1
|
Su X, Xie F, Li J, Huang Y, Li K, Xie H, Wu W, Xie X. Cellulose-based underwater superoleophobic coatings with robust anti-viscous oil-fouling property for complex oily wastewater remediation. Int J Biol Macromol 2024; 286:138414. [PMID: 39647720 DOI: 10.1016/j.ijbiomac.2024.138414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Underwater superoleophobic coatings, known for their anti-oil-fouling properties, have garnered significant interest in the context of oily wastewater remediation. However, these coatings encounter challenges in preventing viscous oil contamination and structural damage, and easily become ineffective when treating crude oil/water pollutants. Additionally, the non-renewable and non-biodegradable components pose a huge risk to environmental safety and sustainable development. Herein, a cellulose-based coating that combines robust underwater superoleophobicity with anti-viscous oil-fouling characteristic is designed via the extraction of micro/nanoscale heteromorphic cellulose crystals (EHCC) and subsequent crosslinking with carboxymethyl chitosan (CCS). Leveraging the hierarchical micro/nanostructures constructed by EHCC and intensified hydration capability facilitated by multiple hydrogen bonding interactions, the EHCC-CCS coating demonstrates excellent superhydrophilicity/underwater superoleophobicity and ultralow-viscous oil-adhesion property. Moreover, the EHCC-CCS coating exhibits robust chemical resistance and mechanical tolerance. Importantly, it adapts effectively to various flat and porous substrates, offering outstanding anti-oil-fouling and self-cleaning performances. Notably, the EHCC-CCS-coated textile is applied in separating immiscible oil/water mixtures with varying oil viscosities, and the EHCC-CCS-coated PVDF membrane achieves to purify surfactant-stabilized crude oil/water emulsion. The findings provide a straightforward and cost-effective approach for large-scale production of fully biobased coatings with durable underwater superoleophobicity and excellent anti-viscous oil-fouling capability for complex oily wastewater remediation.
Collapse
Affiliation(s)
- Xiaojing Su
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Fawei Xie
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junlin Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yiyang Huang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kunquan Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Huali Xie
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wenjian Wu
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Xin Xie
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
2
|
He G, Liu W, Liu Y, Wei S, Yue Y, Dong L, Yu L. Antifouling hydrogel with different mechanisms:Antifouling mechanisms, materials, preparations and applications. Adv Colloid Interface Sci 2024; 335:103359. [PMID: 39591834 DOI: 10.1016/j.cis.2024.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Biofouling is a long-standing problem for biomedical devices, membranes and marine equipment. Eco-friendly hydrogels show great potential for antifouling applications due to their unique antifouling characteristics. However, a single antifouling mechanism cannot meet a wider practical application of antifouling hydrogels, combined with multiple antifouling mechanisms, the various antifouling advantages can be played, as well as the antifouling performance and service life of antifouling hydrogel can be improved. For the construction of the antifouling hydrogel with multiple antifouling mechanisms, the antifouling mechanisms that have been used in antifouling hydrogels should be analyzed. Hence, this review focus on five major antifouling mechanisms used in antifouling hydrogel: hydration layer, elastic modulus, antifoulant modification, micro/nanostructure and self-renewal surface construction. The methods of exerting the above antifouling mechanisms in hydrogels and the materials of preparing antifouling hydrogel are introduced. Finally, the development of antifouling hydrogel in biomedical materials, membrane and marine related field is summarized, and the existing problems as well as the future trend of antifouling hydrogel are discussed. This review provides reasonable guidance for the future and application of the construction of antifouling hydrogels with multiple antifouling mechanisms.
Collapse
Affiliation(s)
- Guangling He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuhua Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shuqing Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuhao Yue
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lei Dong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Sanya Oceanographic Laboratory, Sanya 572024, China.
| |
Collapse
|
3
|
Shang LM, Li SC, Jiang J, Mao LB, Yu SH. Bioinspired High-Magnesium Calcite for Efficiently Reducing Chemical Oxygen Demand in Lake Water. SMALL METHODS 2024; 8:e2300236. [PMID: 37415544 DOI: 10.1002/smtd.202300236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Indexed: 07/08/2023]
Abstract
Organic matter accumulation in water can cause serious problems such as oxygen depletion and quality deterioration of waters. While calcium carbonate has been used as green and low-cost adsorbent for water treatment, its efficiency in reducing the chemical oxygen demand (COD) of water, which is a measure of organic pollution, is restrained by the limited specific surface area and chemical activity. Herein, inspired by the high-magnesium calcite (HMC) found in biological materials, a feasible method to synthesize fluffy dumbbell-like HMC with large specific surface area is reported. The magnesium inserting increases the chemical activity of the HMC moderately but without lowering its stability too much. Therefore, the crystalline HMC can retain its phase and morphology in aqueous environment for hours, which allows the establishment of adsorption equilibrium between the solution and the adsorbent that retains its initial large specific surface area and improved chemical activity. Consequently, the HMC exhibits notably enhanced capability in reducing the COD of lake water polluted by organics. This work provides a synergistic strategy to rationally design high-performance adsorbents by simultaneously optimizing the surface area and steering the chemical activity.
Collapse
Affiliation(s)
- Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Cheng Li
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Jiang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
El-Newehy MH, Aldalbahi A, Thamer BM, Abdulhameed MM. Preparation of photoluminescent nano-biocomposite nacre from graphene oxide and polylactic acid. LUMINESCENCE 2024; 39:e4688. [PMID: 38444125 DOI: 10.1002/bio.4688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
Nano-biocomposites of inorganic and organic components wereprepared to produce long-persistent phosphorescent artificial nacre-like materials. Biodegradable polylactic acid (PLA), graphene oxide (GO), and nanoparticles (13-20 nm) of lanthanide-doped aluminate pigment (NLAP) were used in a simple production procedure of an organic/inorganic hybrid nano-biocomposite. Both polylactic acid and GO nanosheets were chemically modified to form covalent and hydrogen bonding. The high toughness, good tensile strength, and great endurance of those bonds were achieved by their interactions at the interfaces. Long-persistent and reversible photoluminescence was shown by the prepared nacre substrates. Upon excitation at 365 nm, the nacre substrates generated an emission peak at 517 nm. When ultraviolet light was shone on luminescent nacres, they displayed a bright green colour. The high superhydrophobicity of the generated nacres was obtained without altering their mechanical characteristics.
Collapse
Affiliation(s)
- Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Badr M Thamer
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
5
|
Ye B, Ma Y, Zhang D, Gu J, Wang Z, Zhang Y, Chen J. Glycopolymer-Based Antiswelling, Conductive, and Underwater Adhesive Hydrogels for Flexible Strain Sensor Application. ACS Biomater Sci Eng 2023; 9:6891-6901. [PMID: 38013423 DOI: 10.1021/acsbiomaterials.3c01539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
With the fast development of soft electronics, underwater adhesion has become a highly desired feature for various sensing uses. Currently, most adhesive hydrogels are based on catechol-based structures, such as polydopamine, pyrogallol, and tannic acid, with very limited structural variety. Herein, a new type of glycopolymer-based underwater adhesive hydrogel has been prepared straightforwardly by random copolymerization of acrylic acid, acetyl-protected/unprotected glucose, and methacrylic anhydride in dimethyl sulfoxide (DMSO). By employing a DMSO-water solvent exchange strategy, the underwater adhesion was skillfully induced by the synergetic effects of hydrophobic aggregation and hydrogen bonding, leading to excellent adhesion behaviors on various surfaces, including pig skins, glasses, plastics, and metals, even after 5 days of storage in water. In addition, the underwater adhesive hydrogels with simple and low-cost protected/unprotected carbohydrate compositions showed good mechanical and rheological properties, together with cytocompatibility and antiswelling behavior in water, all of which are beneficial for underwater adhesions. In application as a flexible strain sensor, the adhesive hydrogel exhibited stable and reliable sensing ability for monitoring human motion in real time, suggesting great potential for intelligent equipment design.
Collapse
Affiliation(s)
- Baotong Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Difei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jieyu Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Ziyan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
6
|
Lin X, Fan L, Wang L, Filppula AM, Yu Y, Zhang H. Fabricating biomimetic materials with ice-templating for biomedical applications. SMART MEDICINE 2023; 2:e20230017. [PMID: 39188345 PMCID: PMC11236069 DOI: 10.1002/smmd.20230017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 08/28/2024]
Abstract
The proper organization of cells and tissues is essential for their functionalization in living organisms. To create materials that mimic natural structures, researchers have developed techniques such as patterning, templating, and printing. Although these techniques own several advantages, these processes still involve complexity, are time-consuming, and have high cost. To better simulate natural materials with micro/nanostructures that have evolved for millions of years, the use of ice templates has emerged as a promising method for producing biomimetic materials more efficiently. This article explores the historical approaches taken to produce traditional biomimetic structural biomaterials and delves into the principles underlying the ice-template method and their various applications in the creation of biomimetic materials. It also discusses the most recent biomedical uses of biomimetic materials created via ice templates, including porous microcarriers, tissue engineering scaffolds, and smart materials. Finally, the challenges and potential of current ice-template technology are analyzed.
Collapse
Affiliation(s)
- Xiang Lin
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Lu Fan
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Li Wang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Anne M. Filppula
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
7
|
Liu F, Yang H, Feng X. Research Progress in Preparation, Properties and Applications of Biomimetic Organic-Inorganic Composites with "Brick-and-Mortar" Structure. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114094. [PMID: 37297231 DOI: 10.3390/ma16114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Inspired by nature, materials scientists have been exploring and designing various biomimetic materials. Among them, composite materials with brick-and-mortar-like structure synthesized from organic and inorganic materials (BMOIs) have attracted increasing attention from scholars. These materials have the advantages of high strength, excellent flame retardancy, and good designability, which can meet the requirements of various fields for materials and have extremely high research value. Despite the increasing interest in and applications of this type of structural material, there is still a dearth of comprehensive reviews, leaving the scientific community with a limited understanding of its properties and applications. In this paper, we review the preparation, interface interaction, and research progress of BMOIs, and propose possible future development directions for this class of materials.
Collapse
Affiliation(s)
- Feng Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Hongyu Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaming Feng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Patadiya J, Wang X, Joshi G, Kandasubramanian B, Naebe M. 3D-Printed Biomimetic Hierarchical Nacre Architecture: Fracture Behavior and Analysis. ACS OMEGA 2023; 8:18449-18461. [PMID: 37273619 PMCID: PMC10233667 DOI: 10.1021/acsomega.2c08076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/13/2023] [Indexed: 06/06/2023]
Abstract
Nacreous architecture has a good combination of toughness and modulus, which can be mimicked at the micron to submicron level using 3D printing to resolve the demand in numerous applications such as automobile, aerospace, and protection equipment. The present study examines the fabrication of two nacre structures, a nacre columnar (NC) and a nacre sheet (NS), and a pristine structure via fused deposition modeling (FDM) and explores their mechanically superior stacking structure, mechanism of failure, crack propagation, and energy dissipation. The examination reveals that the nacre structure has significant mechanical properties compared to a neat sample. Additionally, NS has 112.098 J/m impact resistance (9.37% improvement), 803.415 MPa elastic modulus (11.23% improvement), and 1563 MPa flexural modulus (10.85% improvement), which are all higher than those of the NC arrangement.
Collapse
Affiliation(s)
- Jigar Patadiya
- Institute
for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced
Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Xungai Wang
- JC
STEM Lab of Sustainable Fibers and Textiles, School of Fashion and
Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ganapati Joshi
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced
Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced
Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Minoo Naebe
- Institute
for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| |
Collapse
|
9
|
Xu C, Gao M, Yu X, Zhang J, Cheng Y, Zhu M. Fibrous Aerogels with Tunable Superwettability for High-Performance Solar-Driven Interfacial Evaporation. NANO-MICRO LETTERS 2023; 15:64. [PMID: 36899127 PMCID: PMC10006392 DOI: 10.1007/s40820-023-01034-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Solar-driven interfacial evaporation is an emerging technology for water desalination. Generally, double-layered structure with separate surface wettability properties is usually employed for evaporator construction. However, creating materials with tunable properties is a great challenge because the wettability of existing materials is usually monotonous. Herein, we report vinyltrimethoxysilane as a single molecular unit to hybrid with bacterial cellulose (BC) fibrous network, which can be built into robust aerogel with entirely distinct wettability through controlling assembly pathways. Siloxane groups or carbon atoms are exposed on the surface of BC nanofibers, resulting in either superhydrophilic or superhydrophobic aerogels. With this special property, single component-modified aerogels could be integrated into a double-layered evaporator for water desalination. Under 1 sun, our evaporator achieves high water evaporation rates of 1.91 and 4.20 kg m-2 h-1 under laboratory and outdoor solar conditions, respectively. Moreover, this aerogel evaporator shows unprecedented lightweight, structural robustness, long-term stability under extreme conditions, and excellent salt-resistance, highlighting the advantages in synthesis of aerogel materials from the single molecular unit.
Collapse
Affiliation(s)
- Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
10
|
Li X, He X, Ling Y, Bai Z, Liu C, Liu X, Jia K. In-situ growth of silver nanoparticles on sulfonated polyarylene ether nitrile nanofibers as super-wetting antibacterial oil/water separation membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
11
|
Xiong R, Wu W, Lu C, Cölfen H. Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206509. [PMID: 36208076 DOI: 10.1002/adma.202206509] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Nature provides numerous biomineral design inspirations for constructing structural materials with desired functionalities. However, large-scale production of damage-tolerant Bouligand structural materials with biologically comparable photonics remains a longstanding challenge. Here, an efficient and scalable artificial molting strategy, based on self-assembly of cellulose nanocrystals and subsequent mineralization of amorphous calcium carbonate, is developed to produce biomimetic materials with an exceptional combination of mechanical and photonic properties that are usually mutually exclusive in synthetic materials. These biomimetic composites exhibit tunable mechanics from "strong and flexible", which exceeds the benchmark of natural chiral materials, to "stiff and hard", which is comparable to natural and synthetic counterparts. Especially, the biomimetic composites possess ultrahigh stiffness of 2 GPa in their fully water-swollen state-a value well beyond hydrated crab exoskeleton, cartilage, tendon, and stiffest synthetic hydrogels, combined with exceptional strength and resilience. Additionally, these composites are distinguished by the tunable chiral structural color and water-triggered switchable photonics that are absent in most artificial mineralized materials, as well as unique hydroplastic properties. This study opens the door for a scalable synthesis of resilient biophotonic structural materials in practical bulk form.
Collapse
Affiliation(s)
- Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Wanlin Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| |
Collapse
|
12
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|