1
|
Cui S, Miao W, Peng H, Ma G, Lei Z, Zhu L, Xu Y. Covalent Organic Frameworks as Electrode Materials for Alkali Metal-ion Batteries. Chemistry 2024; 30:e202303320. [PMID: 38126628 DOI: 10.1002/chem.202303320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Covalent organic frameworks (COFs) are a class of porous crystalline polymeric materials constructed by linking organic small molecules through covalent bonds. COFs have the advantages of strong covalent bond network, adjustable pore structure, large specific surface area and excellent thermal stability, and have broad application prospects in various fields. Based on these advantages, rational COFs design strategies such as the introduction of active sites, construction of conjugated structures, and carbon material composite, etc. can effectively improve the conductivity and stability of the electrode materials in the field of batteries. This paper introduces the latest research results of high-performance COFs electrode materials in alkali metal-ion batteries (LIBs, SIBs, PIBs and LSBs) and other advanced batteries. The current challenges and future design directions of COFs-based electrode are discussed. It provides useful insights for the design of novel COFs structures and the development of high-performance alkali metal-ion batteries.
Collapse
Affiliation(s)
- Shuzhen Cui
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Wenxing Miao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Hui Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Guofu Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, 432000, Hubei Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
2
|
Lin R, Zhang Q, Lv S, Zhang J, Wang X, Shi D, Gong X, Lam KH. Miniature intravascular photoacoustic endoscopy with coaxial excitation and detection. JOURNAL OF BIOPHOTONICS 2023; 16:e202200269. [PMID: 36510391 DOI: 10.1002/jbio.202200269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Recent research pointed out that the degree of inflammation in the adventitia could correlate with the severity of atherosclerotic plaques. Intravascular photoacoustic endoscopy can provide the information of arterial morphology and plaque composition, and even detecting the inflammation. However, most reported work used a noncoaxial configuration for the photoacoustic catheter design, which formed a limited light-sound overlap area for imaging so as to miss the adventitia information. Here we developed a novel 0.9 mm-diameter intravascular photoacoustic catheter with coaxial excitation and detection to resolve the aforementioned issue. A miniature hollow ultrasound transducer with a 0.18 mm-diameter orifice in the center was successfully fabricated. To show the significance and merits of our design, phantom and ex vivo imaging experiments were conducted on both coaxial and noncoaxial catheters for comparison. The results demonstrated that the coaxial catheter exhibited much better photoacoustic/ultrasound imaging performance from the intima to the adventitia.
Collapse
Affiliation(s)
- Riqiang Lin
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qi Zhang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shengmiao Lv
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaming Zhang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiatian Wang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongliang Shi
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiaojing Gong
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kwok-Ho Lam
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
3
|
Neha SA, Salazar-Bravo J. Fine-scale spatial variation shape fecal microbiome diversity and composition in black-tailed prairie dogs (Cynomys ludovicianus). BMC Microbiol 2023; 23:51. [PMID: 36858951 PMCID: PMC9979494 DOI: 10.1186/s12866-023-02778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/19/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Host associated gut microbiota are important in understanding the coevolution of host-microbe, and how they may help wildlife populations to adapt to rapid environmental changes. Mammalian gut microbiota composition and diversity may be affected by a variety of factors including geographic variation, seasonal variation in diet, habitat disturbance, environmental conditions, age, and sex. However, there have been few studies that examined how ecological and environmental factors influence gut microbiota composition in animals' natural environments. In this study, we explore how host habitat, geographical location and environmental factors affect the fecal microbiota of Cynomys ludovicianus at a small spatial scale. We collected fecal samples from five geographically distinct locations in the Texas Panhandle classified as urban and rural areas and analyzed them using high throughput 16S rRNA gene amplicon sequencing. RESULTS The results showed that microbiota of these fecal samples was largely dominated by the phylum Bacteroidetes. Fecal microbiome diversity and composition differed significantly across sampling sites and habitats. Prairie dogs inhabiting urban areas showed reduced fecal diversity due to more homogenous environment and, likely, anthropogenic disturbance. Urban prairie dog colonies displayed greater phylogenetic variation among replicates than those in rural habitats. Differentially abundant analysis revealed that bacterial species pathogenic to humans and animals were highly abundant in urban areas which indicates that host health and fitness might be negatively affected. Random forest models identified Alistipes shahii as the important species driving the changes in fecal microbiome composition. Despite the effects of habitat and geographic location of host, we found a strong correlation with environmental factors and that- average maximum temperature was the best predictor of prairie dog fecal microbial diversity. CONCLUSIONS Our findings suggest that reduction in alpha diversity in conjunction with greater dispersion in beta diversity could be indicative of declining host health in urban areas; this information may, in turn, help determine future conservation efforts. Moreover, several bacterial species pathogenic to humans and other animals were enriched in prairie dog colonies near urban areas, which may in turn adversely affect host phenotype and fitness.
Collapse
Affiliation(s)
- Sufia Akter Neha
- International Center for Arid and Semi-Arid Land Studies, Texas Tech University, Lubbock, TX, 79409, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, 79409, USA.
| | - Jorge Salazar-Bravo
- International Center for Arid and Semi-Arid Land Studies, Texas Tech University, Lubbock, TX, 79409, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, 79409, USA
| |
Collapse
|
4
|
Sawada A, Hayakawa T, Kurihara Y, Lee W, Hanya G. Seasonal responses and host uniqueness of gut microbiome of Japanese macaques in lowland Yakushima. Anim Microbiome 2022; 4:54. [PMID: 36163043 PMCID: PMC9513907 DOI: 10.1186/s42523-022-00205-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Changes in the gut microbial composition is an important response to cope with the seasonal fluctuations in the environment such as food availability. We examined the bacterial gut microbiome of the wild nonhuman primate, Japanese macaque (Macaca fuscata) in Yakushima over 13 months by noninvasive continuous sampling from three identified adult females. Results Dietary composition varied considerably over the study period and displayed marked shifts with the seasons. Feeding of leaves, fruits, and invertebrates were their main foods for at least one month. Diet had a significant influence on the gut microbiome. We also confirmed significant effect of host uniqueness in the gut microbiome among the three macaques. Leaf-dominated diet shaped unique gut microbiome structures where the macaques had the highest alpha diversity and their gut microbiome was enriched with Spirochaetes and Tenericutes. Diet-related differences in the putative function were detected, such as a differentially abundant urea cycle during the leaf-feeding season. Conclusion Both diet and host individuality exerted similar amounts of effect on gut microbe community composition. Major bacterial taxa showed a similar response to monthly fluctuations of fruit and invertebrate feeding, which was largely opposite to that of leaf feeding. The main constituents of fruits and invertebrates are both digestible with the enzyme of the host animals, but that of leaves is not available as an energy source without the aid of the fermentation of the gut microbiome. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00205-9.
Collapse
|
5
|
Zhang L, Yang X, Yin Z, Sun L. A Review on Carbon Quantum Dots: Synthesis, Photoluminescence Mechanisms and Applications. LUMINESCENCE 2022; 37:1612-1638. [PMID: 35906748 DOI: 10.1002/bio.4351] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/01/2022] [Accepted: 07/24/2022] [Indexed: 11/06/2022]
Abstract
Carbon quantum dots (CQDs), having outstanding biocompatibility, attractive catalytic performance, excellent optical properties, and valuable environment friendliness, are emerging as a new paradigm to design luminescent devices and show great potential in application fields such as biomedical sensors, optical and photonic devices. And CQDs are known as one of the most promising carbon based nanomaterials in the 21st century. Therefore, it has attracted a lot of attention since it was first discovered in 2004. In this review, we explain the accepted photoluminescence mechanism of CQDs, including fluorescence and phosphorescence. There are two main types of synthesis strategies: top-down approach and bottom-up approach. At the same time, the main application fields, including ion detection, anti-counterfeiting, biological imaging, food safety, sensors, lubrication additives, are reviewed. Finally, the existing bottlenecks, pending problems and prospects for the future of CQDs are discussed.
Collapse
Affiliation(s)
- Likang Zhang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Xue Yang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Zhifu Yin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China.,State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China
| | - Linlin Sun
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| |
Collapse
|
6
|
Wang M, Lu N, An N, Fu B. A Trait-Based Approach for Understanding Changes in Carbon Sequestration in Semi-Arid Grassland During Succession. Ecosystems 2021. [DOI: 10.1007/s10021-021-00646-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Zhao Y, Gu Y, Zhang P, Hu X, Wang Y, Zong P, Pan L, Lyu Y, Koumoto K. Enhanced thermoelectric performance in polymorphic heavily Co-doped Cu 2SnS 3 through carrier compensation by Sb substitution. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:363-372. [PMID: 34104116 PMCID: PMC8168757 DOI: 10.1080/14686996.2021.1920821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 05/27/2023]
Abstract
Heavily acceptor-doped Cu2SnS3 (CTS) shows promisingly large power factor (PF) due to its rather high electrical conductivity (σ) which causes a modest ZT with a high electronic thermal conductivity (κe ). In the present work, a strategy of carrier compensation through Sb-doping at the Sn site in Cu2Sn0.8Co0.2S3 was investigated, aiming at tailoring electrical and phonon transport properties simultaneously. Rietveld analysis suggested a complex polymorphic microstructure in which the cation-(semi)ordered tetragonal phase becomes dominant over the coherently bonded cation-disordered cubic phase, as is preliminarily revealed using TEM observation, upon Sb-doping and Sb would substitute Sn preferentially in the tetragonal structure. With increasing content of Sb, the σ was lowered and the Seebeck coefficient (S) was enhanced effectively, which gave rise to high PFs maintained at ~10.4 μWcm-1K-2 at 773 K together with an optimal reduction in κe by 60-70% in the whole temperature range. The lattice thermal conductivity was effectively suppressed from 1.75 Wm-1K-1 to ~1.2 Wm-1K-1 at 323 K while maintained very low at 0.3-0.4 Wm-1K-1 at 773 K. As a result, a peak ZT of ~0.88 at 773 K has been achieved for Cu2Sn0.74Sb0.06Co0.2S3, which stands among the tops so far of the CTS-based diamond-like ternary sulfides. These findings demonstrate that polymorphic microstructures with cation-disordered interfaces as an approach to achieve effective phonon-blocking and low lattice thermal conductivity, of which further crystal chemistry, microstructural and electrical tailoring are possible by appropriate doping.
Collapse
Affiliation(s)
- Yaqing Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Yan Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Peng Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, P.R.China
| | - Xiaohui Hu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, China
| | - Yifeng Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, China
| | - Peng’An Zong
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, China
| | - Lin Pan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, China
| | - Yinong Lyu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, China
| | - Kunihito Koumoto
- Nagoya Industrial Science Research Institute, Nagoya, Japan
- Department of Research, Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Onyango GM, Bialosuknia MS, Payne FA, Mathias N, Ciota TA, Kramer DL. Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Sci Rep 2020; 10:19135. [PMID: 33154438 PMCID: PMC7644690 DOI: 10.1038/s41598-020-76188-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Insect midgut microbial symbionts have been considered as an integral component in thermal adaptation due to their differential thermal sensitivity. Altered midgut microbial communities can influence both insect physiology and competence for important vector-borne pathogens. This study sought to gain insights into how Aedes aegypti midgut microbes and life history traits are affected by increase in baseline diurnal temperature. Increase in temperature resulted in the enrichment of specific taxa with Bacillus being the most enriched. Bacillus is known to be heat tolerant. It also resulted in a dissimilar microbial assemblage (Bray-Curtis Index, PERMANOVA, F = 2.2063; R2 = 0.16706; P = 0.002) and reduced survivorship (Log-rank [Mantel-Cox] test, Chi-square = 35.66 df = 5, P < 0.0001). Blood meal intake resulted in proliferation of pathogenic bacteria such as Elizabethkingia in the midgut of the mosquitoes. These results suggest that alteration of temperature within realistic parameters such as 2 °C for Ae. aegypti in nature may impact the midgut microbiome favoring specific taxa that could alter mosquito fitness, adaptation and vector-pathogen interactions.
Collapse
Affiliation(s)
- Gorreti Maria Onyango
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - M Sean Bialosuknia
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - F Anne Payne
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Nicholas Mathias
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - T Alexander Ciota
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - D Laura Kramer
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA.
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
9
|
Xiong S, Song L, Li G, Li J. What Influences the Patients with Left Atrial Myxoma: From Embolism to Postoperative Atrial Fibrillation. World J Surg 2020; 44:3943-3951. [PMID: 32613341 DOI: 10.1007/s00268-020-05665-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Preoperative embolism and postoperative atrial fibrillation (POAF) are two important factors associated with impaired health conditions and increased economic burden in patients with left atrial (LA) myxoma. The aim of this study was to analyze embolic events, identify predictors of POAF, and evaluate the risk of late-term survival in patients with LA myxoma. METHODS From December 2009 to December 2019, 177 consecutive patients with LA myxoma who met the selection criteria were included in the retrospective analysis. Multivariate logistic regression analysis was performed to identify predictors of POAF. Propensity score matching was used for confounder control, and Cox proportional hazards models were used to evaluate the risk of late-term mortality. RESULTS The study population comprised of 125 patients in non-POAF group and 52 patients in POAF group. Preoperative embolism was present in 27.1% of the all cases. By multivariate analysis, age, NYHA functional class III, LA diameter, and cross-clamp time were identified as independent predictors of in-hospital POAF. The overall survival at 1, 5, and 10 years for the 177 patients was 98.9%, 93.7%, and 84.4%, respectively. There was no statistical difference in late-term survival between the two groups in the Cox proportion-adjusted survival curve. After propensity score 1:1 matching, patients with POAF had a longer postoperative hospital stay and Kaplan-Meier survival curve also showed no statistical difference between the two groups. CONCLUSIONS Patients with LA myxoma after surgical treatment had a favorable prognosis. In-hospital POAF was not independently associated with late-term mortality in patients with LA myxoma.
Collapse
Affiliation(s)
- Sizheng Xiong
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430000, China
| | - Lihui Song
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430000, China
| | - Gen Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430000, China
| | - Jun Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430000, China.
| |
Collapse
|
10
|
Huang JF, Xie WZ. Pseudo-atomic-scale metals well-dispersed on nano-carbons as ultra-low metal loading oxygen-evolving electrocatalysts. Chem Sci 2020; 11:6012-6019. [PMID: 34094092 PMCID: PMC8159370 DOI: 10.1039/d0sc01348j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/21/2020] [Indexed: 11/21/2022] Open
Abstract
Solving challenges for the scaling-up, high metal loadings and low turnover frequency (TOF, defined as mol O2 per mol metal per second), of FeNi catalysts in water electrolysis, we report the first discovery of pH tunable tannic acid single molecular layer formed on nano-sized carbons (NCs), which promotes the gram-production of pseudo-atomic-scale FeNi oxyhydroxide nanoclusters well-dispersed on NCs. It results in ultra-low metal loading (0.42 μg cm-2) and remarkably large TOF of 14.03 s-1 for the oxygen evolution reaction, which is three orders of magnitude higher than that of state-of-the-art FeNi catalysts. A "volcano"-shaped activity trend in specific activity and TOF was found to depend on the Fe content in FeNi oxyhydroxide. The micro-morphologies from the atomic-level exposure of active sites and surface spectra analyses confirm the model of synergism between Ni and Fe centers.
Collapse
Affiliation(s)
- Jing-Fang Huang
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan Republic of China
| | - Wei-Zhe Xie
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan Republic of China
| |
Collapse
|
11
|
Connolly S, Newport D, McGourty K. The mechanical responses of advecting cells in confined flow. BIOMICROFLUIDICS 2020; 14:031501. [PMID: 32454924 PMCID: PMC7200165 DOI: 10.1063/5.0005154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 05/03/2023]
Abstract
Fluid dynamics have long influenced cells in suspension. Red blood cells and white blood cells are advected through biological microchannels in both the cardiovascular and lymphatic systems and, as a result, are subject to a wide variety of complex fluidic forces as they pass through. In vivo, microfluidic forces influence different biological processes such as the spreading of infection, cancer metastasis, and cell viability, highlighting the importance of fluid dynamics in the blood and lymphatic vessels. This suggests that in vitro devices carrying cell suspensions may influence the viability and functionality of cells. Lab-on-a-chip, flow cytometry, and cell therapies involve cell suspensions flowing through microchannels of approximately 100-800 μ m. This review begins by examining the current fundamental theories and techniques behind the fluidic forces and inertial focusing acting on cells in suspension, before exploring studies that have investigated how these fluidic forces affect the reactions of suspended cells. In light of these studies' findings, both in vivo and in vitro fluidic cell microenvironments shall also be discussed before concluding with recommendations for the field.
Collapse
Affiliation(s)
- S Connolly
- School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - D Newport
- School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | | |
Collapse
|
12
|
Chen Z, Wei S, Zhao X, Wang D, Chen J. Effect of the ZnO/SiO 2 ratio on the structure and catalytic activity of Cu/SiO 2 and Cu/ZnO catalysts in water-containing ester hydrogenation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03201h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The appropriate addition of ZnO (5 wt%) and SiO2 (5 wt%) had a positive effect on Cu/SiO2 and Cu/ZnO, respectively.
Collapse
Affiliation(s)
- Zheng Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Zaozhuang University
- Zaozhuang 277160
- China
| | - Shuwei Wei
- College of Chemistry
- Chemical Engineering and Materials Science
- Zaozhuang University
- Zaozhuang 277160
- China
| | - Xueying Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Zaozhuang University
- Zaozhuang 277160
- China
| | - Dengfeng Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Zaozhuang University
- Zaozhuang 277160
- China
| | - Jiangang Chen
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| |
Collapse
|
13
|
Chen Z, Zhu G, Wu Y, Sun J, Abbas M, Wang P, Chen J. The Promotion Effect of Transition Metals on Water‐Tolerant Performance of Cu/SiO
2
Catalysts in Hydrogenation Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201904291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zheng Chen
- College of ChemistryChemical Engineering and Materials ScienceZaozhuang University Zaozhuang 277160, Shandong China
| | - Guisheng Zhu
- JiangSu SOPO (group) Co., LTD. Zhenjiang 212000, Jiangsu China
| | - Yi Wu
- JiangSu SOPO (group) Co., LTD. Zhenjiang 212000, Jiangsu China
| | - Jiaqiang Sun
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001, Shanxi China
| | - Mohamed Abbas
- Ceramics DepartmentNational Research Centre El-Bohouth Street 12622 Cairo Egypt
| | - Pengfei Wang
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001, Shanxi China
| | - Jiangang Chen
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001, Shanxi China
| |
Collapse
|
14
|
Liu J, Zhang L, Li C. Highly Stable, Transparent, and Conductive Electrode of Solution-Processed Silver Nanowire-Mxene for Flexible Alternating-Current Electroluminescent Devices. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Liu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ling Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Fan S, Tang X, Zhang D, Hu X, Liu J, Yang L, Su J. Ambipolar and n/p-type conduction enhancement of two-dimensional materials by surface charge transfer doping. NANOSCALE 2019; 11:15359-15366. [PMID: 31386753 DOI: 10.1039/c9nr05343c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The controllable and wide-range modulation of the carrier type and mobility in atomically thin two-dimensional (2D) materials is one of the most critical issues to be addressed before 2D materials can be practically used for future electronic and optoelectronic devices. In this work, we propose using a novel surface charge transfer mechanism to accomplish the controllable and wide-range modulation of the carrier type and mobility in 2D materials. Our methodology uses a solution of triphenylboron (TPB) to physically coat 2D materials; the TPB molecule contains positive and negative charge centers that are spatially separable when induced by an electrical field. Consequently, the TPB can transfer either positive or negative charges to 2D materials depending on the direction of the applied electrical field and thus enhance the ambipolar behavior of the 2D-material FET. This method is so versatile that seven types of 2D materials including graphene, black phosphorus and five transition metal dichalcogenides (TMDCs) can be modulated to strong ambipolar behavior with significantly increased conduction. In addition, selectively suppressing or enhancing the negative charge center enables solely p-type and n-type doping. We also accomplish the precise tuning of carrier mobility in TMDCs from ambipolar to p-type by coating a mixture of TPB/BCF in certain concentration ratios.
Collapse
Affiliation(s)
- Shuangqing Fan
- School of Electronic and Information Engineering, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
In situ Characterization of Phase Transition of Amorphous Poly(9,9-di-n-octyl-2,7-fluorene) Thin Film During Thermal Annealing. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Abstract
Gene therapy as a strategy for disease treatment requires safe and efficient gene delivery systems that encapsulate nucleic acids and deliver them to effective sites in the cell.
Collapse
Affiliation(s)
- Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|
18
|
Batul R, Tamanna T, Khaliq A, Yu A. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci 2018; 5:1204-1229. [PMID: 28594019 DOI: 10.1039/c7bm00187h] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polydopamine is a dark brown-black insoluble biopolymer produced by autoxidation of dopamine. Although its structure and polymerization mechanism have not been fully understood, there has been a rapid growth in the synthesis and applications of polydopamine nanostructures in biomedical fields such as drug delivery, photothermal therapy, bone and tissue engineering, and cell adhesion and patterning, as well as antimicrobial applications. This article is dedicated to reviewing some of the recent polydopamine developments in these biomedical fields. Firstly, the polymerization mechanism is introduced with a discussion of the factors that influence the polymerization process. The discussion is followed by the introduction of various forms of polydopamine nanostructures and their recent applications in biomedical fields, especially in drug delivery. Finally, the review is summarized followed by brief comments on the future prospects of polydopamine.
Collapse
Affiliation(s)
- Rahila Batul
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | | | | | | |
Collapse
|
19
|
Freire C, Fernandes DM, Nunes M, Abdelkader VK. POM & MOF-based Electrocatalysts for Energy-related Reactions. ChemCatChem 2018. [DOI: 10.1002/cctc.201701926] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cristina Freire
- REQUIMTE/LAQV; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre, s/n, 4169-007 Porto Portugal
| | - Diana M. Fernandes
- REQUIMTE/LAQV; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre, s/n, 4169-007 Porto Portugal
| | - Marta Nunes
- REQUIMTE/LAQV; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre, s/n, 4169-007 Porto Portugal
| | - Victor K. Abdelkader
- REQUIMTE/LAQV; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre, s/n, 4169-007 Porto Portugal
| |
Collapse
|
20
|
Gao P, Yang Z, He J, Yu J, Liu P, Zhu J, Ge Z, Ye J. Dopant-Free and Carrier-Selective Heterocontacts for Silicon Solar Cells: Recent Advances and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700547. [PMID: 29593956 PMCID: PMC5867084 DOI: 10.1002/advs.201700547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/17/2017] [Indexed: 05/22/2023]
Abstract
By combining the most successful heterojunctions (HJ) with interdigitated back contacts, crystalline silicon (c-Si) solar cells (SCs) have recently demonstrated a record efficiency of 26.6%. However, such SCs still introduce optical/electrical losses and technological issues due to parasitic absorption/Auger recombination inherent to the doped films and the complex process of integrating discrete p+- and n+-HJ contacts. These issues have motivated the search for alternative new functional materials and simplified deposition technologies, whereby carrier-selective contacts (CSCs) can be formed directly with c-Si substrates, and thereafter form IBC cells, via a dopant-free method. Screening and modifying CSC materials in a wider context is beneficial for building dopant-free HJ contacts with better performance, shedding new light on the relatively mature Si photovoltaic field. In this review, a significant number of achievements in two representative dopant-free hole-selective CSCs, i.e., poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/Si and transition metal oxides/Si, have been systemically presented and surveyed. The focus herein is on the latest advances in hole-selective materials modification, interfacial passivation, contact resistivity, light-trapping structure and device architecture design, etc. By analyzing the structure-property relationships of hole-selective materials and assessing their electrical transport properties, promising functional materials as well as important design concepts for such CSCs toward high-performance SCs have been highlighted.
Collapse
Affiliation(s)
- Pingqi Gao
- Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingbo315201China
| | - Zhenhai Yang
- Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingbo315201China
| | - Jian He
- Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingbo315201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jing Yu
- Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingbo315201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Peipei Liu
- Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingbo315201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Juye Zhu
- Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingbo315201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ziyi Ge
- Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingbo315201China
| | - Jichun Ye
- Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingbo315201China
| |
Collapse
|
21
|
Huang S, Ren J, Liu R, Bai Y, Li X, Huang Y, Yue M, He X, Yuan G. Low addition amount of self-healing ionomer binder for Si/graphite electrodes with enhanced cycling. NEW J CHEM 2018. [DOI: 10.1039/c8nj00423d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-healing ionomer binder is designed and synthesized for commercial Si/graphite anodes (areal capacity of 3 mA h cm−2) with a low binder content of 1.8 wt% in Li-ion batteries showing enhanced cycling.
Collapse
Affiliation(s)
- Shu Huang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Jianguo Ren
- Shenzhen BTR New Energy Materials Inc
- Shenzhen
- P. R. China
| | - Rong Liu
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Yang Bai
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Xiaolong Li
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Youyuan Huang
- Shenzhen BTR New Energy Materials Inc
- Shenzhen
- P. R. China
| | - Min Yue
- Shenzhen BTR New Energy Materials Inc
- Shenzhen
- P. R. China
| | - Xueqin He
- Shenzhen BTR New Energy Materials Inc
- Shenzhen
- P. R. China
| | - Guohui Yuan
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| |
Collapse
|
22
|
Zhang H, Hua Y, Chen J, Li X, Bai X, Wang H. Organism-derived phthalate derivatives as bioactive natural products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:125-144. [PMID: 30444179 DOI: 10.1080/10590501.2018.1490512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phthalates are widely used in polymer materials as a plasticizer. These compounds possess potent toxic variations depending on their chemical structures. However, a growing body of evidence indicates that phthalate compounds are undoubtedly discovered in secondary metabolites of organisms, including plants, animals and microorganisms. This review firstly summarizes biological sources of various phthalates and their bioactivities reported during the past few decades as well as their environmental toxicities and public health risks. It suggests that these organisms are one of important sources of natural phthalates with diverse profiles of bioactivity and toxicity.
Collapse
Affiliation(s)
- Huawei Zhang
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Yi Hua
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Jianwei Chen
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Xiuting Li
- b Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing , China
| | - Xuelian Bai
- c College of Life and Environmental Sciences , Hangzhou Normal University , Hangzhou , China
| | - Hong Wang
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| |
Collapse
|
23
|
Mangu VS, Zamiri M, Brueck SRJ, Cavallo F. Strain engineering, efficient excitonic photoluminescence, and exciton funnelling in unmodified MoS 2 nanosheets. NANOSCALE 2017; 9:16602-16606. [PMID: 29071328 DOI: 10.1039/c7nr03537c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We established locally varying strain fields in unmodified MoS2 nanosheets. The approach relies on dry release in place of multilayer MoS2 on textured Si substrates. By this process we demonstrated intense photoluminescence, a ∼70 meV decrease of the transition energy, and exciton funneling in ∼4 nm-thick MoS2 films.
Collapse
Affiliation(s)
- Vijay Saradhi Mangu
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM-87131, United States.
| | | | | | | |
Collapse
|
24
|
Xia W, Dai L, Yu P, Tong X, Song W, Zhang G, Wang Z. Recent progress in van der Waals heterojunctions. NANOSCALE 2017; 9:4324-4365. [PMID: 28317972 DOI: 10.1039/c7nr00844a] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Following the development of many novel two-dimensional (2D) materials, investigations of van der Waals heterojunctions (vdWHs) have attracted significant attention due to their excellent properties such as smooth heterointerface, highly gate-tunable bandgap, and ultrafast carrier transport. Benefits from the atom-scale thickness, physical and chemical properties and ease of manipulation of the heterojunctions formulated by weak vdW forces were demonstrated to indicate their outstanding potential in electronic and optoelectronic applications, including photodetection and energy harvesting, and the possibility of integrating them with the existing semiconductor technology for the next-generation electronic and sensing devices. In this review, we summarized the recent developments of vdWHs and emphasized their applications. Basically, we introduced the physical properties and some newly discovered phenomena in vdWHs. Then, we emphatically presented four classical vdWHs and some novel heterostructures formed by vdW forces. Based on their unique physical properties and structures, we highlighted the applications of vdWHs including in photodiodes, phototransistors, tunneling devices, and memory devices. Finally, we provided a conclusion on the recent advances in vdWHs and outlined our perspectives. We aim for this review to serve as a solid foundation in this field and to pave the way for future research on vdW-based materials and their heterostructures.
Collapse
Affiliation(s)
- Wanshun Xia
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China. and Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
| | - Liping Dai
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China.
| | - Peng Yu
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
| | - Xin Tong
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
| | - Wenping Song
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China.
| | - Guojun Zhang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China.
| | - Zhiming Wang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
| |
Collapse
|
25
|
Li H, Chen Y, Deng Y, Wang Y, Ke X, Ci T. Effects of surface charge of low molecular weight heparin-modified cationic liposomes on drug efficacy and toxicity. Drug Dev Ind Pharm 2017; 43:1163-1172. [DOI: 10.1080/03639045.2017.1301948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haohuan Li
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yi Chen
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yueyang Deng
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yue Wang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xue Ke
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tianyuan Ci
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
26
|
Shen YF, Xu C, Cheng LJ. Deciphering chemical bonding in BnHn2−(n = 2–17): flexible multicenter bonding. RSC Adv 2017. [DOI: 10.1039/c7ra06811e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deciphering flexible multicenter bonding incloso-borane dianions BnHn2−.
Collapse
Affiliation(s)
- Yan-Fang Shen
- Department of Chemistry
- Anhui University
- Hefei
- P. R. China
| | - Chang Xu
- Department of Chemistry
- Anhui University
- Hefei
- P. R. China
| | - Long-Jiu Cheng
- Department of Chemistry
- Anhui University
- Hefei
- P. R. China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
| |
Collapse
|
27
|
Sun L, Lu B, Yuan D, Hao W, Zheng Y. Variations in the isotopic composition of stable mercury isotopes in typical mangrove plants of the Jiulong estuary, SE China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1459-1468. [PMID: 27783251 DOI: 10.1007/s11356-016-7933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Variations in the composition of stable isotopes of mercury contained in tissues (root, stem, leaf, and hypocotyl or flower) of three typical mangrove plants (Kandelia candel, Aegiceras corniculata, and Bruguiera gymnorhiza), collected from the mangrove wetland of Jiulong estuary, SE China, were used to investigate the sources and transformation of mercury in the mangrove plants. Tissue samples from the plants were digested and mercury in the solution was pre-concentrated with purge-trap method and then analyzed by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The results showed that the mass dependent fractionation (MDF) of mercury ranged from -2.67 to -0.87 ‰ for δ 202Hg while the mass independent fractionation (MIF) of mercury isotopes ranged from -0.16 to 0.09 and -0.19 to 0.05 ‰ for Δ199Hg and Δ201Hg, respectively, relative to the standard NIST SRM 3133. The ratio of Δ199Hg/Δ201Hg was 0.991, indicating that the mercury had been photo-reduced before being accumulated in mangrove plants. Analyses of the data from MIF studies revealed that the major portion of the mercury measured in leaves (∼90 %) originated from the atmosphere while the source of over half of the mercury present in roots was the surficial sediment. This study, the first of its kind investigating the variations in isotopic composition of mercury in the tissues of mangrove plants, could be helpful to identify the source of mercury contamination in mangroves and understand the biogeochemical cycle of mercury in the estuarine mangrove wetlands.
Collapse
Affiliation(s)
- Lumin Sun
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Fujian Province University, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China.
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen, 361102, China.
| | - Bingyan Lu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen, 361102, China
| | - Dongxing Yuan
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen, 361102, China
| | - Wenbo Hao
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Fujian Province University, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China
| | - Ying Zheng
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Fujian Province University, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China
| |
Collapse
|