1
|
Silva Terra AI, Taylor DA, Halse ME. Hyperpolarised benchtop NMR spectroscopy for analytical applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:153-178. [PMID: 39645349 DOI: 10.1016/j.pnmrs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024]
Abstract
Benchtop NMR spectrometers, with moderate magnetic field strengths (B0=1-2.4T) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (B0≥7T). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced. The sensitivity limitation can be overcome by using hyperpolarisation to boost benchtop NMR signals by orders of magnitude. Of the wide range of hyperpolarisation methods currently available, dynamic nuclear polarisation (DNP), parahydrogen-induced polarisation (PHIP) and photochemically-induced dynamic nuclear polarisation (photo-CIDNP) have, to date, shown the most promise for integration with benchtop NMR for analytical applications. In this review we provide a summary of the theory of each of these techniques and discuss examples of how they have been integrated with benchtop NMR detection. Progress towards the use of hyperpolarised benchtop NMR for analytical applications, ranging from reaction monitoring to probing biomolecular interactions, is discussed, along with perspectives for the future.
Collapse
Affiliation(s)
| | - Daniel A Taylor
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Meghan E Halse
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Eills J, Mitchell MW, Rius IM, Tayler MCD. Live magnetic observation of parahydrogen hyperpolarization dynamics. Proc Natl Acad Sci U S A 2024; 121:e2410209121. [PMID: 39405351 PMCID: PMC11513942 DOI: 10.1073/pnas.2410209121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024] Open
Abstract
Hyperpolarized nuclear spins in molecules exhibit high magnetization that is unachievable by classical polarization techniques, making them widely used as sensors in physics, chemistry, and medicine. The state of a hyperpolarized material, however, is typically only studied indirectly and with partial destruction of magnetization, due to the nature of conventional detection by resonant-pickup NMR spectroscopy or imaging. Here, we establish atomic magnetometers with sub-pT sensitivity as an alternative modality to detect in real time the complex dynamics of hyperpolarized materials without disturbing or interrupting the magnetogenesis process. As an example of dynamics that are impossible to detect in real time by conventional means, we examine parahydrogen-induced 1H and 13C magnetization during adiabatic eigenbasis transformations at [Formula: see text]T-field avoided crossings. Continuous but nondestructive magnetometry reveals previously unseen spin dynamics, fidelity limits, and magnetization backaction effects. As a second example, we apply magnetometry to observe the chemical-exchange-driven 13C hyperpolarization of [1-13C]-pyruvate-the most important spin tracer for clinical metabolic imaging. The approach can be readily combined with other high-sensitivity magnetometers and is applicable to a broader range of general observation scenarios involving production, transport, and systems interaction of hyperpolarized compounds.
Collapse
Affiliation(s)
- James Eills
- Institute for Bioengineering of Catalonia, Barcelona08028, Spain
| | - Morgan W. Mitchell
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona08860, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona08010, Spain
| | - Irene Marco Rius
- Institute for Bioengineering of Catalonia, Barcelona08028, Spain
| | - Michael C. D. Tayler
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona08860, Spain
| |
Collapse
|
3
|
Pradhan N, Hilty C. Cross-Polarization of Insensitive Nuclei from Water Protons for Detection of Protein-Ligand Binding. J Am Chem Soc 2024; 146:24754-24758. [PMID: 39225120 PMCID: PMC11403598 DOI: 10.1021/jacs.4c08241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hyperpolarization derived from water protons enhances the NMR signal of 15N nuclei in a small molecule, enabling the sensitive detection of a protein-ligand interaction. The water hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) acts as a universal signal enhancement agent. The 15N signal of benzamidine was increased by 1480-fold through continuous polarization transfer by J-coupling-mediated cross-polarization (J-CP) via the exchangeable protons. The signal enhancement factor favorably compares to factors of 110- or 17-fold using non-CP-based polarization transfer mechanisms. The hyperpolarization enabled detection of the binding of benzamidine to the target protein trypsin with a single-scan measurement of 15N R2 relaxation. J-CP provides an efficient polarization mechanism for 15N or other low-frequency nuclei near an exchangeable proton. The hyperpolarization transfer sustained within the relaxation time limit of water protons additionally can be applied for the study of macromolecular structure and biological processes.
Collapse
Affiliation(s)
- Nirmalya Pradhan
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Christian Hilty
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Razanahoera A, Sonnefeld A, Sheberstov K, Narwal P, Minaei M, Kouřil K, Bodenhausen G, Meier B. Hyperpolarization of Long-Lived States of Protons in Aliphatic Chains by Bullet Dynamic Nuclear Polarization, Revealed on the Fly by Spin-Lock-Induced Crossing. J Phys Chem Lett 2024; 15:9024-9029. [PMID: 39189820 PMCID: PMC11626513 DOI: 10.1021/acs.jpclett.4c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
It is shown that proton spins highly polarized by dynamic nuclear polarization (DNP) retain substantial polarization upon the rapid transfer of frozen bullets from a polarizer to an NMR spectrometer. After injection in solution, the resulting hyperpolarization in aliphatic chains comprises population imbalances between singlet and triplet states of geminal protons and combinations thereof. These hyperpolarized long-lived states (LLSs) can be reconverted into observable transverse magnetization by polychromatic spin-lock-induced crossing (poly-SLIC). This reconversion can be achieved simultaneously in several molecules. Consecutive partial reconversion steps can be carried out to determine the lifetimes TLLS on the fly in a single experiment. The enhancement factors of hyperpolarized LLS-derived signals in our experiments are at least 2 orders of magnitude. These methods extend applications of bullet-DNP to protons in molecules containing short aliphatic chains and may be useful for drug screening.
Collapse
Affiliation(s)
- Aiky Razanahoera
- Laboratoire
des Biomolécules, LBM, Département de Chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France
| | - Anna Sonnefeld
- Laboratoire
des Biomolécules, LBM, Département de Chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France
| | - Kirill Sheberstov
- Laboratoire
des Biomolécules, LBM, Département de Chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France
| | - Pooja Narwal
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Masoud Minaei
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Karel Kouřil
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Geoffrey Bodenhausen
- Laboratoire
des Biomolécules, LBM, Département de Chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France
| | - Benno Meier
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
5
|
Giannoulis A, Butbul K, Carmieli R, Kim J, Montrazi ET, Singh K, Frydman L. Cryogenic and Dissolution DNP NMR on γ-Irradiated Organic Molecules. J Am Chem Soc 2024; 146:20758-20769. [PMID: 39029111 PMCID: PMC11295201 DOI: 10.1021/jacs.4c04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
Nuclear magnetic resonance (NMR) plays a central role in the elucidation of chemical structures but is often limited by low sensitivity. Dissolution dynamic nuclear polarization (dDNP) emerges as a transformative methodology for both solution-state NMR and metabolic NMR imaging, which could overcome this limitation. Typically, dDNP relies on combining a stable radical with the analyte within a uniform glass under cryogenic conditions. The electron polarization is then transferred through microwave irradiation to the nuclei. The present study explores the use of radicals introduced via γ-irradiation, as bearers of the electron spins that will enhance 1H or 13C nuclides. 1H solid-state NMR spectra of γ-irradiated powders at 1-5 K revealed, upon microwave irradiation, signal enhancements that, in general, were higher than those achieved through conventional glass-based DNP. Transfer of these samples to a solution-state NMR spectrometer via a rapid dissolution driven by a superheated water provided significant enhancements of solution-state 1H NMR signals. Enhancements of 13C signals in the γ-irradiated solids were more modest, as a combined consequence of a low radical concentration and of the dilute concentration of 13C in the natural abundant samples examined. Nevertheless, ca. 700-800-fold enhancements in 13C solution NMR spectra of certain sites recorded at 11.7 T could still be achieved. A total disappearance of the radicals upon performing a dDNP-like aqueous dissolution and a high stability of the samples were found. Overall, the study showcases the advantages and limitations of γ-irradiated radicals as candidates for advancing spectroscopic dDNP-enhanced NMR.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Korin Butbul
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, 234 Herzl
Street, Rehovot 7610001, Israel
| | - Jihyun Kim
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
- Department
of Chemistry Education, Kyungpook National
University, Daegu 41566, Republic of Korea
| | - Elton Tadeu Montrazi
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Kawarpal Singh
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Levien M, Yang L, van der Ham A, Reinhard M, John M, Purea A, Ganz J, Marquardsen T, Tkach I, Orlando T, Bennati M. Overhauser enhanced liquid state nuclear magnetic resonance spectroscopy in one and two dimensions. Nat Commun 2024; 15:5904. [PMID: 39003303 PMCID: PMC11246421 DOI: 10.1038/s41467-024-50265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Nuclear magnetic resonance (NMR) is fundamental in the natural sciences, from chemical analysis and structural biology, to medicine and physics. Despite its enormous achievements, one of its most severe limitations is the low sensitivity, which arises from the small population difference of nuclear spin states. Methods such as dissolution dynamic nuclear polarization and parahydrogen induced hyperpolarization can enhance the NMR signal by several orders of magnitude, however, their intrinsic limitations render multidimensional hyperpolarized liquid-state NMR a challenge. Here, we report an instrumental design for 9.4 Tesla liquid-state dynamic nuclear polarization that enabled enhanced high-resolution NMR spectra in one and two-dimensions for small molecules, including drugs and metabolites. Achieved enhancements of up to two orders of magnitude translate to signal acquisition gains up to a factor of 10,000. We show that hyperpolarization can be transferred between nuclei, allowing DNP-enhanced two-dimensional 13C-13C correlation experiments at 13C natural abundance. The enhanced sensitivity opens up perspectives for structural determination of natural products or characterization of drugs, available in small quantities. The results provide a starting point for a broader implementation of DNP in liquid-state NMR.
Collapse
Affiliation(s)
- Marcel Levien
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 6, 37077, Göttingen, Germany
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Luming Yang
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Alex van der Ham
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Maik Reinhard
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 6, 37077, Göttingen, Germany
| | - Michael John
- Institute of Organic and Biomolecular Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 2, 37077, Göttingen, Germany
| | - Armin Purea
- Bruker Biospin GmbH, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Jürgen Ganz
- Bruker Biospin GmbH, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | | | - Igor Tkach
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Tomas Orlando
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., 32310, Tallahassee, FL, USA
| | - Marina Bennati
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
- Institute of Physical Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 6, 37077, Göttingen, Germany.
| |
Collapse
|
7
|
Zachrdla M, Turhan E, Pötzl C, Sadet A, Vasos PR, Kurzbach D. Hyperpolarized nuclear Overhauser enhancement of alanine methyl groups by doubly relayed proton exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 364:107727. [PMID: 38941676 DOI: 10.1016/j.jmr.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Hyperpolarized water in dissolution dynamic nuclear polarization (dDNP) experiments has emerged as a promising method for enhancing nuclear magnetic resonance (NMR) signals, particularly in studies of proteins and peptides. Herein, we focus on the application of "proton exchange-doubly relayed" nuclear Overhauser effects (NOE) from hyperpolarized water to achieve positive signal enhancement of methyl groups in the side chain of an alanine-glycine peptide. In particular, we show a cascade hyperpolarization transfer. Initial proton exchange between solvent and amide introduces hyperpolarization into the peptide. Subsequently, intermolecular NOE relays the hyperpolarization first to Ala-Hα and then in a second step to the Ala-CH3 moiety. Both NOEs have negative signs. Hence, the twice-relayed NOE pathway leads to a positive signal enhancement of the methyl group with respect to the thermal equilibrium magnetization. This effect might indicate a way towards hyperpolarized water-based signal enhancement for methyl groups, which are often used for NMR studies of large proteins in solution.
Collapse
Affiliation(s)
- Milan Zachrdla
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria.
| | - Ertan Turhan
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Christopher Pötzl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Aude Sadet
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; Biophysics and Biomedical Applications Laboratory and Group, LGED, Extreme Light Infrastructure-Nuclear Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, Reactorului Street, No. 30, 077125 Bucharest-Magurele, Romania
| | - Paul R Vasos
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; Biophysics and Biomedical Applications Laboratory and Group, LGED, Extreme Light Infrastructure-Nuclear Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, Reactorului Street, No. 30, 077125 Bucharest-Magurele, Romania; University of Bucharest, Interdisciplinary School for Doctoral Studies (ISDS), 36-46 Bd Kogalniceanu, RO-050107 Bucharest, Romania
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| |
Collapse
|
8
|
Singh K, Frydman L. Single-Scan Heteronuclear 13C- 15N J-Coupling NMR Observations Enhanced by Dissolution Dynamic Nuclear Polarization. J Phys Chem Lett 2024; 15:5659-5664. [PMID: 38767577 PMCID: PMC11145644 DOI: 10.1021/acs.jpclett.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Heteronuclear 13C-15N couplings were measured in single-scan nuclear magnetic resonance (NMR) experiments for a variety of nitrogen-containing chemical compounds with varied structural characteristics, by using a one-dimensional (1D) 13C-15N multiple-quantum (MQ)-filtered experiment. Sensitivity limitations of the MQ filtering were overcome by the combined use of 15N labeling and dissolution dynamic nuclear polarization (dDNP), performed at cryogenic conditions and followed by quick and optimized sample melting and transfer procedures. Coupling information could thus be obtained from nucleotide bases, amino acids, urea, and aliphatic and aromatic amides, including the measurement of relatively small J-couplings directly from the 1D filtered spectra. This experiment could pave the way for NMR-based analytical applications that investigate structural and stereochemical insights into nitrogen-containing compounds, including dipeptides and proteins, while relying on heteronuclear couplings and nuclear hyperpolarization.
Collapse
Affiliation(s)
- Kawarpal Singh
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
9
|
Epasto LM, Maimbourg T, Rosso A, Kurzbach D. Unified understanding of the breakdown of thermal mixing dynamic nuclear polarization: The role of temperature and radical concentration. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107670. [PMID: 38603922 DOI: 10.1016/j.jmr.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
We reveal an interplay between temperature and radical concentration necessary to establish thermal mixing (TM) as an efficient dynamic nuclear polarization (DNP) mechanism. We conducted DNP experiments by hyperpolarizing widely used DNP samples, i.e., sodium pyruvate-1-13C in water/glycerol mixtures at varying nitroxide radical (TEMPOL) concentrations and microwave irradiation frequencies, measuring proton and carbon-13 spin temperatures. Using a cryogen consumption-free prototype-DNP apparatus, we could probe cryogenic temperatures between 1.5 and 6.5 K, i.e., below and above the boiling point of liquid helium. We identify two mechanisms for the breakdown of TM: (i) Anderson type of quantum localization for low radical concentration, or (ii) quantum Zeno localization occurring at high temperature. This observation allowed us to reconcile the recent diverging observations regarding the relevance of TM as a DNP mechanism by proposing a unifying picture and, consequently, to find a trade-off between radical concentration and electron relaxation times, which offers a pathway to improve experimental DNP performance based on TM.
Collapse
Affiliation(s)
- Ludovica M Epasto
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria
| | - Thibaud Maimbourg
- Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, 91191, Gif-sur-Yvette, France
| | - Alberto Rosso
- Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France.
| | - Dennis Kurzbach
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria.
| |
Collapse
|
10
|
Stern Q, Reynard-Feytis Q, Elliott SJ, Ceillier M, Cala O, Ivanov K, Jannin S. Rapid and Simple 13C-Hyperpolarization by 1H Dissolution Dynamic Nuclear Polarization Followed by an Inline Magnetic Field Inversion. J Am Chem Soc 2023; 145:27576-27586. [PMID: 38054954 DOI: 10.1021/jacs.3c09209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Dissolution dynamic nuclear polarization (dDNP) is a method of choice for preparing hyperpolarized 13C metabolites such as 1-13C-pyruvate used for in vivo applications, including the real-time monitoring of cancer cell metabolism in human patients. The approach consists of transferring the high polarization of electron spins to nuclear spins via microwave irradiation at low temperatures (1.0-1.5 K) and moderate magnetic fields (3.3-7 T). The solid sample is then dissolved and transferred to an NMR spectrometer or MRI scanner for detection in the liquid state. Common dDNP protocols use direct hyperpolarization of 13C spins reaching polarizations of >50% in ∼1-2 h. Alternatively, 1H spins are polarized before transferring their polarization to 13C spins using cross-polarization, reaching polarization levels similar to those of direct DNP in only ∼20 min. However, it relies on more complex instrumentation, requiring highly skilled personnel. Here, we explore an alternative route using 1H dDNP followed by inline adiabatic magnetic field inversion in the liquid state during the transfer. 1H polarizations of >70% in the solid state are obtained in ∼5-10 min. As the hyperpolarized sample travels from the dDNP polarizer to the NMR spectrometer, it goes through a field inversion chamber, which causes the 1H → 13C polarization transfer. This transfer is made possible by the J-coupling between the heteronuclei, which mixes the Zeeman states at zero-field and causes an antilevel crossing. We report liquid-state 13C polarization up to ∼17% for 3-13C-pyruvate and 13C-formate. The instrumentation needed to perform this experiment in addition to a conventional dDNP polarizer is simple and readily assembled.
Collapse
Affiliation(s)
- Quentin Stern
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Quentin Reynard-Feytis
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Stuart J Elliott
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
- Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Morgan Ceillier
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Olivier Cala
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Konstantin Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| |
Collapse
|
11
|
Zheng Z, Liu M, Wang X, Jiang W, Peng Q, Sun H, Chen Z. The experimental approach for the interleaved joint modulation of PHIP and NMR. J Chem Phys 2023; 159:184201. [PMID: 37937935 DOI: 10.1063/5.0173895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
Nuclear spin hyperpolarization derived from parahydrogen is a technique for enhancing nuclear magnetic resonance (NMR) sensitivity. The key to hyperpolarization experiments is to achieve rapid transfer and detection to minimize relaxation losses, while also avoiding bubbles or turbulence to guarantee high spectral resolution. In this article, we describe an experimental approach for the interleaved joint modulation of parahydrogen-induced polarization and NMR. We provide schematic diagrams of parahydrogen-based polarizer with in situ high-pressure detection capability and low-field polarization transfer. This approach can help to control the experimental process and acquire experimental information, one example of which is the attainment of the highest hyperpolarization signal intensity at 3.6 s after closing the valve. The polarizer demonstrates in situ detection capability, allowing sample to be restabilized within 0.3 ± 0.1 s and high-resolution NMR sampling under a pressure of 3 bars. Moreover, it can transfer polarized samples from the polarization transfer field to the detection region of NMR within 1 ± 0.3 s for completing signal amplification by reversible exchange experiments.
Collapse
Affiliation(s)
- Zeyu Zheng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Min Liu
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Xinchang Wang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005 Xiamen, China
| | - Wenlong Jiang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Qiwei Peng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Huijun Sun
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005 Xiamen, China
| |
Collapse
|
12
|
Alshehri A, Tickner BJ, Iali W, Duckett SB. Enhancing the NMR signals of plant oil components using hyperpolarisation relayed via proton exchange. Chem Sci 2023; 14:9843-9853. [PMID: 37736655 PMCID: PMC10510812 DOI: 10.1039/d3sc03078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
In this work, the limited sensitivity of magnetic resonance is addressed by using the hyperpolarisation method relayed signal amplification by reversible exchange (SABRE-Relay) to transfer latent magnetism from para-hydrogen, a readily isolated spin isomer of hydrogen gas, to components of key plant oils such as citronellol, geraniol, and nerol. This is achieved via relayed polarisation transfer in which an [Ir(H)2(IMes)(NH2R)3]Cl type complex produces hyperpolarised NH2R free in solution, before labile proton exchange between the hyperpolarisation carrier (NH2R) and the OH-containing plant oil component generates enhanced NMR signals for the latter. Consequently, up to ca. 200-fold 1H (0.65% 1H polarisation) and 800-fold 13C NMR signal enhancements (0.65% 13C polarisation) are recorded for these essential oils in seconds. Remarkably, the resulting NMR signals are not only diagnostic, but prove to propagate over large spin systems via a suitable coupling network. A route to optimise the enhancement process by varying the identity of the carrier NH2R, and its concentration is demonstrated. In order to prove utility, these pilot measurements are extended to study a much wider range of plant-derived molecules including rhodinol, verbenol, (1R)-endo-(+)-fenchyl alcohol, (-)-carveol, and linalool. Further measurements are then described which demonstrate citronellol and geraniol can be detected in an off-the-shelf healthcare product rose geranium oil at concentrations of just a few tens of μM in single scan 1H NMR measurements, which are not visible in comparable thermally polarised NMR experiments. This work therefore presents a significant expansion of the types of molecules amenable to hyperpolarisation using para-hydrogen and illustrates a real-world application in the diagnostic detection of low concentration analytes in mixtures.
Collapse
Affiliation(s)
- Adel Alshehri
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Ben J Tickner
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Wissam Iali
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Simon B Duckett
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| |
Collapse
|
13
|
Chen X, Chen XM, Li Q. Protocol for constructing a hierarchical host-guest supramolecular self-assembly system in water. STAR Protoc 2023; 4:102488. [PMID: 37515765 PMCID: PMC10400958 DOI: 10.1016/j.xpro.2023.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/22/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023] Open
Abstract
Here, we present a protocol for the construction of a hierarchical host-guest supramolecular self-assembly system in water. We describe steps for determining the binding levels and capturing the morphologies of hierarchical self-assembly. We detail procedures for using UV-vis spectra, nuclear magnetic resonance spectra, scanning electron microscopy, and transmission electron microscopy for the assembly. This protocol is useful for analyzing the detailed chemical structure and morphological variation of hierarchical host-guest supramolecular self-assembly systems. For complete details on the use and execution of this protocol, please refer to Chen et al. (2022).1.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
14
|
Mareš J, Karjalainen J, Håkansson P, Michaeli S, Liimatainen T. Glucose exchange parameters in a subset of physiological conditions. Phys Chem Chem Phys 2023; 25:22965-22978. [PMID: 37593950 PMCID: PMC10467565 DOI: 10.1039/d3cp01973j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
The chemical exchange of labile protons of the hydroxyl groups can be exploited in a variety of magnetic resonance experiments to gain information about the groups and their physicochemical environment. The exchangeable -OH protons provide important contributions to the T2 of water signals thus contributing to the T2-weighted contrast of MRI images. This exchange can be exploited more specifically and sensitively in chemical exchange saturation transfer (CEST) or longitudinal rotating frame relaxation (T1,ρ) experiments. Since glucose is omnipresent in living organisms, it may be seen as a rather universal probe. Even though the potential was first recognized many years ago, practical use has remained scarce due to numerous challenges. The major limitation is the rather low glucose concentration in most tissues. The other obstacles are related to multiple dependencies of the exchange parameters, such as temperature, pH, and concentration of various ions that are not known in sufficient detail for glucose. Thus, we embarked on evaluating the exchange parameters of a model that included every relevant chemical site for all -OH protons in both dominant enantiomers of glucose. We have (1) obtained conventional one-dimensional proton NMR spectra of glucose solutions in suitable temperature ranges, (2) we have iterated through several exchange models with various degrees of freedom determined by the number of distinguishable -OH proton sites and compared their performance, (3) we extrapolated the parameters of the best model of physiological temperature and (4) we demonstrated the use of the parameters in virtual experiments. As the main results, (1) we have obtained the temperature dependence of exchange parameters with reliable confidence intervals in three different pH values, with two of them reaching physiological temperature, and (2) we show how the parameters can be used in virtual experiments, helping to develop new applications for glucose as an NMR/MRI probe.
Collapse
Affiliation(s)
- J Mareš
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FIN-90014, Finland.
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Finland
| | - J Karjalainen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Finland
| | - P Håkansson
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FIN-90014, Finland.
| | - S Michaeli
- Center for MR Research, Radiology Department, University of Minnesota, Minneapolis MN55455, USA
| | - T Liimatainen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Finland
- Department of Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
15
|
Peat G, Boaler PJ, Dickson CL, Lloyd-Jones GC, Uhrín D. SHARPER-DOSY: Sensitivity enhanced diffusion-ordered NMR spectroscopy. Nat Commun 2023; 14:4410. [PMID: 37479704 PMCID: PMC10361965 DOI: 10.1038/s41467-023-40130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
Since its discovery in mid-20th century, the sensitivity of Nuclear Magnetic Resonance (NMR) has increased steadily, in part due to the design of new, sophisticated NMR experiments. Here we report on a liquid-state NMR methodology that significantly increases the sensitivity of diffusion coefficient measurements of pure compounds, allowing to estimate their sizes using a much reduced amount of material. In this method, the diffusion coefficients are being measured by analysing narrow and intense singlets, which are invariant to magnetic field inhomogeneities. The singlets are obtained through signal acquisition embedded in short (<0.5 ms) spin-echo intervals separated by non-selective 180° or 90° pulses, suppressing the chemical shift evolution of resonances and their splitting due to J couplings. The achieved 10-100 sensitivity enhancement results in a 100-10000-fold time saving. Using high field cryoprobe NMR spectrometers, this makes it possible to measure a diffusion coefficient of a medium-size organic molecule in a matter of minutes with as little as a few hundred nanograms of material.
Collapse
Affiliation(s)
- George Peat
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| | - Patrick J Boaler
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| | - Claire L Dickson
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
- Oxford Instruments, Halifax Road, High Wycombe, HP12 3SE2, UK
| | - Guy C Lloyd-Jones
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| | - Dušan Uhrín
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
16
|
Gomez MV, Baas S, Velders AH. Multinuclear 1D and 2D NMR with 19F-Photo-CIDNP hyperpolarization in a microfluidic chip with untuned microcoil. Nat Commun 2023; 14:3885. [PMID: 37391397 PMCID: PMC10313780 DOI: 10.1038/s41467-023-39537-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a most powerful molecular characterization and quantification technique, yet two major persistent factors limit its more wide-spread applications: poor sensitivity, and intricate complex and expensive hardware required for sophisticated experiments. Here we show NMR with a single planar-spiral microcoil in an untuned circuit with hyperpolarization option and capability to execute complex experiments addressing simultaneously up to three different nuclides. A microfluidic NMR-chip in which the 25 nL detection volume can be efficiently illuminated with laser-diode light enhances the sensitivity by orders of magnitude via photochemically induced dynamic nuclear polarization (photo-CIDNP), allowing rapid detection of samples in the lower picomole range (normalized limit of detection at 600 MHz, nLODf,600, of 0.01 nmol Hz1/2). The chip is equipped with a single planar microcoil operating in an untuned circuit that allows different Larmor frequencies to be addressed simultaneously, permitting advanced hetero-, di- and trinuclear, 1D and 2D NMR experiments. Here we show NMR chips with photo-CIDNP and broadband capabilities addressing two of the major limiting factors of NMR, by enhancing sensitivity as well as reducing cost and hardware complexity; the performance is compared to state-of-the-art instruments.
Collapse
Affiliation(s)
- M Victoria Gomez
- IRICA, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071, Ciudad Real, Spain.
| | - Sander Baas
- Laboratory of BioNanoTechnology, Wageningen University, 6700 EK, Wageningen, The Netherlands
| | - Aldrik H Velders
- IRICA, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071, Ciudad Real, Spain.
- Laboratory of BioNanoTechnology, Wageningen University, 6700 EK, Wageningen, The Netherlands.
| |
Collapse
|
17
|
MacCulloch K, Browning A, TomHon P, Lehmkuhl S, Chekmenev EY, Theis T. Parahydrogen in Reversible Exchange Induces Long-Lived 15N Hyperpolarization of Anticancer Drugs Anastrozole and Letrozole. Anal Chem 2023; 95:7822-7829. [PMID: 37163687 PMCID: PMC10939174 DOI: 10.1021/acs.analchem.2c04817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Hyperpolarization modalities overcome the sensitivity limitations of NMR and unlock new applications. Signal amplification by reversible exchange (SABRE) is a particularly cheap, quick, and robust hyperpolarization modality. Here, we employ SABRE for simultaneous chemical exchange of parahydrogen and nitrile-containing anticancer drugs (letrozole or anastrozole) to enhance 15N polarization. Distinct substrates require unique optimal parameter sets, including temperature, magnetic field, or a shaped magnetic field profile. The fine tuning of these parameters for individual substrates is demonstrated here to maximize 15N polarization. After optimization, including the usage of pulsed μT fields, the 15N nuclei on common anticancer drugs, letrozole and anastrozole, can be polarized within 1-2 min. The hyperpolarization can exceed 10%, corresponding to 15N signal enhancement of over 280,000-fold at a clinically relevant magnetic field of 1 T. This sensitivity gain enables polarization studies at naturally abundant 15N enrichment level (0.4%). Moreover, the nitrile 15N sites enable long-lasting polarization storage with [15N]T1 over 9 min, enabling signal detection from a single hyperpolarization cycle for over 30 min.
Collapse
Affiliation(s)
- Keilian MacCulloch
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
- Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Physics, North Carolina State University, Raleigh, NC 27606, United States
| |
Collapse
|
18
|
Teleanu F, Hanganu A, Tuta C, Sadet A, Voda MA, Vasos PR. Multiple Stroboscopic Detection of Long-Lived Nuclear Magnetization for Glutathione Oxidation Kinetics. J Phys Chem Lett 2023; 14:4247-4251. [PMID: 37126581 DOI: 10.1021/acs.jpclett.2c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Imaging the molecular kinetics of antioxidants by magnetic resonance can contribute to the mechanistic understanding of therapeutic approaches. Magnetic resonance detection of the response to flashes of oxidative stress requires sequential spectroscopy on the same time scale on which reactive oxygen species are generated. To this effect, we propose a single-polarization multiple-detection stroboscopic experiment. We demonstrate this experiment for the follow-up of glutathione oxidation kinetics. On-the-fly stroboscopic detection minimizes the durations necessary for single acquisitions yet necessitates sustaining of magnetization lifetimes. Long-lived proton spin states (LLS) in the cysteine and glycine residues of glutathione with TLLS up to 16 s are reached. Based on 1H LLS, we followed fast oxidation kinetics in the glutathione redox pair GSH/GSSG. This new detection method allows sampling of long-lived spin order multiple times via small flip-angle excitations. This establishes the ground for the follow-up of redox processes detecting GSH/GSSG kinetics as magnetic-resonance biomarker of FLASH oxidative processes on time scales of tens of seconds.
Collapse
Affiliation(s)
- Florin Teleanu
- Biophysics and Biomedical Applications Laboratory and Group, LGED, ELI-NP, Extreme Light Infrastructure-Nuclear Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, Reactorului Street, no. 30, 077125 Bucharest-Magurele, Romania
| | - Anamaria Hanganu
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry of the Romanian Academy, ICOS, Romanian Academy, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Catalin Tuta
- "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, DRMR, Reactorului Street, no. 30, 077125 Bucharest-Magurele, Romania
| | - Aude Sadet
- Biophysics and Biomedical Applications Laboratory and Group, LGED, ELI-NP, Extreme Light Infrastructure-Nuclear Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, Reactorului Street, no. 30, 077125 Bucharest-Magurele, Romania
| | - Mihai A Voda
- Biophysics and Biomedical Applications Laboratory and Group, LGED, ELI-NP, Extreme Light Infrastructure-Nuclear Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, Reactorului Street, no. 30, 077125 Bucharest-Magurele, Romania
| | - Paul R Vasos
- Biophysics and Biomedical Applications Laboratory and Group, LGED, ELI-NP, Extreme Light Infrastructure-Nuclear Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, Reactorului Street, no. 30, 077125 Bucharest-Magurele, Romania
| |
Collapse
|
19
|
Negroni M, Kurzbach D. Missing Pieces in Structure Puzzles: How Hyperpolarized NMR Spectroscopy Can Complement Structural Biology and Biochemistry. Chembiochem 2023; 24:e202200703. [PMID: 36624049 DOI: 10.1002/cbic.202200703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Structure determination lies at the heart of many biochemical research programs. However, the "giants": X-ray diffraction, electron microscopy, molecular dynamics simulations, and nuclear magnetic resonance, among others, leave quite a few dark spots on the structural pictures drawn of proteins, nucleic acids, membranes, and other biomacromolecules. For example, structural models under physiological conditions or of short-lived intermediates often remain out of reach of the established experimental methods. This account frames the possibility of including hyperpolarized, that is, dramatically signal-enhanced NMR in existing workflows to fill these spots with detailed depictions. We highlight how integrating methods based on dissolution dynamic nuclear polarization can provide valuable complementary information about formerly inaccessible conformational spaces for many systems. A particular focus will be on hyperpolarized buffers to facilitate the NMR structure determination of challenging systems.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| |
Collapse
|
20
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Mathieu‐Gaedke M, Böker A, Glebe U. How to Characterize the Protein Structure and Polymer Conformation in Protein‐Polymer Conjugates – a Perspective. MACROMOL CHEM PHYS 2023. [DOI: 10.1002/macp.202200353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maria Mathieu‐Gaedke
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Alexander Böker
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Ulrich Glebe
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
22
|
Negroni M, Turhan E, Kress T, Ceillier M, Jannin S, Kurzbach D. Frémy's Salt as a Low-Persistence Hyperpolarization Agent: Efficient Dynamic Nuclear Polarization Plus Rapid Radical Scavenging. J Am Chem Soc 2022; 144:20680-20686. [PMID: 36322908 PMCID: PMC9673139 DOI: 10.1021/jacs.2c07960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a key technique for molecular structure determination in solution. However, due to its low sensitivity, many efforts have been made to improve signal strengths and reduce the required substrate amounts. In this regard, dissolution dynamic nuclear polarization (DDNP) is a versatile approach as signal enhancements of over 10 000-fold are achievable. Samples are signal-enhanced ex situ by transferring electronic polarization from radicals to nuclear spins before dissolving and shuttling the boosted sample to an NMR spectrometer for detection. However, the applicability of DDNP suffers from one major drawback, namely, paramagnetic relaxation enhancements (PREs) that critically reduce relaxation times due to the codissolved radicals. PREs are the primary source of polarization losses canceling the signal improvements obtained by DNP. We solve this problem by using potassium nitrosodisulfonate (Frémy's salt) as polarization agent (PA), which provides high nuclear spin polarization and allows for rapid scavenging under mild reducing conditions. We demonstrate the potential of Frémy's salt, (i) showing that both 1H and 13C polarization of ∼30% can be achieved and (ii) describing a hybrid sample shuttling system (HySSS) that can be used with any DDNP/NMR combination to remove the PA before NMR detection. This gadget mixes the hyperpolarized solution with a radical scavenger and injects it into an NMR tube, providing, within a few seconds, quantitatively radical-free, highly polarized solutions. The cost efficiency and broad availability of Frémy's salt might facilitate the use of DDNP in many fields of research.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Ertan Turhan
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Thomas Kress
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
| | - Morgan Ceillier
- Centre
de Résonance Magnétique Nucléaire à Très
Hauts Champs (UMR 5082) Université de Lyon/CNRS/Université
Claude Bernard Lyon 1/ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Centre
de Résonance Magnétique Nucléaire à Très
Hauts Champs (UMR 5082) Université de Lyon/CNRS/Université
Claude Bernard Lyon 1/ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Dennis Kurzbach
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
23
|
Structural Investigation of Therapeutic Antibodies Using Hydroxyl Radical Protein Footprinting Methods. Antibodies (Basel) 2022; 11:antib11040071. [PMID: 36412837 PMCID: PMC9680451 DOI: 10.3390/antib11040071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Commercial monoclonal antibodies are growing and important components of modern therapies against a multitude of human diseases. Well-known high-resolution structural methods such as protein crystallography are often used to characterize antibody structures and to determine paratope and/or epitope binding regions in order to refine antibody design. However, many standard structural techniques require specialized sample preparation that may perturb antibody structure or require high concentrations or other conditions that are far from the conditions conducive to the accurate determination of antigen binding or kinetics. We describe here in this minireview the relatively new method of hydroxyl radical protein footprinting, a solution-state method that can provide structural and kinetic information on antibodies or antibody-antigen interactions useful for therapeutic antibody design. We provide a brief history of hydroxyl radical footprinting, examples of current implementations, and recent advances in throughput and accessibility.
Collapse
|
24
|
Epasto LM, Honegger P, Che K, Kozak F, Jörg F, Schröder C, Kurzbach D. Nuclear Overhauser spectroscopy in hyperpolarized water - chemical vs. magnetic exchange. Chem Commun (Camb) 2022; 58:11661-11664. [PMID: 36169286 PMCID: PMC9578288 DOI: 10.1039/d2cc03735a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Dissolution dynamic nuclear polarization (dDNP) is a versatile hyperpolarization technique to boost signal intensities in nuclear magnetic resonance (NMR) spectroscopy. The possibility to dissolve biomolecules in a hyperpolarized aqueous buffer under mild conditions has recently widened the scope of NMR by dDNP. The water-to-target hyperpolarization transfer mechanisms remain yet unclear, not least due to an often-encountered dilemma of dDNP experiments: The strongly enhanced signal intensities are accompanied by limited structural information as data acquisition is restricted to short time series of only one-dimensional spectra or a single correlation spectrum. Tackling this challenge, we combine dDNP with molecular dynamics (MD) simulations and predictions of cross-relaxation rates to unravel the spin dynamics of magnetization flow in hyperpolarized solutions.
Collapse
Affiliation(s)
- Ludovica Martina Epasto
- University of Vienna, Faculty of Chemistry, Department of Biological Chemistry, Währingerstr. 38, 1090 Vienna, Austria.
- University of Vienna, Doctoral School in Chemistry (DoSChem), Währingerstr. 42, 1090 Vienna, Austria
| | - Philipp Honegger
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, 1090 Vienna, Austria
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Kateryna Che
- University of Vienna, Faculty of Chemistry, Department of Biological Chemistry, Währingerstr. 38, 1090 Vienna, Austria.
| | - Fanny Kozak
- University of Vienna, Faculty of Chemistry, Department of Biological Chemistry, Währingerstr. 38, 1090 Vienna, Austria.
- University of Vienna, Doctoral School in Chemistry (DoSChem), Währingerstr. 42, 1090 Vienna, Austria
| | - Florian Jörg
- University of Vienna, Doctoral School in Chemistry (DoSChem), Währingerstr. 42, 1090 Vienna, Austria
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, 1090 Vienna, Austria
| | - Christian Schröder
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, 1090 Vienna, Austria
| | - Dennis Kurzbach
- University of Vienna, Faculty of Chemistry, Department of Biological Chemistry, Währingerstr. 38, 1090 Vienna, Austria.
| |
Collapse
|
25
|
Rao Y, Venkatesh A, Moutzouri P, Emsley L. 1H Hyperpolarization of Solutions by Overhauser Dynamic Nuclear Polarization with 13C- 1H Polarization Transfer. J Phys Chem Lett 2022; 13:7749-7755. [PMID: 35969266 PMCID: PMC9421900 DOI: 10.1021/acs.jpclett.2c01956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Dynamic nuclear polarization (DNP) is a method that can significantly increase the sensitivity of nuclear magnetic resonance. The only effective DNP mechanism for in situ hyperpolarization in solution is Overhauser DNP, which is inefficient for 1H at high magnetic fields. Here we demonstrate the possibility of generating significant 1H hyperpolarization in solution at room temperature. To counter the poor direct 1H Overhauser DNP, we implement steady-state 13C Overhauser DNP in solutions and then transfer the 13C hyperpolarization to 1H via a reverse insensitive nuclei enhanced by polarization transfer scheme. We demonstrate this approach using a 400 MHz gyrotron-equipped 3.2 mm magic angle spinning DNP system to obtain 1H DNP enhancement factors of 48, 8, and 6 for chloroform, tetrachloroethane, and phenylacetylene, respectively, at room temperature.
Collapse
|
26
|
Epasto LM, Che K, Kozak F, Selimovic A, Kadeřávek P, Kurzbach D. Toward protein NMR at physiological concentrations by hyperpolarized water-Finding and mapping uncharted conformational spaces. SCIENCE ADVANCES 2022; 8:eabq5179. [PMID: 35930648 PMCID: PMC9355353 DOI: 10.1126/sciadv.abq5179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/23/2022] [Indexed: 05/12/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a key method for determining the structural dynamics of proteins in their native solution state. However, the low sensitivity of NMR typically necessitates nonphysiologically high sample concentrations, which often limit the relevance of the recorded data. We show how to use hyperpolarized water by dissolution dynamic nuclear polarization (DDNP) to acquire protein spectra at concentrations of 1 μM within seconds and with a high signal-to-noise ratio. The importance of approaching physiological concentrations is demonstrated for the vital MYC-associated factor X, which we show to switch conformations when diluted. While in vitro conditions lead to a population of the well-documented dimer, concentrations lowered by more than two orders of magnitude entail dimer dissociation and formation of a globularly folded monomer. We identified this structure by integrating DDNP with computational techniques to overcome the often-encountered constraint of DDNP of limited structural information provided by the typically detected one-dimensional spectra.
Collapse
Affiliation(s)
- Ludovica M. Epasto
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Kateryna Che
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Fanny Kozak
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Albina Selimovic
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Pavel Kadeřávek
- Masaryk University, CEITEC, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dennis Kurzbach
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| |
Collapse
|