñaherrera S, Peña-Cisneros J, Benavides-Almeida A, Pérez-Meza ÁA, Haro-Vinueza A, Ruiz C, Robayo P, Tenesaca D, Barba D, Zambrano K, Castañeda V, Singh KK. Powering prescription: Mitochondria as "Living Drugs" - Definition, clinical applications, and industry advancements. Pharmacol Res 2024; 199:107018. [PMID: 38013162 DOI: 10.1016/j.phrs.2023.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Mitochondria's role as engines and beacons of metabolism and determinants of cellular health is being redefined through their therapeutic application as "Living Drugs" (LDs). Artificial mitochondrial transfer/transplant (AMT/T), encompassing various techniques to modify, enrich, or restore mitochondria in cells and tissues, is revolutionizing acellular therapies and the future of medicine. This article proposes a necessary definition for LDs within the Advanced Therapeutic Medicinal Products (ATMPs) framework. While recognizing different types of LDs as ATMPs, such as mesenchymal stem cells (MSCs) and chimeric antigen receptor T (CAR T) cells, we focus on mitochondria due to their unique attributes that distinguish them from traditional cell therapies. These attributes include their inherent living nature, diverse sources, industry applicability, validation, customizability for therapeutic needs, and their capability to adapt and respond within recipient cells. We trace the journey from initial breakthroughs in AMT/T to the current state-of-the-art applications by emerging innovative companies, highlighting the need for manufacturing standards to navigate the transition of mitochondrial therapies from concept to clinical practice. By providing a comprehensive overview of the scientific, clinical, and commercial landscape of mitochondria as LDs, this article contributes to the essential dialogue among regulatory agencies, academia, and industry to shape their future in medicine.
Collapse
Affiliation(s)
- Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Emilia Morales
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Aldana Moyano
- Mito-Act Research Consortium, Quito, Ecuador; Instituto de investigaciones biotecnológicas IIB, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Sebastian Peñaherrera
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - José Peña-Cisneros
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Abigail Benavides-Almeida
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Álvaro A Pérez-Meza
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Alissen Haro-Vinueza
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | | | - Doménica Tenesaca
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Keshav K Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
25
|
Garrido G, Garrido-Suárez BB, Mieres-Arancibia M, Valdes-Gonzalez M, Ardiles-Rivera A. Modified pectin with anticancer activity in breast cancer: A systematic review. Int J Biol Macromol 2024; 254:127692. [PMID: 37898255 DOI: 10.1016/j.ijbiomac.2023.127692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide. The current pharmacological treatments for breast cancer have numerous adverse effects and are not always effective. Recently, the anticancer activity of modified pectins (MPs) against various types of cancers, including breast cancer, has been investigated. This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model, including scientific articles from the last 22 years that measured the anticancer activity of MPs on breast cancer. The articles were searched in four databases with the terms: "modified pectin" and "breast cancer". Nine articles were included, five in vitro and four mixed (in vitro and in vivo). Different models and methods by which anticancer activity was measured were analyzed. All the studies reported positive results in both cell lines and in vivo murine models of breast cancer. The extracted data suggest a positive effect and provide mechanistic evidence of MPs in the treatment of breast cancer. However, as limited number of studies were included, further in vivo studies are required to obtain more conclusive preclinical evidence.
Collapse
Affiliation(s)
- Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile.
| | | | - Mario Mieres-Arancibia
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile
| | - Marisela Valdes-Gonzalez
- Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile
| | - Alejandro Ardiles-Rivera
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Antofagasta, Chile
| |
Collapse
|
26
|
Sharma G, Round J, Teng F, Ali Z, May C, Yung E, Holt RA. A Synthetic Cytotoxic T cell Platform for Rapidly Prototyping TCR Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567960. [PMID: 38045272 PMCID: PMC10690155 DOI: 10.1101/2023.11.20.567960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Current tools for functionally profiling T cell receptors with respect to cytotoxic potency and cross-reactivity are hampered by difficulties in establishing model systems to test these proteins in the contexts of different HLA alleles and against broad arrays of potential antigens. We have implemented and validated a granzyme-activatable sensor of T cell cytotoxicity in a novel universal prototyping platform which enables facile recombinant expression of any combination of TCR-, peptide-, and class I MHC-coding sequences and direct assessment of resultant responses. This system consists of an engineered cell platform based on the immortalized natural killer cell line, YT-Indy, and the MHC-null antigen-presenting cell line, K562. These cells were engineered using contemporary gene-editing techniques to furnish the YT-Indy/K562 pair with appropriate protein domains required for recombinant TCR expression and function in a non-T cell chassis, integrate a fluorescence-based target-centric early detection reporter of cytotoxic function, and deploy a set of protective genetic interventions designed to preserve antigen-presenting cells for subsequent capture and downstream characterization. Our data show successful reconstitution of the surface TCR complex in the YT-Indy cell line at biologically relevant levels. We also demonstrate successful induction and highly sensitive detection of antigen-specific response in multiple distinct model TCRs, with significant responses (p < 0.05 and Cohen's d >1.9) in all cases. Additionally, we monitored destruction of targets in co-culture and found that our survival-optimized system allowed for complete preservation after 24-hour exposure to cytotoxic effectors. With this bioplatform, we anticipate investigators will be empowered to rapidly express and characterize T cell receptor responses, generate new knowledge regarding the patterns of T cell receptor recognition, and optimize novel therapeutic T cell receptors for improved cytotoxic potential and reduced cross-reactivity to undesired antigenic targets.
Collapse
Affiliation(s)
- Govinda Sharma
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
| | - James Round
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
| | - Fei Teng
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
| | - Zahra Ali
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
| | - Chris May
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
| | - Eric Yung
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
| | - Robert A. Holt
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
- Department of Medical Genetics; University of British Columbia; C201 – 4500 Oak Street, Vancouver, BC, V6H 3N1; Canada
- Department of Molecular Biology and Biochemistry; Simon Fraser University; SSB8166 – 8888 University Drive, Burnaby, BC, V5A 1S6; Canada
| |
Collapse
|
27
|
Mondal T, Gaur H, Wamba BEN, Michalak AG, Stout C, Watson MR, Aleixo SL, Singh A, Condello S, Faller R, Leiserowitz GS, Bhatnagar S, Tushir-Singh J. Characterizing the regulatory Fas (CD95) epitope critical for agonist antibody targeting and CAR-T bystander function in ovarian cancer. Cell Death Differ 2023; 30:2408-2431. [PMID: 37838774 PMCID: PMC10657439 DOI: 10.1038/s41418-023-01229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
Receptor clustering is the most critical step to activate extrinsic apoptosis by death receptors belonging to the TNF superfamily. Although clinically unsuccessful, using agonist antibodies, the death receptors-5 remains extensively studied from a cancer therapeutics perspective. However, despite its regulatory role and elevated function in ovarian and other solid tumors, another tumor-enriched death receptor called Fas (CD95) remained undervalued in cancer immunotherapy until recently, when its role in off-target tumor killing by CAR-T therapies was imperative. By comprehensively analyzing structure studies in the context of the binding epitope of FasL and various preclinical Fas agonist antibodies, we characterize a highly significant patch of positively charged residue epitope (PPCR) in its cysteine-rich domain 2 of Fas. PPCR engagement is indispensable for superior Fas agonist signaling and CAR-T bystander function in ovarian tumor models. A single-point mutation in FasL or Fas that interferes with the PPCR engagement inhibited apoptotic signaling in tumor cells and T cells. Furthermore, considering that clinical and immunological features of the autoimmune lymphoproliferative syndrome (ALPS) are directly attributed to homozygous mutations in FasL, we reveal differential mechanistic details of FasL/Fas clustering at the PPCR interface compared to described ALPS mutations. As Fas-mediated bystander killing remains vital to the success of CAR-T therapies in tumors, our findings highlight the therapeutic analytical design for potentially effective Fas-targeting strategies using death agonism to improve cancer immunotherapy in ovarian and other solid tumors.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Himanshu Gaur
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Brice E N Wamba
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Abby Grace Michalak
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Undergraduate Research Program Volunteers, University of California Davis, Davis, CA, USA
| | - Camryn Stout
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Undergraduate Research Program Volunteers, University of California Davis, Davis, CA, USA
| | - Matthew R Watson
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Undergraduate Research Program Volunteers, University of California Davis, Davis, CA, USA
| | - Sophia L Aleixo
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Undergraduate Research Program Volunteers, University of California Davis, Davis, CA, USA
| | - Arjun Singh
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roland Faller
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| | - Gary Scott Leiserowitz
- Department of Obstetrics and Gynecology, UC Davis School of Medicine, Sacramento, CA, USA
- UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Sanchita Bhatnagar
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Jogender Tushir-Singh
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA.
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA.
- UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA.
- Ovarian Cancer Academy Early Career Investigator at UC Davis, Davis, CA, USA.
| |
Collapse
|
28
|
Mc Laughlin AM, Milligan PA, Yee C, Bergstrand M. Model-informed drug development of autologous CAR-T cell therapy: Strategies to optimize CAR-T cell exposure leveraging cell kinetic/dynamic modeling. CPT Pharmacometrics Syst Pharmacol 2023; 12:1577-1590. [PMID: 37448343 PMCID: PMC10681459 DOI: 10.1002/psp4.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
Autologous Chimeric antigen receptor (CAR-T) cell therapy has been highly successful in the treatment of aggressive hematological malignancies and is also being evaluated for the treatment of solid tumors as well as other therapeutic areas. A challenge, however, is that up to 60% of patients do not sustain a long-term response. Low CAR-T cell exposure has been suggested as an underlying factor for a poor prognosis. CAR-T cell therapy is a novel therapeutic modality with unique kinetic and dynamic properties. Importantly, "clear" dose-exposure relationships do not seem to exist for any of the currently approved CAR-T cell products. In other words, dose increases have not led to a commensurate increase in the measurable in vivo frequency of transferred CAR-T cells. Therefore, alternative approaches beyond dose titration are needed to optimize CAR-T cell exposure. In this paper, we provide examples of actionable variables - design elements in CAR-T cell discovery, development, and clinical practice, which can be modified to optimize autologous CAR-T cell exposure. Most of these actionable variables can be assessed throughout the various stages of discovery and development as part of a well-informed research and development program. Model-informed drug development approaches can enable such study and program design choices from discovery through to clinical practice and can be an important contributor to cell therapy effectiveness and efficiency.
Collapse
Affiliation(s)
| | | | - Cassian Yee
- Department of Melanoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | |
Collapse
|
29
|
Subham S, Jeppson JD, Gibbs BK, Babai J, Alker R, Godwin AK, Akhavan D. Rapid In Vitro Cytotoxicity Evaluation of Jurkat Expressing Chimeric Antigen Receptor using Fluorescent Imaging. J Vis Exp 2023:10.3791/65560. [PMID: 37955379 PMCID: PMC11008703 DOI: 10.3791/65560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells are at the forefront of oncology. A CAR is constructed of a targeting domain (usually a single chain variable fragment, scFv), with an accompanying intra-chain linker, followed by a hinge, transmembrane, and costimulatory domain. Modification of the intra-chain linker and hinge domain can have a significant effect on CAR-mediated killing. Considering the many different options for each part of a CAR construct, there are large numbers of permutations. Making CAR-T cells is a time-consuming and expensive process, and making and testing many constructs is a heavy time and material investment. This protocol describes a platform to rapidly evaluate hinge-optimized CAR constructs in Jurkat cells (CAR-J). Jurkat cells are an immortalized T cell line with high lentivirus uptake, allowing for efficient CAR transduction. Here, we present a platform to rapidly evaluate CAR-J using a fluorescent imager, followed by confirmation of cytolysis in PBMC-derived T cells.
Collapse
Affiliation(s)
- Siddharth Subham
- Department of Radiation Oncology, University of Kansas Cancer Center; Department of Cancer Biology, University of Kansas Cancer Center; BioEngineering Program, University of Kansas
| | - John D Jeppson
- Department of Radiation Oncology, University of Kansas Cancer Center
| | - Benjamin K Gibbs
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center
| | - Jacqueline Babai
- Department of Cancer Biology, University of Kansas Cancer Center
| | - Riza Alker
- Department of Radiation Oncology, University of Kansas Cancer Center
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center; University of Kansas Cancer Center; Kansas Institute for Precision Medicine, University of Kansas Medical Center
| | - David Akhavan
- Department of Radiation Oncology, University of Kansas Cancer Center; Department of Cancer Biology, University of Kansas Cancer Center; BioEngineering Program, University of Kansas;
| |
Collapse
|
30
|
Shah M, Krull A, Odonnell L, de Lima MJ, Bezerra E. Promises and challenges of a decentralized CAR T-cell manufacturing model. FRONTIERS IN TRANSPLANTATION 2023; 2:1238535. [PMID: 38993860 PMCID: PMC11235344 DOI: 10.3389/frtra.2023.1238535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 07/13/2024]
Abstract
Autologous chimeric antigen receptor-modified T-cell (CAR T) products have demonstrated un-precedent efficacy in treating many relapsed/refractory B-cell and plasma cell malignancies, leading to multiple commercial products now in routine clinical use. These positive responses to CAR T therapy have spurred biotech and big pharma companies to evaluate innovative production methods to increase patient access while maintaining adequate quality control and profitability. Autologous cellular therapies are, by definition, manufactured as single patient batches, and demand has soared for manufacturing facilities compliant with current Good Manufacturing Practice (cGMP) regulations. The use of a centralized production model is straining finite resources even in developed countries in North America and the European Union, and patient access is not feasible for most of the developing world. The idea of having a more uniform availability of these cell therapy products promoted the concept of point-of-care (POC) manufacturing or decentralized in-house production. While this strategy can potentially decrease the cost of manufacturing, the challenge comes in maintaining the same quality as currently available centrally manufactured products due to the lack of standardized manufacturing techniques amongst institutions. However, academic medical institutions and biotech companies alike have forged ahead innovating and adopting new technologies to launch clinical trials of CAR T products produced exclusively in-house. Here we discuss POC production of CAR T products.
Collapse
Affiliation(s)
- Manan Shah
- Department of Hematology, the James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, United States
| | - Ashley Krull
- Department of Cell Therapy Manufacturing and Engineering, the James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, United States
| | - Lynn Odonnell
- Department of Hematology, Cellular Therapy Lab, the James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, United States
| | - Marcos J. de Lima
- Department of Hematology, The James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, United States
| | - Evandro Bezerra
- Department of Hematology, The James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, United States
| |
Collapse
|
31
|
Bednar C, Kübel S, Cordsmeier A, Scholz B, Menschikowski H, Ensser A. A Genetically Encoded Dark-to-Bright Biosensor for Visualisation of Granzyme-Mediated Cytotoxicity. Int J Mol Sci 2023; 24:13589. [PMID: 37686395 PMCID: PMC10487497 DOI: 10.3390/ijms241713589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Granzyme B (GZMB) is a key enzyme released by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells to induce apoptosis in target cells. We designed a novel fluorogenic biosensor which is able to assess GZMB activity in a specific and sensitive manner. This cleavage-responsive sensor for T cell activity level (CRSTAL) is based on a fluorescent protein that is only activated upon cleavage by GZMB or caspase-8. CRSTAL was tested in stable cell lines and demonstrated a strong and long-lasting fluorescence signal upon induction with GZMB. It can detect GZMB activity not only by overexpression of GZMB in target cells but also following transfer of GZMB and perforin from effector cells during cytotoxicity. This feature has significant implications for cancer immunotherapy, particularly in monitoring the efficacy of chimeric antigen receptor (CAR)-T cells. CAR-T cells are a promising therapy option for various cancer types, but monitoring their activity in vivo is challenging. The development of biosensors like CRSTAL provides a valuable tool for monitoring of CAR-T cell activity. In summary, CRSTAL is a highly sensitive biosensor that can detect GZMB activity in target cells, providing a means for evaluating the cytotoxic activity of immune cells and monitoring T cell activity in real time.
Collapse
Affiliation(s)
| | | | | | | | | | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.B.); (S.K.); (A.C.); (B.S.); (H.M.)
| |
Collapse
|
32
|
Wang R, Zhu T, Hou B, Huang X. An iPSC-derived exosome-pulsed dendritic cell vaccine boosts antitumor immunity in melanoma. Mol Ther 2023; 31:2376-2390. [PMID: 37312452 PMCID: PMC10422017 DOI: 10.1016/j.ymthe.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) express a broad spectrum of tumor-associated antigens and exert prophylactic effects on various tumors. However, some problems remain, such as potential tumorigenicity, challenges in transport to the lymph nodes and spleen, and limited antitumor effects. Thus, designing a safe and effective iPSC-based tumor vaccine is necessary. We prepared iPSC-derived exosomes and incubated them with DCs (dendritic cells) for pulsing to explore their antitumor effects in murine melanoma models. The antitumor immune response induced by the DC vaccine pulsed with iPSC exosomes (DC + EXO) was assessed in vitro and in vivo. After DC + EXO vaccination, extracted spleen T cells effectively killed a variety of tumor cells (melanoma, lung cancer, breast cancer, and colorectal cancer) in vitro. In addition, DC + EXO vaccination significantly inhibited melanoma growth and lung metastasis in mouse models. Furthermore, DC + EXO vaccination induced long-term T cell responses and prevented melanoma rechallenge. Finally, biocompatibility studies showed that the DC vaccine did not significantly alter the viability of normal cells and mouse viscera. Hence, our research may provide a prospective strategy of a safe and effective iPSC-based tumor vaccine for clinical use.
Collapse
Affiliation(s)
- Ronghao Wang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Tianchuan Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Bingzong Hou
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, Guangdong, China.
| |
Collapse
|
33
|
Zeng K, Huang M, Lyu MA, Khoury JD, Ahmed S, Patel KK, Dropulić B, Reese-Koc J, Caimi PF, Sadeghi T, Lima MD, Flowers CR, Parmar S. Adjunct Therapy with T Regulatory Cells Decreases Inflammation and Preserves the Anti-Tumor Activity of CAR T Cells. Cells 2023; 12:1880. [PMID: 37508543 PMCID: PMC10377823 DOI: 10.3390/cells12141880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
With greater accessibility and an increased number of patients being treated with CAR T cell therapy, real-world toxicity continues to remain a significant challenge to its widespread adoption. We have previously shown that allogeneic umbilical cord blood-derived (UCB) regulatory T cells (Tregs) can resolve inflammation and treat acute and immune-mediated lung injuries. Allogeneic, cryopreserved UCB Tregs have shown a clinical benefit in patients suffering from COVID-19 acute respiratory distress syndrome. The unique properties of UCB Treg cells include a lack of plasticity under inflammatory micro-environments, no requirement for HLA matching, a long shelf life of cryopreserved cells, and immediate product availability, which makes them attractive for treating acute inflammatory syndromes. Therefore, we hypothesized that adjunct therapy with UCB Tregs may resolve the undesirable inflammation responsible for CAR T cell therapy-associated toxicity. In in vitro analysis, no interference from the addition of UCB Tregs was observed on CD19 CAR T cells' ability to kill CD19 Raji cells at different CAR T: Raji cell ratios of 8:1 (80.4% vs. 81.5%); 4:1 (62.0% vs. 66.2%); 2:1 (50.1% vs. 54.7%); and 1:1 (35.4% vs. 44.1%). In the xenogeneic B-cell lymphoma model, multiple injections of UCB Tregs were administered 3 days after CD19 CAR T cell injection, and no detrimental effect of add-on Tregs was noted on the circulating CD8+ T effector cells. The distribution of CAR T cells in multiple organs remained unaffected by the addition of the UCB Tregs. Specifically, no difference in the overall tumor burden was detected between the UCB Treg + CAR T vs. CAR T alone recipients. No tumor was detected in the liver or bone marrow in CAR T cells + UCB Tregs recipients, with a notable corresponding decrease in multiple circulating inflammatory cytokines when compared to CART alone recipients. Here we show the proof of concept for adjunct therapy with UCB Tregs to mitigate the hyper-inflammatory state induced by CAR T cells without any interference in their on-target anti-tumor activity. Administration of UCB Tregs after CAR T cells allows sufficient time for their synapse formation with tumor cells and exerts cytotoxicity, such that the UCB Tregs are diverted to interact with the antigen-presenting cells at the site of inflammation. Such a differential distribution of cells would allow for a two-pronged strategy of a UCB Treg "cooling blanket" effect and lay the groundwork for clinical study.
Collapse
Affiliation(s)
- Ke Zeng
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meixian Huang
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mi-Ae Lyu
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph D Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sairah Ahmed
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Krina K Patel
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Jane Reese-Koc
- Department of Cellular Therapy, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paolo F Caimi
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Marcos de Lima
- Division of Hematology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Christopher R Flowers
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simrit Parmar
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
34
|
Lowdell MW, Weil B. Bringing function to the forefront of cell therapy: how do we demonstrate potency? Front Immunol 2023; 14:1226841. [PMID: 37497223 PMCID: PMC10366357 DOI: 10.3389/fimmu.2023.1226841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Unlike conventional pharmaceuticals, biologics and Advanced Therapy Medicinal Products (ATMPs) are required to meet a standard of "potency" as part of the final release criteria at completion of manufacture. During early phase clinical trials, most regulatory agencies have been willing to accept very immature potency assays with an expectation that these will be improved, qualified and validated during the clinical development of the drug to Marketing Authorisation Application (MAA) or Biologics License Application (BLA) submission.This model of continuous development of potency assay in parallel with drug development has already led to at least two notable problem cases; namely Iovance and Mesoblast. Both companies completed successful phase III clinical trials but, in both cases, the initial BLA was rejected on the basis that their potency assay for drug product release was inadequate. Fortunately these issues appear to have been overcome in March of this year, with Mesoblast receiving acceptance of their BLA for Remestemcel and Iovance obtaining a rolling BLA approval for Lifileucel.
Collapse
Affiliation(s)
- Mark W. Lowdell
- INmuneBio Inc, Boca Ratan, FL, United States
- Cancer Institute, University College London, London, United Kingdom
| | - Ben Weil
- INmuneBio Inc, Boca Ratan, FL, United States
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
35
|
Leland P, Kumar D, Nimmagadda S, Bauer SR, Puri RK, Joshi BH. Characterization of chimeric antigen receptor modified T cells expressing scFv-IL-13Rα2 after radiolabeling with 89Zirconium oxine for PET imaging. J Transl Med 2023; 21:367. [PMID: 37286997 PMCID: PMC10246418 DOI: 10.1186/s12967-023-04142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/19/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy is an exciting cell-based cancer immunotherapy. Unfortunately, CAR-T cell therapy is associated with serious toxicities such as cytokine release syndrome (CRS) and neurotoxicity. The mechanism of these serious adverse events (SAEs) and how homing, distribution and retention of CAR-T cells contribute to toxicities is not fully understood. Enabling in vitro methods to allow meaningful, sensitive in vivo biodistribution studies is needed to better understand CAR-T cell disposition and its relationship to both effectiveness and safety of these products. METHODS To determine if radiolabelling of CAR-T cells could support positron emission tomography (PET)-based biodistribution studies, we labeled IL-13Rα2 targeting scFv-IL-13Rα2-CAR-T cells (CAR-T cells) with 89Zirconium-oxine (89Zr-oxine) and characterized and compared their product attributes with non-labeled CAR-T cells. The 89Zr-oxine labeling conditions were optimized for incubation time, temperature, and use of serum for labeling. In addition, T cell subtype characterization and product attributes of radiolabeled CAR-T cells were studied to assess their overall quality including cell viability, proliferation, phenotype markers of T-cell activation and exhaustion, cytolytic activity and release of interferon-γ upon co-culture with IL-13Rα2 expressing glioma cells. RESULTS We observed that radiolabeling of CAR-T cells with 89Zr-oxine is quick, efficient, and radioactivity is retained in the cells for at least 8 days with minimal loss. Also, viability of radiolabeled CAR-T cells and subtypes such as CD4 + , CD8 + and scFV-IL-13Rα2 transgene positive T cell population were characterized and found similar to that of unlabeled cells as determined by TUNEL assay, caspase 3/7 enzyme and granzyme B activity assay. Moreover, there were no significant changes in T cell activation (CD24, CD44, CD69 and IFN-γ) or T cell exhaustion (PD-1, LAG-3 and TIM3) markers expression between radiolabeled and unlabeled CAR-T cells. In chemotaxis assays, migratory capability of radiolabeled CAR-T cells to IL-13Rα2Fc was similar to that of non-labeled cells. CONCLUSIONS Importantly, radiolabeling has minimal impact on biological product attributes including potency of CAR-T cells towards IL-13Rα2 positive tumor cells but not IL-13Rα2 negative cells as measured by cytolytic activity and release of IFN-γ. Thus, IL-13Rα2 targeting CAR-T cells radiolabeled with 89Zr-oxine retain critical product attributes and suggest 89Zr-oxine radiolabeling of CAR-T cells may facilitate biodistribution and tissue trafficking studies in vivo using PET.
Collapse
Affiliation(s)
- Pamela Leland
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advance Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Dhiraj Kumar
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sridhar Nimmagadda
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven R Bauer
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advance Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
- Wake Forest Institute of Regenerative Medicine, Winston Salem, North Caroline, USA
| | - Raj K Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advance Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
- Iovance Biotherapeutics, San Carlos, CA, USA
| | - Bharat H Joshi
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advance Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| |
Collapse
|
36
|
Zhang Y, Pei P, Zhou H, Xie Y, Yang S, Shen W, Hu L, Zhang Y, Liu T, Yang K. Nattokinase-Mediated Regulation of Tumor Physical Microenvironment to Enhance Chemotherapy, Radiotherapy, and CAR-T Therapy of Solid Tumor. ACS NANO 2023; 17:7475-7486. [PMID: 37057972 DOI: 10.1021/acsnano.2c12463] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The therapy of solid tumors is always hampered by the intrinsic tumor physical microenvironment (TPME) featured with compact and rigid extracellular matrix (ECM) microstructures. Herein, we introduce nattokinase (NKase), a thrombolytic healthcare drug, to comprehensively regulate the TPME for versatile enhancement of various therapy modalities. Intratumoral injection of NKase not only degrades the major ECM component fibronectin but also inhibits cancer-associated fibroblasts (CAFs) in generating fibrosis, resulting in decreased tumor stiffness, enhanced perfusion, and hypoxia alleviation. The NKase-mediated regulation of the TPME significantly promotes the tumoral accumulation of therapeutic agents, leading to efficient chemotherapy without inducing side effects. Additionally, the enhancement of tumor radiotherapy based on radiosensitizers was also achieved by the pretreatment of intratumorally injected NKase, which could be ascribed to the elevated oxygen saturation level in NKase-treated tumors. Moreover, a xenografted human breast MDB-MA-231 tumor model is established to evaluate the influence of NKase on chimeric antigen receptor (CAR)-T cell therapy, illustrating that the pretreatment of NKase could boost the infiltration of CAR-T cells into tumors and thus be a benefit for tumor inhibition. These findings demonstrate the great promise of the NKase-regulated TPME as a translational strategy for universal enhancement of therapeutic efficacy in solid tumors by various treatments.
Collapse
Affiliation(s)
- Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hailin Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuyuan Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenhao Shen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujuan Zhang
- Experimental Center of Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
37
|
Montefusco-Pereira CV. Steps toward nebulization in-use studies to understand the stability of new biological entities. Drug Discov Today 2023; 28:103461. [PMID: 36455828 PMCID: PMC9770090 DOI: 10.1016/j.drudis.2022.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The need for novel biological drugs against respiratory diseases has been highlighted during the Coronavirus (COVID-19) pandemic. The use of inhalation presents challenges to drug product stability, which is especially true for delivery using nebulizers (jet versus mesh technologies). The late-stage process of drug development in the pharmaceutical industry requires the investigation of in-use stability. In-use studies generate data that are guided by the requirements of regulatory authorities for inclusion in the clinical trial application dossier. In this review, I introduce the initial aspects of in-use stability studies during the development of an aerosol formulation to deliver biologics with a nebulizer. Lessons learned from this experience can guide future development and planning for formulation, analytics, material compatibility, nebulization process, and clinical trial preparations.
Collapse
|
38
|
Dias J, Cadiñanos-Garai A, Roddie C. Release Assays and Potency Assays for CAR T-Cell Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:117-137. [PMID: 37258787 DOI: 10.1007/978-3-031-30040-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chimeric antigen receptor (CAR) T-cells are considered "living drugs" and offer a compelling alternative to conventional anticancer therapies. Briefly, T-cells are redirected, using gene engineering technology, toward a specific cancer cell surface target antigen via a synthetic chimeric antigen receptor (CAR) protein. CARs have a modular design comprising four main structures: an antigen-binding domain, a hinge region, a transmembrane domain, and one or more intracellular signaling domains for T-cell activation. A major challenge in the CAR T-cell manufacturing field is balancing product quality with scalability and cost-effectiveness, especially when transitioning from an academic clinical trial into a marketed product, to be implemented across many collection, manufacturing, and treatment sites. Achieving product consistency while circumnavigating the intrinsic variability associated with autologous products is an additional barrier. To overcome these limitations, a robust understanding of the product and its biological actions is crucial to establish a target product profile with a defined list of critical quality attributes to be assessed for each batch prior to product certification. Additional challenges arise as the field progresses, such as new safety considerations associated with the use of allogenic T-cells and genome editing tools. In this chapter, we will discuss the release and potency assays required for CAR T-cell manufacturing, covering their relevance, current challenges, and future perspectives.
Collapse
Affiliation(s)
- Juliana Dias
- UCL Cancer Institute, University College London, London, UK.
- Royal Free Hospital London, NHS Foundation Trust, London, UK.
| | - Amaia Cadiñanos-Garai
- USC/CHLA Cell Therapy Program, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, USA
| | - Claire Roddie
- UCL Cancer Institute, University College London, London, UK
- Department of Haematology, UCL Hospital, London, UK
| |
Collapse
|
39
|
Torggler R, Margreiter E, Marksteiner R, Thurner M. Potency Assay Development: A Keystone for Clinical Use. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:13-28. [PMID: 37258781 DOI: 10.1007/978-3-031-30040-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Potency can be described as the quantitative measure of biological activity, that is, the ability of an Advanced Therapy Medicinal Product (ATMP) to elicit the intended effect necessary for clinical efficacy. Potency testing is part of the quality control strategy necessary for batch release and is required for market approval application of an ATMP. Thus, it is crucial to develop a reliable and accurate potency assay. As a prerequisite for potency assay development, it is essential to define the mode of action of the product and thereby also the relevant biological activity that should be measured. The establishment of a potency assay should be initiated already during early product development followed by its progressive implementation into an ATMP's manufacturing, quality control and release process. Potency testing is indispensable for clinical use with a wide range of applications. A potency assay is a valuable tool to determine the product's stability, detect the impact of changes in the manufacturing process on the product, demonstrate quality and manufacturing consistency from batch to batch, estimate clinical efficacy and define the effective dose. This chapter describes the requirements and challenges to be considered for potency assay development and the importance of a well-established potency assay for clinical use.
Collapse
Affiliation(s)
| | | | | | - Marco Thurner
- Innovacell AG, Innsbruck, Austria
- Finnegan, Henderson, Farabow, Garrett & Dunner LLP, Munich, Germany
| |
Collapse
|
40
|
Qin YT, Li YP, He XW, Wang X, Li WY, Zhang YK. Biomaterials promote in vivo generation and immunotherapy of CAR-T cells. Front Immunol 2023; 14:1165576. [PMID: 37153571 PMCID: PMC10157406 DOI: 10.3389/fimmu.2023.1165576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy based on functional immune cell transfer is showing a booming situation. However, complex manufacturing processes, high costs, and disappointing results in the treatment of solid tumors have limited its use. Encouragingly, it has facilitated the development of new strategies that fuse immunology, cell biology, and biomaterials to overcome these obstacles. In recent years, CAR-T engineering assisted by properly designed biomaterials has improved therapeutic efficacy and reduced side effects, providing a sustainable strategy for improving cancer immunotherapy. At the same time, the low cost and diversity of biomaterials also offer the possibility of industrial production and commercialization. Here, we summarize the role of biomaterials as gene delivery vehicles in the generation of CAR-T cells and highlight the advantages of in-situ construction in vivo. Then, we focused on how biomaterials can be combined with CAR-T cells to better enable synergistic immunotherapy in the treatment of solid tumors. Finally, we describe biomaterials' potential challenges and prospects in CAR-T therapy. This review aims to provide a detailed overview of biomaterial-based CAR-T tumor immunotherapy to help investigators reference and customize biomaterials for CAR-T therapy to improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ya-Ting Qin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Ya-Ping Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xi-Wen He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
| | - Xi Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- *Correspondence: Xi Wang, ; Wen-You Li,
| | - Wen-You Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
- *Correspondence: Xi Wang, ; Wen-You Li,
| | - Yu-Kui Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
41
|
Wang L, Xu H, Weng L, Sun J, Jin Y, Xiao C. Activation of cancer immunotherapy by nanomedicine. Front Pharmacol 2022; 13:1041073. [PMID: 36618938 PMCID: PMC9814015 DOI: 10.3389/fphar.2022.1041073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most difficult diseases to be treated in the world. Immunotherapy has made great strides in cancer treatment in recent years, and several tumor immunotherapy drugs have been approved by the U.S. Food and Drug Administration. Currently, immunotherapy faces many challenges, such as lacking specificity, cytotoxicity, drug resistance, etc. Nanoparticles have the characteristics of small particle size and stable surface function, playing a miraculous effect in anti-tumor treatment. Nanocarriers such as polymeric micelles, liposomes, nanoemulsions, dendrimers, and inorganic nanoparticles have been widely used to overcome deficits in cancer treatments including toxicity, insufficient specificity, and low bioavailability. Although nanomedicine research is extensive, only a few nanomedicines are approved to be used. Either Bottlenecks or solutions of nanomedicine in immunotherapy need to be further explored to cope with challenges. In this review, a brief overview of several types of cancer immunotherapy approaches and their advantages and disadvantages will be provided. Then, the types of nanomedicines, drug delivery strategies, and the progress of applications are introduced. Finally, the application and prospect of nanomedicines in immunotherapy and Chimeric antigen receptor T-cell therapy (CAR-T) are highlighted and summarized to address the problems of immunotherapy the overall goal of this article is to provide insights into the potential use of nanomedicines and to improve the efficacy and safety of immunotherapy.
Collapse
Affiliation(s)
- Lijuan Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Henan Xu
- The First Hospital of Jilin University, Changchun, China
| | - Lili Weng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jin Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Chunping Xiao,
| | - Chunping Xiao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Chunping Xiao,
| |
Collapse
|
42
|
Da Rocha MN, Guiot M, Nicod C, Trad R, Bouquet L, Haderbache R, Warda W, Baurand PE, Jouanneau C, Dulieu P, Deschamps M, Ferrand C. Coated recombinant target protein helps explore IL-1RAP CAR T-cell functionality in vitro. Immunol Res 2022; 71:276-282. [PMID: 36456721 PMCID: PMC10060290 DOI: 10.1007/s12026-022-09348-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
|
43
|
Li F, Zhao S, Wei C, Hu Y, Xu T, Xin X, Zhu T, Shang L, Ke S, Zhou J, Xu X, Gao Y, Zhao A, Gao J. Development of Nectin4/FAP-targeted CAR-T cells secreting IL-7, CCL19, and IL-12 for malignant solid tumors. Front Immunol 2022; 13:958082. [PMID: 36479116 PMCID: PMC9720259 DOI: 10.3389/fimmu.2022.958082] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Chimeric antigen receptor T (CAR-T) cell therapy has made significant advances for hematological malignancies but encounters obstacles in the treatment of solid tumors mainly due to tumor immunosuppressive microenvironment. Methods Immunohistochemistry analysis was performed to examine the cellular expression of nectin cell adhesion molecule-4 (Nectin4) and fibroblast activation protein (FAP) in a variety of malignant solid tumors. Then, we engineered the fourth-generation Nectin4-targeted CAR-T (Nectin4-7.19 CAR-T) and FAP-targeted CAR-T (FAP-12 CAR-T) cells to evaluate their safety and efficacy in vitro and in vivo. Results In our study, we firstly demonstrated the aberrant overexpression of Nectin4 on both primary and metastatic solid tumors and FAP on cancer-associated fibroblasts. Then, we found that our fourth-generation Nectin4-7.19 CAR-T cells expressed IL-7 and CCL19 efficiently and exhibited superior proliferation, migration, and cytotoxicity compared to the second-generation Nectin4 CAR-T cells, while FAP-12 CAR-T cells exerted their ability of targeting both murine and human FAP effectively in vitro. In a fully immune-competent mouse model of metastatic colorectal cancer, lymphodepletion pretreated mice achieved complete remission with human Nectin4-targeted murine CAR-T (Nectin4 mCAR-T) cells. In the NSG mouse model of lung metastases, Nectin4-7.19 CAR-T cells eradicated metastatic tumors and prolonged survival in combination with FAP-12 CAR-T cells. Conclusions These findings showed that Nectin4-7.19 CAR-T cells had potential therapeutic efficacy and exerted a synergistic role with FAP-12 CAR-T cells, further demonstrating that Nectin4 and FAP were able to serve as promising targets for safe and effective CAR-T therapy of malignant solid tumors.
Collapse
Affiliation(s)
- Fanfan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China,Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuping Zhao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Cheng Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yaodi Hu
- Medical Laboratory, Fenghua District People’s Hospital, Ningbo, China
| | - Tianlong Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xueyi Xin
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Tingwei Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Liting Shang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Shanwen Ke
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jiang Zhou
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China,*Correspondence: Jimin Gao, ; Ai Zhao, ; Yue Gao, ; Xiaojun Xu,
| | - Yue Gao
- Department of Geriatric, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Jimin Gao, ; Ai Zhao, ; Yue Gao, ; Xiaojun Xu,
| | - Ai Zhao
- Department of Geriatric, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Jimin Gao, ; Ai Zhao, ; Yue Gao, ; Xiaojun Xu,
| | - Jimin Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China,Zhejiang Qixin Biotech, Wenzhou, China,*Correspondence: Jimin Gao, ; Ai Zhao, ; Yue Gao, ; Xiaojun Xu,
| |
Collapse
|
44
|
Cassioli C, Patrussi L, Valitutti S, Baldari CT. Learning from TCR Signaling and Immunological Synapse Assembly to Build New Chimeric Antigen Receptors (CARs). Int J Mol Sci 2022; 23:14255. [PMID: 36430728 PMCID: PMC9694822 DOI: 10.3390/ijms232214255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy is a revolutionary pillar in cancer treatment. Clinical experience has shown remarkable successes in the treatment of certain hematological malignancies but only limited efficacy against B cell chronic lymphocytic leukemia (CLL) and other cancer types, especially solid tumors. A wide range of engineering strategies have been employed to overcome the limitations of CAR T cell therapy. However, it has become increasingly clear that CARs have unique, unexpected features; hence, a deep understanding of how CARs signal and trigger the formation of a non-conventional immunological synapse (IS), the signaling platform required for T cell activation and execution of effector functions, would lead a shift from empirical testing to the rational design of new CAR constructs. Here, we review current knowledge of CARs, focusing on their structure, signaling and role in CAR T cell IS assembly. We, moreover, discuss the molecular features accounting for poor responses in CLL patients treated with anti-CD19 CAR T cells and propose CLL as a paradigm for diseases connected to IS dysfunctions that could significantly benefit from the development of novel CARs to generate a productive anti-tumor response.
Collapse
Affiliation(s)
- Chiara Cassioli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Laura Patrussi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Salvatore Valitutti
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31037 Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France
| | - Cosima T. Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
45
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
46
|
Chemoimmunotherapy Administration Protocol Design for the Treatment of Leukemia through Mathematical Modeling and In Silico Experimentation. Pharmaceutics 2022; 14:pharmaceutics14071396. [PMID: 35890295 PMCID: PMC9316854 DOI: 10.3390/pharmaceutics14071396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer with all its more than 200 variants continues to be a major health problem around the world with nearly 10 million deaths recorded in 2020, and leukemia accounted for more than 300,000 cases according to the Global Cancer Observatory. Although new treatment strategies are currently being developed in several ongoing clinical trials, the high complexity of cancer evolution and its survival mechanisms remain as an open problem that needs to be addressed to further enhanced the application of therapies. In this work, we aim to explore cancer growth, particularly chronic lymphocytic leukemia, under the combined application of CAR-T cells and chlorambucil as a nonlinear dynamical system in the form of first-order Ordinary Differential Equations. Therefore, by means of nonlinear theories, sufficient conditions are established for the eradication of leukemia cells, as well as necessary conditions for the long-term persistence of both CAR-T and cancer cells. Persistence conditions are important in treatment protocol design as these provide a threshold below which the dose will not be enough to produce a cytotoxic effect in the tumour population. In silico experimentations allowed us to design therapy administration protocols to ensure the complete eradication of leukemia cells in the system under study when considering only the infusion of CAR-T cells and for the combined application of chemoimmunotherapy. All results are illustrated through numerical simulations. Further, equations to estimate cytotoxicity of chlorambucil and CAR-T cells to leukemia cancer cells were formulated and thoroughly discussed with a 95% confidence interval for the parameters involved in each formula.
Collapse
|
47
|
Preclinical In Vitro and In Vivo Models for Adoptive Cell Therapy of Cancer. Cancer J 2022; 28:257-262. [PMID: 35880934 DOI: 10.1097/ppo.0000000000000609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
ABSTRACT Adoptive cellular therapies are making major strides in the treatment of cancer, both for hematologic and solid tumors. These cellular products include chimeric antigen receptor T cells and T-cell receptor-modified T cells, tumor-infiltrating lymphocytes, marrow-infiltrating T cells, natural killer cells as well as macrophage-based therapeutics. Advancement in genomics, computational biology, immunology, and cell therapy manufacturing has facilitated advancement of adoptive T cell therapies into the clinic, whereas clinical efficacy has driven Food and Drug Administration approvals. The growth of adoptive cellular therapy has, in turn, led to innovation in the preclinical models available, from ex vivo cell-based models to in vivo xenograft models of treatment. This review focuses on the development and application of in vitro models and in vivo models (cell line xenograft, humanized mice, and patient-derived xenograft models) that directly evaluate these human cellular products.
Collapse
|
48
|
Luo Z, Yao X, Li M, Fang D, Fei Y, Cheng Z, Xu Y, Zhu B. Modulating tumor physical microenvironment for fueling CAR-T cell therapy. Adv Drug Deliv Rev 2022; 185:114301. [PMID: 35439570 DOI: 10.1016/j.addr.2022.114301] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved unprecedented clinical success against hematologic malignancies. However, the transition of CAR-T cell therapies for solid tumors is limited by heterogenous antigen expression, immunosuppressive microenvironment (TME), immune adaptation of tumor cells and impeded CAR-T-cell infiltration/transportation. Recent studies increasingly reveal that tumor physical microenvironment could affect various aspects of tumor biology and impose profound impacts on the antitumor efficacy of CAR-T therapy. In this review, we discuss the critical roles of four physical cues in solid tumors for regulating the immune responses of CAR-T cells, which include solid stress, interstitial fluid pressure, stiffness and microarchitecture. We highlight new strategies exploiting these features to enhance the therapeutic potency of CAR-T cells in solid tumors by correlating with the state-of-the-art technologies in this field. A perspective on the future directions for developing new CAR-T therapies for solid tumor treatment is also provided.
Collapse
|
49
|
Guedan S, Luu M, Ammar D, Barbao P, Bonini C, Bousso P, Buchholz CJ, Casucci M, De Angelis B, Donnadieu E, Espie D, Greco B, Groen R, Huppa JB, Kantari-Mimoun C, Laugel B, Mantock M, Markman JL, Morris E, Quintarelli C, Rade M, Reiche K, Rodriguez-Garcia A, Rodriguez-Madoz JR, Ruggiero E, Themeli M, Hudecek M, Marchiq I. Time 2EVOLVE: predicting efficacy of engineered T-cells - how far is the bench from the bedside? J Immunother Cancer 2022; 10:jitc-2021-003487. [PMID: 35577501 PMCID: PMC9115015 DOI: 10.1136/jitc-2021-003487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy with gene engineered CAR and TCR transgenic T-cells is a transformative treatment in cancer medicine. There is a rich pipeline with target antigens and sophisticated technologies that will enable establishing this novel treatment not only in rare hematological malignancies, but also in common solid tumors. The T2EVOLVE consortium is a public private partnership directed at accelerating the preclinical development of and increasing access to engineered T-cell immunotherapies for cancer patients. A key ambition in T2EVOLVE is to assess the currently available preclinical models for evaluating safety and efficacy of engineered T cell therapy and developing new models and test parameters with higher predictive value for clinical safety and efficacy in order to improve and accelerate the selection of lead T-cell products for clinical translation. Here, we review existing and emerging preclinical models that permit assessing CAR and TCR signaling and antigen binding, the access and function of engineered T-cells to primary and metastatic tumor ligands, as well as the impact of endogenous factors such as the host immune system and microbiome. Collectively, this review article presents a perspective on an accelerated translational development path that is based on innovative standardized preclinical test systems for CAR and TCR transgenic T-cell products.
Collapse
Affiliation(s)
- Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Maik Luu
- 19 Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Wurzburg, Germany
| | | | - Paula Barbao
- Department of Hematology and Oncology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Philippe Bousso
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Paris, France
| | | | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Biagio De Angelis
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Emmanuel Donnadieu
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France
| | - David Espie
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France.,CAR-T Cells Department, Invectys, Paris, France
| | - Beatrice Greco
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Richard Groen
- Amsterdam University Medical Centers at Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunolgy, Vienna, Austria
| | | | - Bruno Laugel
- Institut de Recherches internationales Servier (IRIS), Suresnes, France
| | | | - Janet L Markman
- Takeda Development Centers Americas, Inc. Lexington, Massachusetts, USA
| | - Emma Morris
- Institute of Immunity & Transplantation, University College London Medical School - Royal Free Campus, London, UK
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Michael Rade
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | | | | | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Themeli
- Amsterdam University Medical Centers at Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Michael Hudecek
- 19 Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Wurzburg, Germany
| | - Ibtissam Marchiq
- Institut de Recherches internationales Servier (IRIS), Suresnes, France
| |
Collapse
|
50
|
Donnadieu E, Luu M, Alb M, Anliker B, Arcangeli S, Bonini C, De Angelis B, Choudhary R, Espie D, Galy A, Holland C, Ivics Z, Kantari-Mimoun C, Kersten MJ, Köhl U, Kuhn C, Laugel B, Locatelli F, Marchiq I, Markman J, Moresco MA, Morris E, Negre H, Quintarelli C, Rade M, Reiche K, Renner M, Ruggiero E, Sanges C, Stauss H, Themeli M, Van den Brulle J, Hudecek M, Casucci M. Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. J Immunother Cancer 2022; 10:jitc-2021-003486. [PMID: 35577500 PMCID: PMC9115021 DOI: 10.1136/jitc-2021-003486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Despite promising clinical results in a small subset of malignancies, therapies based on engineered chimeric antigen receptor and T-cell receptor T cells are associated with serious adverse events, including cytokine release syndrome and neurotoxicity. These toxicities are sometimes so severe that they significantly hinder the implementation of this therapeutic strategy. For a long time, existing preclinical models failed to predict severe toxicities seen in human clinical trials after engineered T-cell infusion. However, in recent years, there has been a concerted effort to develop models, including humanized mouse models, which can better recapitulate toxicities observed in patients. The Accelerating Development and Improving Access to CAR and TCR-engineered T cell therapy (T2EVOLVE) consortium is a public–private partnership directed at accelerating the preclinical development and increasing access to engineered T-cell therapy for patients with cancer. A key ambition in T2EVOLVE is to design new models and tools with higher predictive value for clinical safety and efficacy, in order to improve and accelerate the selection of lead T-cell products for clinical translation. Herein, we review existing preclinical models that are used to test the safety of engineered T cells. We will also highlight limitations of these models and propose potential measures to improve them.
Collapse
Affiliation(s)
| | - Maik Luu
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Miriam Alb
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Brigitte Anliker
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Silvia Arcangeli
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy.,Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Biagio De Angelis
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - Rashmi Choudhary
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - David Espie
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France.,CAR-T Cells Department, Invectys, Paris, France
| | - Anne Galy
- Accelerator of Technological Research in Genomic Therapy, INSERM US35, Corbeil-Essonnes, France
| | - Cam Holland
- Janssen Research and Development LLC, Spring House, PA, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Marie Jose Kersten
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Chantal Kuhn
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - Bruno Laugel
- Institut de Recherches Servier, Croissy sur seine, France
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Janet Markman
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Emma Morris
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Helene Negre
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - Michael Rade
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Kristin Reiche
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Matthias Renner
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmen Sanges
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hans Stauss
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Maria Themeli
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|