1
|
Orel N, Lokovšek A, Orlando-Bonaca M, Tinta T. Diversity of the surface microbiome of canopy-forming brown macroalgae (Fucales) in the northern Adriatic. Microbiol Spectr 2025:e0220424. [PMID: 40237470 DOI: 10.1128/spectrum.02204-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Canopy-forming brown macroalgae (Fucales) offer numerous key ecosystem services in Mediterranean coastal areas. However, anthropogenic pressures and climate change have significantly impacted their habitats, leading to an extensive population decline. Interactions between algae and microbiota are a major ecological aspect, yet they represent a significant knowledge gap. In our baseline study, we describe the diversity and host specificity of the microbiome of two genetically identical but morphologically distinct populations of Gongolaria barbata from anthropogenically impacted northern Adriatic Sea. Our preliminary results showed that the microbiomes of G. barbata exhibited low host specificity, with 75% of the algae-associated amplicon sequence variants (ASVs) being part of the core coastal ecosystem microbiome. However, microbiomes of specific algal parts, ambient seawater, and sediment differed significantly in terms of alpha diversity and composition. In contrast, the holdfast and axis show higher similarity with sediment microbiomes, indicating potential horizontal transmission pathways. Microbiomes associated with deciduous parts of morphologically distinct G. barbata populations showed no difference in alpha diversity and composition. In contrast, higher variation in alpha diversity and lower sequence proportion of shared ASVs were observed in the holdfast and axis of the two distinct populations. Our observational study provides valuable new insights and baseline for future hypothesis-driven research on the interactions between algae and associated microbiota-a knowledge gap that needs to be addressed in the future for better understanding of the ecological and evolutionary dynamics of coastal ecosystems.IMPORTANCEOur study focuses on the microbiomes of canopy-forming brown macroalgae from the Fucales order, essential habitat builders in Mediterranean coastal areas. These habitats, offering key ecosystem services, face significant declines due to anthropogenic pressures and climate change. We used next-generation 16S rRNA amplicon sequencing to reveal novel insights into the diversity and host specificity of Gongolaria barbata populations in impacted ecosystems. Our findings suggest environmental factors influence the structure of the algae microbiome, with potential recruitment from adjacent sediment communities. This research enhances the understanding of marine ecosystems' ecological and evolutionary dynamics, providing valuable insights for conservation and management efforts.
Collapse
Affiliation(s)
- Neža Orel
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Ana Lokovšek
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| |
Collapse
|
2
|
Giraldo‐Ospina A, Bell T, Carr MH, Caselle JE. Drivers of spatiotemporal variability in a marine foundation species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3092. [PMID: 39957275 PMCID: PMC11831097 DOI: 10.1002/eap.3092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/18/2024] [Accepted: 12/06/2024] [Indexed: 02/18/2025]
Abstract
Marine foundation species are critical for the structure and functioning of ecosystems and constitute the pillar of trophic chains while also providing a variety of ecosystem services. In recent decades, many foundation species have declined in abundance, sometimes threatening their current geographical distribution. Kelps (Laminariales) are the primary foundation species in temperate coastal systems worldwide. Kelp ecosystems are notoriously variable, challenging the identification of key factors controlling their dynamics. Identification of these drivers is key to predicting the fate of kelp ecosystems under climatic change and to informing management and conservation decisions such as restoration. Here, we used in situ data from long-term monitoring programs across 1350 km of coast spanning multiple biogeographic regions in the state of California (USA) to identify the major regional drivers of density of two dominant canopy-forming kelp species and to elucidate the spatial and temporal scales over which they operate. We used generalized additive mixed models to identify the key drivers of density of two dominant kelp species (Nereocystis luetkeana and Macrocystis pyrifera) across four ecological regions of the state of California (north, central, southwest, and southeast) and for the past two decades (2004-2021). The dominant drivers of kelp density varied among regions and species but always included some combination of nitrate availability, wave energy and exposure, density of purple sea urchins, and temperature as the most important predictors. These variables explained 63% of the variability of bull kelp in the northern and central regions, and 45% and 51.4% of the variability in giant kelp for the central/southwest and southeast regions, respectively. These large-scale analyses infer that a combination of lower nutrient availability, changes in wave energy and exposure, and increases in temperature and purple sea urchin counts have contributed to the decline of kelp observed in the last decade. Understanding the drivers of kelp dynamics can be used to identify regional patterns of historical stability and periods of significant change, ultimately informing resource management and conservation decisions such as site selection for kelp protection and restoration.
Collapse
Affiliation(s)
- Anita Giraldo‐Ospina
- Marine Science Institute, University of California Santa BarbaraSanta BarbaraCaliforniaUSA
- School of Biological Sciences, University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Tom Bell
- Department of Applied Ocean Physics and EngineeringWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Mark H. Carr
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Jennifer E. Caselle
- Marine Science Institute, University of California Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
3
|
Descourvières E, Petruzzellis F, Falace A, Nardini A, Tomasella M. Water relations and photosystem II efficiency of the intertidal macroalga Fucus virsoides. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109000. [PMID: 39106766 DOI: 10.1016/j.plaphy.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Intertidal macroalgae are sessile poikilohydric organisms exposed to desiccation stress during emersion. Water relations parameters are useful tools to evaluate an organism's capacity to withstand water scarcity conditions, but such information on marine intertidal macroalgae is scarce. We assessed the water relations of the intertidal relict Fucus virsoides, the unique Fucus species endemic to the Mediterranean. We combined measurements of water potential (Ψ) parameters derived from pressure-volume curves and chlorophyll a fluorescence (Fv/Fm) in juvenile and adult thalli sampled in three different dates between March and April 2023. F. virsoides exhibited remarkable water stress tolerance, as evidenced by the low water potential at turgor loss point (Ψtlp, -7.0 MPa on average), and the maintenance of high Fv/Fm at low water potentials indicating a prolonged maintenance of healthy physiological status. While no differences were observed between growth stages, Ψtlp, capacitance (C) and the bulk modulus of elasticity (ε) varied significantly according to the sampling dates, whereas the osmotic potential at full turgor did not significantly change. Ψ measured on thalli collected after a typical prolonged emersion period was markedly lower (-12.3 MPa on average) than the estimated Ψtlp, suggesting that the population is frequently undergoing turgor loss. Further investigations are required to determine environmental tolerance ranges based on water status characteristics to enhance our understanding of F. virsoides responses and vulnerability to climate change, thus providing insight into the possible causes of its widespread decline.
Collapse
Affiliation(s)
- Emmanuelle Descourvières
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; National Institute of Oceanography and Applied Geophysics - OGS, Via Beirut 2, 34014 Trieste, Italy
| | - Francesco Petruzzellis
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Annalisa Falace
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Andrea Nardini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Martina Tomasella
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| |
Collapse
|
4
|
Manca F, Benedetti-Cecchi L, Bradshaw CJA, Cabeza M, Gustafsson C, Norkko AM, Roslin TV, Thomas DN, White L, Strona G. Projected loss of brown macroalgae and seagrasses with global environmental change. Nat Commun 2024; 15:5344. [PMID: 38914573 PMCID: PMC11196678 DOI: 10.1038/s41467-024-48273-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/26/2024] [Indexed: 06/26/2024] Open
Abstract
Although many studies predict extensive future biodiversity loss and redistribution in the terrestrial realm, future changes in marine biodiversity remain relatively unexplored. In this work, we model global shifts in one of the most important marine functional groups-ecosystem-structuring macrophytes-and predict substantial end-of-century change. By modelling the future distribution of 207 brown macroalgae and seagrass species at high temporal and spatial resolution under different climate-change projections, we estimate that by 2100, local macrophyte diversity will decline by 3-4% on average, with 17 to 22% of localities losing at least 10% of their macrophyte species. The current range of macrophytes will be eroded by 5-6%, and highly suitable macrophyte habitat will be substantially reduced globally (78-96%). Global macrophyte habitat will shift among marine regions, with a high potential for expansion in polar regions.
Collapse
Affiliation(s)
- Federica Manca
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland.
| | | | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (EpicAustralia.org.au), Wollongong, NSW, Australia
| | - Mar Cabeza
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Camilla Gustafsson
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | - Alf M Norkko
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | - Tomas V Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
- Spatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, PO Box 27, Latokartanonkaari 5, 00014, Helsinki, Finland
| | - David N Thomas
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland
| | - Lydia White
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | | |
Collapse
|
5
|
Campos FF, de Moura AC, Fernandez MDO, Marques AC, Pérez CD. Hydroids from a reef system under the influence of the Amazon River plume, Brazil. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106563. [PMID: 38801786 DOI: 10.1016/j.marenvres.2024.106563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
The Amazon Reef System (ARS) is one of the most important shallow and mesophotic reef ecosystems in the South Atlantic Ocean. The ARS consists mainly of extensive beds of calcareous algae interspersed by assemblages of octocorals and sponges. The enormous freshwater discharge from the Amazon River forms a plume along the extensive Amazon continental shelf, for which the hydroid community is still largely unknown. The aim of this study is to document the diversity and distribution of hydroids from the ARS, as well as to infer the influence of the plume on species composition in the different zones. Samples were collected at ninety-six stations between 15 and 240 m deep on the Amazon shelf. A total of 37 species were recorded in the studied area. Hydroid assemblages are richer in zones under lower river plume influence, and species composition differs significantly between zones with and without plume influence (PERMANOVA, p = 0.0025). The dissolved oxygen and nitrate ranges were the environmental variables significantly correlated with the hydroid distribution. This study is the first surveying the hydroid species composition and richness in the ARS, highlighting the presence of a typical reef biota and that further faunal studies in underexplored areas of the Atlantic should reveal the distribution of many poorly known hydroids species.
Collapse
Affiliation(s)
- Felipe Ferreira Campos
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Rua Alto Do Reservatório, S/n, Bela Vista, Vitória de Santo Antão, Pernambuco, Brazil; Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Andreza Campos de Moura
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Rua Alto Do Reservatório, S/n, Bela Vista, Vitória de Santo Antão, Pernambuco, Brazil; Programa de Pós-Graduação Em Biologia Animal, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, 1235, Recife, Pernambuco, Brazil
| | - Marina de Oliveira Fernandez
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, R. Matão, Trav 14, 101, 05508-090, São Paulo, SP, Brazil
| | - Antonio Carlos Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, R. Matão, Trav 14, 101, 05508-090, São Paulo, SP, Brazil
| | - Carlos Daniel Pérez
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Rua Alto Do Reservatório, S/n, Bela Vista, Vitória de Santo Antão, Pernambuco, Brazil; Programa de Pós-Graduação Em Biologia Animal, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, 1235, Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Madeira P, Reddy MM, Assis J, Bolton JJ, Rothman MD, Anderson RJ, Kandjengo L, Kreiner A, Coleman MA, Wernberg T, De Clerck O, Leliaert F, Bandeira S, Ada AM, Neiva J, Pearson GA, Serrão EA. Cryptic diversity in southern African kelp. Sci Rep 2024; 14:11071. [PMID: 38745036 PMCID: PMC11093989 DOI: 10.1038/s41598-024-61336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
The southern coast of Africa is one of the few places in the world where water temperatures are predicted to cool in the future. This endemism-rich coastline is home to two sister species of kelps of the genus Ecklonia maxima and Ecklonia radiata, each associated with specific thermal niches, and occuring primarily on opposite sides of the southern tip of Africa. Historical distribution records indicate that E. maxima has recently shifted its distribution ~ 70 km eastward, to sites where only E. radiata was previously reported. The contact of sister species with contrasting thermal affinities and the occurrence of mixed morphologies raised the hypothesis that hybridization might be occurring in this contact zone. Here we describe the genetic structure of the genus Ecklonia along the southern coast of Africa and investigate potential hybridization and cryptic diversity using a combination of nuclear microsatellites and mitochondrial markers. We found that both species have geographically discrete genetic clusters, consistent with expected phylogeographic breaks along this coastline. In addition, depth-isolated populations were found to harbor unique genetic diversity, including a third Ecklonia lineage. Mito-nuclear discordance and high genetic divergence in the contact zones suggest multiple hybridization events between Ecklonia species. Discordance between morphological and molecular identification suggests the potential influence of abiotic factors leading to convergent phenotypes in the contact zones. Our results highlight an example of cryptic diversity and hybridization driven by contact between two closely related keystone species with contrasting thermal affinities.
Collapse
Affiliation(s)
- Pedro Madeira
- CCMAR, University of Algarve, Gambelas, Faro, Portugal.
| | - Maggie M Reddy
- Department of Biological Sciences, University of Cape Town, Cape Town, 7701, South Africa.
| | - Jorge Assis
- CCMAR, University of Algarve, Gambelas, Faro, Portugal
- Faculty of Bioscience and Aquaculture, Nord Universitet, Bodø, Norway
| | - John J Bolton
- Department of Biological Sciences, University of Cape Town, Cape Town, 7701, South Africa.
| | - Mark D Rothman
- Department of Biological Sciences, University of Cape Town, Cape Town, 7701, South Africa.
- Department of Environment, Forestry and Fisheries, Private Bag X2, Vlaeberg, 8012, South Africa.
| | - Robert J Anderson
- Department of Biological Sciences, University of Cape Town, Cape Town, 7701, South Africa
| | - Lineekela Kandjengo
- Department of Fisheries and Ocean Sciences, University of Namibia, Sam Nujoma Campus, Henties Bay, Namibia
| | - Anja Kreiner
- National Marine Information and Research Centre, Ministry of Fisheries and Marine Resources, Swakopmund, Namibia
| | - Melinda A Coleman
- New South Wales Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Olivier De Clerck
- Biology Department, Ghent University, Krijgslaan 281 S8, 9000, Ghent, Belgium
| | | | - Salomão Bandeira
- Department of Biological Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Abdul M Ada
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - João Neiva
- CCMAR, University of Algarve, Gambelas, Faro, Portugal
| | | | | |
Collapse
|
7
|
Vafeiadou A, Fragkopoulou E, Assis J. A global dataset of demosponge distribution records. Data Brief 2024; 53:110200. [PMID: 38435734 PMCID: PMC10907141 DOI: 10.1016/j.dib.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Biodiversity information in the form of species occurrence records is key for monitoring and predicting current and future biodiversity patterns, as well as for guiding conservation and management strategies. However, the reliability and accuracy of this information are frequently undermined by taxonomic and spatial errors. Additionally, biodiversity information facilities often share data in diverse incompatible formats, precluding seamless integration and interoperability. We provide a comprehensive quality-controlled dataset of occurrence records of the Class Demospongiae, which comprises 81% of the entire Porifera phylum. Demosponges are ecologically significant as they structure rich habitats and play a key role in nutrient cycling within marine benthic communities. The dataset aggregates occurrence records from multiple sources, employs dereplication and taxonomic curation techniques, and is flagged for potentially incorrect records based on expert knowledge regarding each species' bathymetric and geographic distributions. It yields 417,626 records of 1,816 accepted demosponge species (of which 321,660 records of 1,495 species are flagged as potentially correct), which are provided under the FAIR principle of Findability, Accessibility, Interoperability and Reusability in the Darwin Core Standard. This dataset constitutes the most up-to-date baseline for studying demosponge diversity at the global scale, enabling researchers to examine biodiversity patterns (e.g., species richness and endemicity), and forecast potential distributional shifts under future scenarios of climate change.
Collapse
Affiliation(s)
- Ariadni Vafeiadou
- Centre of Marine Sciences (CCMAR-CIMAR), University of the Algarve, 8005-139 Faro, Portugal
| | - Eliza Fragkopoulou
- Centre of Marine Sciences (CCMAR-CIMAR), University of the Algarve, 8005-139 Faro, Portugal
| | - Jorge Assis
- Centre of Marine Sciences (CCMAR-CIMAR), University of the Algarve, 8005-139 Faro, Portugal
- Faculty of Bioscience and Aquaculture, Nord Universitet, Postboks 1490, Bodø, Norway
| |
Collapse
|
8
|
Salland N, Wilding C, Jensen A, Smale DA. Spatiotemporal variability in population demography and morphology of the habitat-forming macroalga Saccorhiza polyschides in the Western English Channel. ANNALS OF BOTANY 2024; 133:117-130. [PMID: 37962600 PMCID: PMC10921834 DOI: 10.1093/aob/mcad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND AIMS Large brown macroalgae serve as foundation organisms along temperate and polar coastlines, providing a range of ecosystem services. Saccorhiza polyschides is a warm-temperate kelp-like species found in the northeast Atlantic, which is suggested to have proliferated in recent decades across the southern UK, possibly in response to increasing temperatures, physical disturbance and reduced competition. However, little is known about S. polyschides with regard to ecological functioning and population dynamics across its geographical range. Here we examined the population demography of S. polyschides populations in southwest UK, located within the species' range centre, to address a regional knowledge gap and to provide a baseline against which to detect future changes. METHODS Intertidal surveys were conducted during spring low tides at three sites along a gradient of wave exposure in Plymouth Sound (Western English Channel) over a period of 15 months. Density, cover, age, biomass and morphology of S. polyschides were quantified. Additionally, less frequent sampling of shallow subtidal reefs was conducted to compare intertidal and subtidal populations. KEY RESULTS We recorded pronounced seasonality, with fairly consistent demographic patterns across sites and depths. By late summer, S. polyschides was a dominant habitat-former on both intertidal and subtidal reefs, with maximum standing stock exceeding 13 000 g wet weight m-2. CONCLUSIONS Saccorhiza polyschides is a conspicuous and abundant member of rocky reef assemblages in the region, providing complex and abundant biogenic habitat for associated organisms and high rates of primary productivity. However, its short-lived pseudo-annual life strategy is in stark contrast to dominant long-lived perennial laminarian kelps. As such, any replacement or reconfiguration of habitat-forming macroalgae due to ocean warming will probably have implications for local biodiversity and community composition. More broadly, our study demonstrates the importance of high-resolution cross-habitat surveys to generate robust baselines of kelp population demography, against which the ecological impacts of climate change and other stressors can be reliably detected.
Collapse
Affiliation(s)
- Nora Salland
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - Catherine Wilding
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Antony Jensen
- School of Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - Dan A Smale
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
9
|
Gouvêa L, Fragkopoulou E, Legrand T, Serrão EA, Assis J. Range map data of marine ecosystem structuring species under global climate change. Data Brief 2024; 52:110023. [PMID: 38293573 PMCID: PMC10827387 DOI: 10.1016/j.dib.2023.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Data on contemporary and future geographical distributions of marine species are crucial for guiding conservation and management policies in face of climate change. However, available distributional patterns have overlooked key ecosystem structuring species, despite their numerous ecological and socioeconomic services. Future range estimates are mostly available for few species at regional scales, and often rely on the outdated Representative Concentration Pathway scenarios of climate change, hindering global biodiversity estimates within the framework of current international climate policies. Here, we provide range maps for 980 marine structuring species of seagrasses, kelps, fucoids, and cold-water corals under present-day conditions (from 2010 to 2020) and future scenarios (from 2090 to 2100) spanning from low carbon emission scenarios aligned with the goals of the Paris Agreement (Shared Socioeconomic Pathway 1-1.9), to higher emissions under reduced mitigation strategies (SSP3-7.0 and SSP5-8.5). These models were developed using state-of-the-art and advanced machine learning algorithms linking the most comprehensive and quality-controlled datasets of occurrence records with high-resolution, biologically relevant predictor variables. By integrating the best aspects of species distribution modelling over key ecosystem structuring species, our datasets hold the potential to enhance the ability to inform strategic and effective conservation policy, ultimately supporting the resilience of ocean ecosystems.
Collapse
Affiliation(s)
- Lidiane Gouvêa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | | | - Térence Legrand
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Ester A. Serrão
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Jorge Assis
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Faculty of Bioscience and Aquaculture, Nord Universitet, Bodø, Norway
| |
Collapse
|
10
|
Hunt D, Dewar A, Dal Molin F, Willey N. Enhancing radiological monitoring of 137Cs in coastal environments using taxonomic signals in brown seaweeds. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 268-269:107261. [PMID: 37541061 DOI: 10.1016/j.jenvrad.2023.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
With the rapidly expanding global nuclear industry, more efficient and direct radiological monitoring approaches are needed to ensure the associated environmental health impacts and risk remain fully assessed and undertaken as robustly as possible. Conventionally, radiological monitoring in the environment consists of measuring a wide range of anthropogenically enhanced radionuclides present in selected environmental matrices and using generic transfer values for modelling and prediction that are not necessarily suitable in some situations. Previous studies have found links between taxonomy and radionuclide uptake in terrestrial plants and freshwater fish, but the marine context remains relatively unexplored. This preliminary study was aimed at investigating a similar relationship between brown seaweed, an important indicator in radiological monitoring programmes in the marine environment, and Caesium-137, an important radionuclide discharged to the marine environment. A linear mixed model was fitted using REsidual Maximum Likelihood (REML) to activity concentration data collected from literature published worldwide and other databases. The output from REML modelling was adjusted to the International Atomic Energy Agency (IAEA) quoted transfer value for all seaweed taxa in order to produce mean estimate transfer value for each species, which were then analysed by hierarchical ANalysis Of VAriance (ANOVA) based on the taxonomy of brown seaweeds. Transfer value was found to vary between taxa with increasing significance up the taxonomic hierarchy, suggesting a link to evolutionary history. This novel approach enables contextualisation of activity concentration measurements of important marine indicator species in relation to the wider community, allows prediction of unknown transfer values without the need to sample specific species and could, therefore, enhance radiological monitoring by providing accurate, taxon specific transfer values for use in dose assessments and models of radionuclide transfer in the environment.
Collapse
Affiliation(s)
- D Hunt
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK; Centre for Research in Bioscience, University of the West of England, Coldharbour Lane, Frenchay, Bristol, BS16 1QY, UK.
| | - A Dewar
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
| | - F Dal Molin
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
| | - N Willey
- Centre for Research in Bioscience, University of the West of England, Coldharbour Lane, Frenchay, Bristol, BS16 1QY, UK
| |
Collapse
|
11
|
Assis J, Alberto F, Macaya EC, Castilho Coelho N, Faugeron S, Pearson GA, Ladah L, Reed DC, Raimondi P, Mansilla A, Brickle P, Zuccarello GC, Serrão EA. Past climate-driven range shifts structuring intraspecific biodiversity levels of the giant kelp (Macrocystis pyrifera) at global scales. Sci Rep 2023; 13:12046. [PMID: 37491385 PMCID: PMC10368654 DOI: 10.1038/s41598-023-38944-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
The paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species' population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution of Macrocystis pyrifera is composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following ~ 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.
Collapse
Affiliation(s)
- Jorge Assis
- CCMAR, CIMAR, Universidade do Algarve, Gambelas, Faro, Portugal.
- Faculty of Bioscience and Aquaculture, Nord Universitet, Bodø, Norway.
| | - Filipe Alberto
- Department of Biological Sciences, University of Wisconsin, Milwaukee, USA
| | - Erasmo C Macaya
- Centro Fondap IDEAL and Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
| | - Nelson Castilho Coelho
- CCMAR, CIMAR, Universidade do Algarve, Gambelas, Faro, Portugal
- University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Sylvain Faugeron
- Núcleo Milenio MASH and IRL3614 Evolutionary Biology and Ecology of Algae, Facultad de Ciencias Biológicas, CNRS, Sorbonne Université, Universidad Austral de Chile, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | - Lydia Ladah
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Daniel C Reed
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA
| | | | - Andrés Mansilla
- Cape Horn International Center (CHIC), Universidad de Magallanes, Punta Arenas, Chile
| | - Paul Brickle
- South Atlantic Environmental Research Institute, Stanley, Falkland Islands
| | - Giuseppe C Zuccarello
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Ester A Serrão
- CCMAR, CIMAR, Universidade do Algarve, Gambelas, Faro, Portugal
| |
Collapse
|
12
|
Lokovšek A, Pitacco V, Trkov D, Zamuda LL, Falace A, Orlando-Bonaca M. Keep It Simple: Improving the Ex Situ Culture of Cystoseira s.l. to Restore Macroalgal Forests. PLANTS (BASEL, SWITZERLAND) 2023; 12:2615. [PMID: 37514229 PMCID: PMC10386143 DOI: 10.3390/plants12142615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Brown algae from genus Cystoseira s.l. form dense underwater forests that represent the most productive areas in the Mediterranean Sea. Due to the combined effects of global and local stressors such as climate change, urbanization, and herbivore outbreaks, there has been a severe decline in brown algal forests in the Mediterranean Sea. Natural recovery of depleted sites is unlikely due to the low dispersal capacity of these species, and efficient techniques to restore such habitats are needed. In this context, the aims of our study were (1) to improve and simplify the current ex situ laboratory protocol for the cultivation of Gongolaria barbata by testing the feasibility of some cost-effective and time-efficient techniques on two donor sites of G. barbata and (2) to evaluate the survival and growth of young thalli during the laboratory phase and during the most critical five months after out-planting. Specifically, the following ex situ cultivation methods were tested: (A) cultivation on clay tiles in mesocosms with culture water prepared by three different procedures (a) filtered seawater with a 0.22 μm filter membrane, (b) filtered seawater with a 0.7 μm filter membrane (GF), and (c) UV-sterilized water, and (B) cultivation on clay tiles in open laboratory systems. After two weeks, all thalli were fixed to plastic lantern net baskets suspended at a depth of 2 m in the coastal sea (hybrid method), and the algal success was monitored in relation to the different donor sites and cultivation protocol. The satisfactory results of this study indicate that UV-sterilized water is suitable for the cultivation of G. barbata in mesocosm, which significantly reduces the cost of the laboratory phase. This opens the possibility of numerous and frequent algal cultures during the reproductive period of the species. Additionally, if the young thalli remain in the lantern net baskets for an extended period of several months, they can grow significantly in the marine environment without being exposed to pressure from herbivorous fish.
Collapse
Affiliation(s)
- Ana Lokovšek
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Valentina Pitacco
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Domen Trkov
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Leon Lojze Zamuda
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Annalisa Falace
- Department of Life Science, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Martina Orlando-Bonaca
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| |
Collapse
|
13
|
Balogh V, Fragkopoulou E, Serrão EA, Assis J. A dataset of cold-water coral distribution records. Data Brief 2023; 48:109223. [PMID: 37383736 PMCID: PMC10293957 DOI: 10.1016/j.dib.2023.109223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023] Open
Abstract
Species distribution data are key for monitoring present and future biodiversity patterns and informing conservation and management strategies. Large biodiversity information facilities often contain spatial and taxonomic errors that reduce the quality of the provided data. Moreover, datasets are frequently shared in varying formats, inhibiting proper integration and interoperability. Here, we provide a quality-controlled dataset of the diversity and distribution of cold-water corals, which provide key ecosystem services and are considered vulnerable to human activities and climate change effects. We use the common term cold-water corals to refer to species of the orders Alcyonacea, Antipatharia, Pennatulacea, Scleractinia, Zoantharia of the subphylum Anthozoa, and order Anthoathecata of the class Hydrozoa. Distribution records were collated from multiple sources, standardized using the Darwin Core Standard, dereplicated, taxonomically corrected and flagged for potential vertical and geographic distribution errors based on peer-reviewed published literature and expert consulting. This resulted in 817,559 quality-controlled records of 1,170 accepted species of cold-water corals, openly available under the FAIR principle of Findability, Accessibility, Interoperability and Reusability of data. The dataset represents the most updated baseline for the global cold-water coral diversity, and it can be used by the broad scientific community to provide insights into biodiversity patterns and their drivers, identify regions of high biodiversity and endemicity, and project potential redistribution under future climate change. It can also be used by managers and stakeholders to guide biodiversity conservation and prioritization actions against biodiversity loss.
Collapse
Affiliation(s)
- Viktória Balogh
- Center of Marine Sciences (CCMAR-CIMAR), University of the Algarve, 8005-139 Faro, Portugal
| | - Eliza Fragkopoulou
- Center of Marine Sciences (CCMAR-CIMAR), University of the Algarve, 8005-139 Faro, Portugal
| | - Ester A. Serrão
- Center of Marine Sciences (CCMAR-CIMAR), University of the Algarve, 8005-139 Faro, Portugal
| | - Jorge Assis
- Center of Marine Sciences (CCMAR-CIMAR), University of the Algarve, 8005-139 Faro, Portugal
- Faculty of Bioscience and Aquaculture, Nord Universitet, Postboks 1490, Bodø, Norway
| |
Collapse
|
14
|
Nikolaou A, Tsirintanis K, Rilov G, Katsanevakis S. Invasive Fish and Sea Urchins Drive the Status of Canopy Forming Macroalgae in the Eastern Mediterranean. BIOLOGY 2023; 12:763. [PMID: 37372048 DOI: 10.3390/biology12060763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023]
Abstract
Canopy-forming macroalgae, such as Cystoseira sensu lato, increase the three-dimensional complexity and spatial heterogeneity of rocky reefs, enhancing biodiversity and productivity in coastal areas. Extensive loss of canopy algae has been recorded in recent decades throughout the Mediterranean Sea due to various anthropogenic pressures. In this study, we assessed the biomass of fish assemblages, sea urchin density, and the vertical distribution of macroalgal communities in the Aegean and Levantine Seas. The herbivore fish biomass was significantly higher in the South Aegean and Levantine compared to the North Aegean. Very low sea urchin densities suggest local collapses in the South Aegean and the Levantine. In most sites in the South Aegean and the Levantine, the ecological status of macroalgal communities was low or very low at depths deeper than 2 m, with limited or no canopy algae. In many sites, canopy algae were restricted to a very narrow, shallow zone, where grazing pressure may be limited due to harsh hydrodynamic conditions. Using Generalized Linear Mixed Models, we demonstrated that the presence of canopy algae is negatively correlated with the biomass of the invasive Siganus spp. and sea urchins. The loss of Cystoseira s.l. forests is alarming, and urgent conservation actions are needed.
Collapse
Affiliation(s)
- Athanasios Nikolaou
- Department of Marine Sciences, University of the Aegean, 81100 Mytilene, Greece
| | | | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 31080, Israel
- The Leon H. Charney School of Marine Sciences, Marine Biology Department, University of Haifa, Mt. Carmel, Haifa 31905, Israel
| | | |
Collapse
|
15
|
Pessarrodona A, Assis J, Filbee-Dexter K, Burrows MT, Gattuso JP, Duarte CM, Krause-Jensen D, Moore PJ, Smale DA, Wernberg T. Global seaweed productivity. SCIENCE ADVANCES 2022; 8:eabn2465. [PMID: 36103524 PMCID: PMC9473579 DOI: 10.1126/sciadv.abn2465] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The magnitude and distribution of net primary production (NPP) in the coastal ocean remains poorly constrained, particularly for shallow marine vegetation. Here, using a compilation of in situ annual NPP measurements across >400 sites in 72 geographic ecoregions, we provide global predictions of the productivity of seaweed habitats, which form the largest vegetated coastal biome on the planet. We find that seaweed NPP is strongly coupled to climatic variables, peaks at temperate latitudes, and is dominated by forests of large brown seaweeds. Seaweed forests exhibit exceptionally high per-area production rates (a global average of 656 and 1711 gC m-2 year-1 in the subtidal and intertidal, respectively), being up to 10 times higher than coastal phytoplankton in temperate and polar seas. Our results show that seaweed NPP is a strong driver of production in the coastal ocean and call for its integration in the oceanic carbon cycle, where it has traditionally been overlooked.
Collapse
Affiliation(s)
- Albert Pessarrodona
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Corresponding author: ,
| | - Jorge Assis
- CCMAR, CIMAR, Universidade do Algarve, Gambelas, Faro, Portugal
| | - Karen Filbee-Dexter
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Institute of Marine Research, His, Norway
| | | | - Jean-Pierre Gattuso
- CNRS, Laboratoire d’Océanographie de Villefranche, Sorbonne Université, 181 chemin du Lazaret, F-06230 Villefranche-sur-mer, France
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
| | - Carlos M. Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Arctic Research Centre, Aarhus University, Aarhus C, Denmark
| | - Dorte Krause-Jensen
- Arctic Research Centre, Aarhus University, Aarhus C, Denmark
- Department of Ecoscience, Aarhus University, Vejlsøvej 25, DK-8600 Silkeborg, Denmark
| | - Pippa J. Moore
- The Dove Marine Laboratory, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Dan A. Smale
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Institute of Marine Research, His, Norway
- Roskilde University, Box 260, 4000 Roskilde, Denmark
| |
Collapse
|
16
|
Orlando-Bonaca M, Trkov D, Klun K, Pitacco V. Diversity of Molluscan Assemblage in Relation to Biotic and Abiotic Variables in Brown Algal Forests. PLANTS 2022; 11:plants11162131. [PMID: 36015433 PMCID: PMC9415959 DOI: 10.3390/plants11162131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
Canopy-forming macroalgae, mainly those belonging to the order Fucales, form the so-called brown algal forests, which are among the most productive assemblages in shallow coastal zones. Their vertical, branching canopies increase nearshore primary production, provide nursery areas for juvenile fish, and sustain understory assemblages of smaller algae and both sessile and vagile fauna. The majority of benthic invertebrates inhabiting these forests have larval stages that spend some time floating freely or swimming in the plankton. Therefore, canopy-forming macroalgae play an important role as species collectors related to larval supply and hydrodynamic processes. During the past several decades, brown algal forests have significantly reduced their extension and coverage in the Mediterranean basin, due to multiple interacting natural and anthropogenic pressures, with negative consequences also for the related fauna. The aim of this research was to examine how differences in macrophyte abundance and structure, as well as environmental variables, affect the associated molluscan communities in the shallow northern Adriatic Sea. Sampling sites with well-developed vegetation cover dominated by different canopy-forming species were selected in the shallow infralittoral belt of the northern Adriatic Sea in the spring–summer period of the years 2019 and 2020. Our results confirm the importance of algal forests for molluscan assemblage, with a total of 68 taxa of molluscs found associated with macrophytes. Gastropods showed the highest richness and abundance, followed by bivalves. Mollusc richness and diversity (in terms of biotic indices) were not related with the degree of development of canopy-forming species (in terms of total cover and total volume), nor with the ecological status of benthic macroalgae at different depths. On the contrary, the variability in molluscan taxa abundances was explained by some environmental variables, such as temperature, pH, light, and nitrates concentration.
Collapse
|
17
|
Evaluating Seagrass Meadow Dynamics by Integrating Field-Based and Remote Sensing Techniques. PLANTS 2022; 11:plants11091196. [PMID: 35567197 PMCID: PMC9104372 DOI: 10.3390/plants11091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Marine phanerogams are considered biological sentinels or indicators since any modification in seagrass meadow distribution and coverage signals negative changes in the marine environment. In recent decades, seagrass meadows have undergone global losses at accelerating rates, and almost one-third of their coverage has disappeared globally. This study focused on the dynamics of seagrass meadows in the northern Adriatic Sea, which is one of the most anthropogenically affected areas in the Mediterranean Sea. Seagrass distribution data and remote sensing products were utilized to identify the stable and dynamic parts of the seagrass ecosystem. Different seagrass species could not be distinguished with the Sentinel-2 (BOA) satellite image. However, results revealed a generally stable seagrass meadow (283.5 Ha) but, on the other hand, a stochastic behavior in seagrass meadow retraction (90.8 Ha) linked to local environmental processes associated with anthropogenic activities or climate change. If systemized, this proposed approach to monitoring seagrass meadow dynamics could be developed as a spatial decision support system for the entire Mediterranean basin. Such a tool could serve as a key element for decision makers in marine protected areas and would potentially support more effective conservation and management actions in these highly productive and important environments.
Collapse
|
18
|
Buelow CA, Connolly RM, Turschwell MP, Adame MF, Ahmadia GN, Andradi-Brown DA, Bunting P, Canty SWJ, Dunic JC, Friess DA, Lee SY, Lovelock CE, McClure EC, Pearson RM, Sievers M, Sousa AI, Worthington TA, Brown CJ. Ambitious global targets for mangrove and seagrass recovery. Curr Biol 2022; 32:1641-1649.e3. [PMID: 35196506 DOI: 10.1016/j.cub.2022.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/15/2022]
Abstract
There is an urgent need to halt and reverse loss of mangroves and seagrass to protect and increase the ecosystem services they provide to coastal communities, such as enhancing coastal resilience and contributing to climate stability.1,2 Ambitious targets for their recovery can inspire public and private investment in conservation,3 but the expected outcomes of different protection and restoration strategies are unclear. We estimated potential recovery of mangroves and seagrass through gains in ecosystem extent to the year 2070 under a range of protection and restoration strategies implemented until the year 2050. Under a protection-only scenario, the current trajectories of net mangrove loss slowed, and a minor net gain in global seagrass extent (∼1%) was estimated. Protection alone is therefore unlikely to drive sufficient recovery. However, if action is taken to both protect and restore, net gains of up to 5% and 35% of mangroves and seagrasses, respectively, could be achieved by 2050. Further, protection and restoration can be complementary, as protection prevents losses that would otherwise occur post-2050, highlighting the importance of implementing protection measures. Our findings provide the scientific evidence required for setting strategic and ambitious targets to inspire significant global investment and effort in mangrove and seagrass conservation.
Collapse
Affiliation(s)
- Christina A Buelow
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Rod M Connolly
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Mischa P Turschwell
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Maria F Adame
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Gabby N Ahmadia
- Ocean Conservation, World Wildlife Fund, 1250 24th Street NW, Washington, D.C. 20037, USA
| | - Dominic A Andradi-Brown
- Ocean Conservation, World Wildlife Fund, 1250 24th Street NW, Washington, D.C. 20037, USA; Mangrove Specialist Group, International Union for the Conservation of Nature (IUCN), Conservation Programmes, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - Pete Bunting
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DB, UK
| | - Steven W J Canty
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA; Working Land and Seascapes, Smithsonian Institution, Washington, D.C. 20013, USA
| | - Jillian C Dunic
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Daniel A Friess
- Department of Geography, National University of Singapore, 1 Arts Link, Singapore 117570, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; Mangrove Specialist Group, International Union for the Conservation of Nature (IUCN), Conservation Programmes, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - Shing Yip Lee
- Mangrove Specialist Group, International Union for the Conservation of Nature (IUCN), Conservation Programmes, Zoological Society of London, Regents Park, London NW1 4RY, UK; Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Catherine E Lovelock
- Mangrove Specialist Group, International Union for the Conservation of Nature (IUCN), Conservation Programmes, Zoological Society of London, Regents Park, London NW1 4RY, UK; The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Eva C McClure
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Ryan M Pearson
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael Sievers
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Ana I Sousa
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Thomas A Worthington
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge CB2 3QZ, UK
| | - Christopher J Brown
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
19
|
Monserrat M, Catania D, Asnaghi V, Chiantore M, Lemée R, Mangialajo L. The role of habitat in the facilitation of Ostreopsis spp. blooms. HARMFUL ALGAE 2022; 113:102199. [PMID: 35287932 DOI: 10.1016/j.hal.2022.102199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, recurrent Ostreopsis spp. blooms have been recorded throughout the globe, causing public health issues and mass mortalities of invertebrates. Ostreopsis species are benthic and develop in shallow waters in close relation with a substrate, but possible substrate preferences are still ambiguous. Bloom develops on both living and dead substrates and several interacting biotic and abiotic factors acting at different spatial scales can potentially foster or regulate Ostreopsis spp. development. The objective of this review is to collect and summarize information on Ostreopsis spp. blooms related to the habitat at different spatial scales, in order to assess preferences and trends. References including Ostreopsis spp. samplings in the field were analysed in this review, as potentially including information about the micro- (substrate), meso‑ (community) and macrohabitat (ecosystem) related to Ostreopsis spp. blooms. The sampled substrate and the ecosystem where Ostreopsis spp. were collected were generally reported and described in the studies, while the description of the mesohabitat was rarely reported. Ostreopsis spp. were generally described as attached to biotic substrates and in particular, macroalgae, even in studies conducted in coral reefs, where macroalgae are generally not dominant (but they can be in case of coral reef degradation). In both temperate and tropical areas, Ostreopsis spp. were mostly sampled on algal species usually forming medium or low complexity communities (erect or turf-forming algae), often characteristic from post-regime shift scenarios, and rarely on canopy-forming species (such as fucoids and kelps). This literature review highlights the need of collecting more information about the mesohabitat where important Ostreopsis spp. blooms develop, as much as of the underlying mechanisms driving eventual differences on Ostreopsis spp. abundances. This knowledge would allow a better risk assessment of Ostreopsis spp. blooms, identifying areas at high risk on the base of the benthic habitats.
Collapse
Affiliation(s)
- Margalida Monserrat
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-mer, France; Federative Research Institute - Marine Resources, Université Côte d'Azur, Nice, France.
| | - Daniela Catania
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-mer, France
| | | | | | - Rodolphe Lemée
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-mer, France
| | - Luisa Mangialajo
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France; Federative Research Institute - Marine Resources, Université Côte d'Azur, Nice, France
| |
Collapse
|
20
|
Capistrant-Fossa KA, Morrison HG, Engelen AH, Quigley CTC, Morozov A, Serrão EA, Brodie J, Gachon CMM, Badis Y, Johnson LE, Hoarau G, Abreu MH, Tester PA, Stearns LA, Brawley SH. The microbiome of the habitat-forming brown alga Fucus vesiculosus (Phaeophyceae) has similar cross-Atlantic structure that reflects past and present drivers 1. JOURNAL OF PHYCOLOGY 2021; 57:1681-1698. [PMID: 34176151 DOI: 10.1111/jpy.13194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 05/25/2023]
Abstract
Latitudinal diversity gradients have provided many insights into species differentiation and community processes. In the well-studied intertidal zone, however, little is known about latitudinal diversity in microbiomes associated with habitat-forming hosts. We investigated microbiomes of Fucus vesiculosus because of deep understanding of this model system and its latitudinally large, cross-Atlantic range. Given multiple effects of photoperiod, we predicted that cross-Atlantic microbiomes of the Fucus microbiome would be similar at similar latitudes and correlate with environmental factors. We found that community structure and individual amplicon sequencing variants (ASVs) showed distinctive latitudinal distributions, but alpha diversity did not. Latitudinal differentiation was mostly driven by ASVs that were more abundant in cold temperate to subarctic (e.g., Granulosicoccus_t3260, Burkholderia/Caballeronia/Paraburkholderia_t8371) or warm temperate (Pleurocapsa_t10392) latitudes. Their latitudinal distributions correlated with different humidity, tidal heights, and air/sea temperatures, but rarely with irradiance or photoperiod. Many ASVs in potentially symbiotic genera displayed novel phylogenetic biodiversity with differential distributions among tissues and regions, including closely related ASVs with differing north-south distributions that correlated with Fucus phylogeography. An apparent southern range contraction of F. vesiculosus in the NW Atlantic on the North Carolina coast mimics that recently observed in the NE Atlantic. We suggest cross-Atlantic microbial structure of F. vesiculosus is related to a combination of past (glacial-cycle) and contemporary environmental drivers.
Collapse
Affiliation(s)
| | - Hilary G Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Massachusetts, 02543, USA
| | - Aschwin H Engelen
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-139, Portugal
| | | | - Aleksey Morozov
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Massachusetts, 02543, USA
| | - Ester A Serrão
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-139, Portugal
| | - Juliet Brodie
- Natural History Museum, Department of Life Sciences, London, SW7 5BD, UK
| | | | - Yacine Badis
- Scottish Association for Marine Science, Oban, PA37 1QA, UK
| | - Ladd E Johnson
- Département de Biologie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, 8049, Norway
| | | | | | - Leigh A Stearns
- Department of Geology, University of Kansas, Lawrence, Kansas, 66045, USA
| | - Susan H Brawley
- School of Marine Sciences, University of Maine, Orono, Maine, 04469, USA
| |
Collapse
|
21
|
Anthropogenic pressures and life history predict trajectories of seagrass meadow extent at a global scale. Proc Natl Acad Sci U S A 2021; 118:2110802118. [PMID: 34725160 PMCID: PMC8609331 DOI: 10.1073/pnas.2110802118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Seagrass meadows are threatened by multiple pressures, jeopardizing the many benefits they provide to humanity and biodiversity, including climate regulation and food provision through fisheries production. Conservation of seagrass requires identification of the main pressures contributing to loss and the regions most at risk of ongoing loss. Here, we model trajectories of seagrass change at the global scale and show they are related to multiple anthropogenic pressures but that trajectories vary widely with seagrass life-history strategies. Rapidly declining trajectories of seagrass meadow extent (>25% loss from 2000 to 2010) were most strongly associated with high pressures from destructive demersal fishing and poor water quality. Conversely, seagrass meadow extent was more likely to be increasing when these two pressures were low. Meadows dominated by seagrasses with persistent life-history strategies tended to have slowly changing or stable trajectories, while those with opportunistic species were more variable, with a higher probability of either rapidly declining or rapidly increasing. Global predictions of regions most at risk for decline show high-risk areas in Europe, North America, Japan, and southeast Asia, including places where comprehensive long-term monitoring data are lacking. Our results highlight where seagrass loss may be occurring unnoticed and where urgent conservation interventions are required to reverse loss and sustain their essential services.
Collapse
|
22
|
Costa V, Chemello R, Iaciofano D, Lo Brutto S, Rossi F. Small-scale patches of detritus as habitat for invertebrates within a Zostera noltei meadow. MARINE ENVIRONMENTAL RESEARCH 2021; 171:105474. [PMID: 34488069 DOI: 10.1016/j.marenvres.2021.105474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Seagrass detritus can attract numerous invertebrates as it provides food and substrate within the meadow or in adjacent environments. Nonetheless, several factors could modify the invertebrate response to this habitat. In this study, we tested if epifaunal colonisation of Zostera noltei detritus was related to substrate availability rather than food and whether colonising assemblages were similar according to the meadow structural complexity. Litterbags filled with natural or artificial detritus were deployed within an eelgrass meadow in a Mediterranean coastal lagoon (Thau lagoon, France). Colonisation appeared to be driven by the presence of detritus, with similar assemblages in natural and artificial substrate, but with more individuals than the empty bags, used as controls. There were also no differences according to habitat complexity. These findings show that detritus, acting as a faunal magnet, plays an important role in maintaining biodiversity, as epifauna is a critical trophic link between primary producers and consumers.
Collapse
Affiliation(s)
- Valentina Costa
- MARBEC Laboratory, CNRS-University of Montpellier, Pl E Bataillon, Montpellier, France.
| | - Renato Chemello
- Department of Earth and Marine Sciences, University of Palermo, CoNISMa, Via Archirafi 20, 90123, Palermo, Italy
| | - Davide Iaciofano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Sabrina Lo Brutto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Francesca Rossi
- MARBEC Laboratory, CNRS-University of Montpellier, Pl E Bataillon, Montpellier, France; ECOSEAS Laboratory, CNRS-University of Côte d'Azur, 28 Avenue Valrose Natural Science Building, Nice, France
| |
Collapse
|
23
|
Riquet F, De Kuyper CA, Fauvelot C, Airoldi L, Planes S, Fraschetti S, Mačić V, Milchakova N, Mangialajo L, Bottin L. Highly restricted dispersal in habitat-forming seaweed may impede natural recovery of disturbed populations. Sci Rep 2021; 11:16792. [PMID: 34408197 PMCID: PMC8373921 DOI: 10.1038/s41598-021-96027-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Cystoseira sensu lato (Class Phaeophyceae, Order Fucales, Family Sargassaceae) forests play a central role in marine Mediterranean ecosystems. Over the last decades, Cystoseira s.l. suffered from a severe loss as a result of multiple anthropogenic stressors. In particular, Gongolaria barbata has faced multiple human-induced threats, and, despite its ecological importance in structuring rocky communities and hosting a large number of species, the natural recovery of G. barbata depleted populations is uncertain. Here, we used nine microsatellite loci specifically developed for G. barbata to assess the genetic diversity of this species and its genetic connectivity among fifteen sites located in the Ionian, the Adriatic and the Black Seas. In line with strong and significant heterozygosity deficiencies across loci, likely explained by Wahlund effect, high genetic structure was observed among the three seas (ENA corrected FST = 0.355, IC = [0.283, 0.440]), with an estimated dispersal distance per generation smaller than 600 m, both in the Adriatic and Black Sea. This strong genetic structure likely results from restricted gene flow driven by geographic distances and limited dispersal abilities, along with genetic drift within isolated populations. The presence of genetically disconnected populations at small spatial scales (< 10 km) has important implications for the identification of relevant conservation and management measures for G. barbata: each population should be considered as separated evolutionary units with dedicated conservation efforts.
Collapse
Affiliation(s)
- Florentine Riquet
- Institut de Recherche pour le Développement (IRD), UMR ENTROPIE, Nouméa, New Caledonia.
- Sorbonne Université, CNRS, UMR LOV, Villefranche‑sur‑Mer, France.
| | | | - Cécile Fauvelot
- Institut de Recherche pour le Développement (IRD), UMR ENTROPIE, Nouméa, New Caledonia
- Sorbonne Université, CNRS, UMR LOV, Villefranche‑sur‑Mer, France
| | - Laura Airoldi
- Department of Biology, Chioggia Hydrobiological Station Umberto D'Ancona, University of Padova, Chioggia, Italy
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, UO CoNISMa, Ravenna, Italy
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | - Simonetta Fraschetti
- Department of Biology, University of Naples Federico II, Naples, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
- CoNISMa, Rome, Italy
| | - Vesna Mačić
- Institut za biologiju mora, Univerzitet Crne Gore, Kotor, Montenegro
| | - Nataliya Milchakova
- Laboratory of Phytoresources, Kovalevsky Institute of Biology of the Southern Seas of RAS (IBSS), Sevastopol, Russia
| | | | - Lorraine Bottin
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| |
Collapse
|
24
|
Hu ZM, Zhang QS, Zhang J, Kass JM, Mammola S, Fresia P, Draisma SGA, Assis J, Jueterbock A, Yokota M, Zhang Z. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Mol Ecol 2021; 30:3840-3855. [PMID: 34022079 DOI: 10.1111/mec.15996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/01/2023]
Abstract
Seagrasses play a vital role in structuring coastal marine ecosystems, but their distributional range and genetic diversity have declined rapidly in recent decades. To improve conservation of seagrass species, it is important to predict how climate change may impact their ranges. Such predictions are typically made with correlative species distribution models (SDMs), which can estimate a species' potential distribution under present and future climatic scenarios given species' presence data and climatic predictor variables. However, these models are typically constructed with species-level data, and thus ignore intraspecific genetic variability, which can give rise to populations with adaptations to heterogeneous climatic conditions. Here, we explore the link between intraspecific adaptation and niche differentiation in Thalassia hemprichii, a seagrass broadly distributed in the tropical Indo-Pacific Ocean and a crucial provider of habitat for numerous marine species. By retrieving and re-analysing microsatellite data from previous studies, we delimited two distinct phylogeographical lineages within the nominal species and found an intermediate level of differentiation in their multidimensional environmental niches, suggesting the possibility for local adaptation. We then compared projections of the species' habitat suitability under climate change scenarios using species-level and lineage-level SDMs. In the Central Tropical Indo-Pacific region, models for both levels predicted considerable range contraction in the future, but the lineage-level models predicted more severe habitat loss. Importantly, the two modelling approaches predicted opposite patterns of habitat change in the Western Tropical Indo-Pacific region. Our results highlight the necessity of conserving distinct populations and genetic pools to avoid regional extinction due to climate change and have important implications for guiding future management of seagrasses.
Collapse
Affiliation(s)
- Zi-Min Hu
- Ocean School, YanTai University, Yantai, China
| | | | - Jie Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jamie M Kass
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland.,Molecular Ecology Group (MEG), Water Research Institute (IRSA, National Research Council of Italy (CNR, Verbania Pallanza, Italy
| | - Pablo Fresia
- Pasteur+INIA Joint Unit (UMPI), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Stefano G A Draisma
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jorge Assis
- CCMAR, University of Algarve, Faro, Portugal
| | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Masashi Yokota
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Zhixin Zhang
- Arctic Research Center, Hokkaido University, Sapporo, Japan
| |
Collapse
|
25
|
Nguyen HM, Ralph PJ, Marín-Guirao L, Pernice M, Procaccini G. Seagrasses in an era of ocean warming: a review. Biol Rev Camb Philos Soc 2021; 96:2009-2030. [PMID: 34014018 DOI: 10.1111/brv.12736] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Seagrasses are valuable sources of food and habitat for marine life and are one of Earth's most efficient carbon sinks. However, they are facing a global decline due to ocean warming and eutrophication. In the last decade, with the advent of new technology and molecular advances, there has been a dramatic increase in the number of studies focusing on the effects of ocean warming on seagrasses. Here, we provide a comprehensive review of the future of seagrasses in an era of ocean warming. We have gathered information from published studies to identify potential commonalities in the effects of warming and the responses of seagrasses across four distinct levels: molecular, biochemical/physiological, morphological/population, and ecosystem/planetary. To date, we know that although warming strongly affects seagrasses at all four levels, seagrass responses diverge amongst species, populations, and over depths. Furthermore, warming alters seagrass distribution causing massive die-offs in some seagrass populations, whilst also causing tropicalization and migration of temperate species. In this review, we evaluate the combined effects of ocean warming with other environmental stressors and emphasize the need for multiple-stressor studies to provide a deeper understanding of seagrass resilience. We conclude by discussing the most significant knowledge gaps and future directions for seagrass research.
Collapse
Affiliation(s)
- Hung Manh Nguyen
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lázaro Marín-Guirao
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy.,Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, C/Varadero, San Pedro del Pinatar, Murcia, 30740, Spain
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | | |
Collapse
|
26
|
A global occurrence database of the Atlantic blue crab Callinectes sapidus. Sci Data 2021; 8:111. [PMID: 33863897 PMCID: PMC8052346 DOI: 10.1038/s41597-021-00888-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/09/2021] [Indexed: 11/08/2022] Open
Abstract
The Atlantic blue crab Callinectes sapidus is a portunid native to the western Atlantic, from New England to Uruguay. The species was introduced in Europe in 1901 where it has become invasive; additionally, a significant northward expansion has been emphasized in its native range. Here we present a harmonized global compilation of C. sapidus occurrences from native and non-native distribution ranges derived from online databases (GBIF, BISON, OBIS, and iNaturalist) as well as from unpublished and published sources. The dataset consists of 40,388 geo-referenced occurrences, 39,824 from native and 564 from non-native ranges, recorded in 53 countries. The implementation of quality controls imposed a severe reduction, in particular from online databases, of the records selected for inclusion in the dataset. In addition, a technical validation procedure was used to flag entries showing identical coordinates but different year of record, in-land occurrences and those located close to the coast. Similarly, a flagging system identified entries outside the known distribution of the species, or associated with unsuccessful introductions. Measurement(s) | geographic location | Technology Type(s) | digital curation | Factor Type(s) | location • year of record | Sample Characteristic - Organism | Callinectes sapidus | Sample Characteristic - Environment | marine biome | Sample Characteristic - Location | Globe |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.14077112
Collapse
|
27
|
Orlando-Bonaca M, Pitacco V, Slavinec P, Šiško M, Makovec T, Falace A. First Restoration Experiment for Gongolaria barbata in Slovenian Coastal Waters. What Can Go Wrong? PLANTS (BASEL, SWITZERLAND) 2021; 10:239. [PMID: 33530631 PMCID: PMC7911296 DOI: 10.3390/plants10020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
The global decline of brown algal forests along rocky coasts is causing an exceptional biodiversity loss. Regardless of conservation efforts, different techniques have been developed for large-scale restoration strategies in the Mediterranean Sea. In this study we tested ex situ pilot restoration of Gongolaria barbata (=Treptacantha barbata) for the first time in Slovenian coastal waters. Healthy apical fronds of the species were collected and the development of recruits on clay tiles was followed under laboratory conditions for 20 days. Despite the experimental difficulties experienced, especially due to the lack of antibiotics to prevent the growth of the biofilm, G. barbata recruits were outplanted in the sea on two concrete plates with 48 tiles each, protected by purpose-built cages to avoid grazing by herbivorous fish. The high survival rate of juveniles after four months in the field (89% of the tiles on the plate that was constantly protected) suggests that outplanting G. barbata is an operable approach for restoration efforts in the northern Adriatic Sea. Our first experiment in Slovenian coastal waters provides new information for the optimization of the best practices during the laboratory cultivation and addresses the early steps of restoration and introduction of young thalli in the natural environment.
Collapse
Affiliation(s)
- Martina Orlando-Bonaca
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Valentina Pitacco
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Petra Slavinec
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Milijan Šiško
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Tihomir Makovec
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Annalisa Falace
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy;
| |
Collapse
|
28
|
Krause-Jensen D, Archambault P, Assis J, Bartsch I, Bischof K, Filbee-Dexter K, Dunton KH, Maximova O, Ragnarsdóttir SB, Sejr MK, Simakova U, Spiridonov V, Wegeberg S, Winding MHS, Duarte CM. Imprint of Climate Change on Pan-Arctic Marine Vegetation. FRONTIERS IN MARINE SCIENCE 2020; 7. [PMID: 0 DOI: 10.3389/fmars.2020.617324] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Arctic climate is changing rapidly. The warming and resultant longer open water periods suggest a potential for expansion of marine vegetation along the vast Arctic coastline. We compiled and reviewed the scattered time series on Arctic marine vegetation and explored trends for macroalgae and eelgrass (Zostera marina). We identified a total of 38 sites, distributed between Arctic coastal regions in Alaska, Canada, Greenland, Iceland, Norway/Svalbard, and Russia, having time series extending into the 21st Century. The majority of these exhibited increase in abundance, productivity or species richness, and/or expansion of geographical distribution limits, several time series showed no significant trend. Only four time series displayed a negative trend, largely due to urchin grazing or increased turbidity. Overall, the observations support with medium confidence (i.e., 5–8 in 10 chance of being correct, adopting the IPCC confidence scale) the prediction that macrophytes are expanding in the Arctic. Species distribution modeling was challenged by limited observations and lack of information on substrate, but suggested a current (2000–2017) potential pan-Arctic brown macroalgal distribution area of 655,111 km2(140,433 km2intertidal, 514,679 km2subtidal), representing an increase of about 45% for subtidal- and 8% for intertidal macroalgae since 1940–1950, and associated polar migration rates averaging 18–23 km decade–1. Adjusting the potential macroalgal distribution area by the fraction of shores represented by cliffs halves the estimate (340,658 km2). Warming and reduced sea ice cover along the Arctic coastlines are expected to stimulate further expansion of marine vegetation from boreal latitudes. The changes likely affect the functioning of coastal Arctic ecosystems because of the vegetation’s roles as habitat, and for carbon and nutrient cycling and storage. We encourage a pan-Arctic science- and management agenda to incorporate marine vegetation into a coherent understanding of Arctic changes by quantifying distribution and status beyond the scattered studies now available to develop sustainable management strategies for these important ecosystems.
Collapse
|