1
|
Shah JS, Burrascano JJ, Ramasamy R. Recombinant protein immunoblots for differential diagnosis of tick-borne relapsing fever and Lyme disease. J Vector Borne Dis 2023; 60:353-364. [PMID: 38174512 DOI: 10.4103/0972-9062.383641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Lyme disease (LD) is caused by a group of tick-borne bacteria of the genus Borrelia termed Lyme disease Borreliae (LDB). The detection of serum antibodies to specific LDB antigens is widely used to support diagnosis of LD. Recent findings highlight a need for serological tests that can differentiate LD from tick-borne relapsing fever (TBRF) caused by a separate group of Borrelia species termed relapsing fever Borreliae. This is because LD and TBRF share some clinical symptoms and can occur in overlapping locations. The development of serological tests for TBRF is at an early stage compared with LD. This article reviews the application of line immunoblots (IBs), where recombinant proteins applied as lines on nitrocellulose membrane strips are used to detect antibodies in patient sera, for the diagnosis and differentiation of LD and TBRF.
Collapse
Affiliation(s)
- Jyotsna S Shah
- IGeneX Inc. Milpitas; ID-FISH Technology Inc., California, USA
| | | | | |
Collapse
|
2
|
Roy S, Booth CE, Powell-Pierce AD, Schulz AM, Skare JT, Garcia BL. Conformational dynamics of complement protease C1r inhibitor proteins from Lyme disease- and relapsing fever-causing spirochetes. J Biol Chem 2023; 299:104972. [PMID: 37380082 PMCID: PMC10413161 DOI: 10.1016/j.jbc.2023.104972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Borrelial pathogens are vector-borne etiological agents known to cause Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind components of the human complement system to evade host immunity. One borrelial lipoprotein, BBK32, protects the Lyme disease spirochete from complement-mediated attack via an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical complement pathway, C1r. In addition, the B. miyamotoi BBK32 orthologs FbpA and FbpB also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever-causing spirochetes, remains unknown. Here, we report the crystal structure of the C-terminal domain of Borrelia hermsii FbpC to a limiting resolution of 1.5 Å. We used surface plasmon resonance and assays of complement function to demonstrate that FbpC retains potent BBK32-like anticomplement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. Taken together, these results advance our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveal a surprising plasticity in the structures of borrelial C1r inhibitors.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Charles E Booth
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Alexandra D Powell-Pierce
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Anna M Schulz
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jon T Skare
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas, USA.
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
3
|
Roy S, Booth CE, Powell-Pierce AD, Schulz AM, Skare JT, Garcia BL. "Conformational dynamics of C1r inhibitor proteins from Lyme disease and relapsing fever spirochetes". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530473. [PMID: 36909632 PMCID: PMC10002728 DOI: 10.1101/2023.03.01.530473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Borrelial pathogens are vector-borne etiological agents of Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind to components of the human complement system. BBK32 is an example of a borrelial lipoprotein that protects the Lyme disease spirochete from complement-mediated attack. The complement inhibitory activity of BBK32 arises from an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical pathway, C1r. Borrelia miyamotoi spirochetes encode BBK32 orthologs termed FbpA and FbpB, and these proteins also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever spirochetes, remains unknown. Here we report the crystal structure of the C-terminal domain of B. hermsii FbpC to a limiting resolution of 1.5 Å. Surface plasmon resonance studies and assays of complement function demonstrate that FbpC retains potent BBK32-like anti-complement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out 1 µs molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. This study advances our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveals a surprising plasticity in the structures of borrelial C1r inhibitors.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Charles E. Booth
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Alexandra D. Powell-Pierce
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Anna M. Schulz
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Jon T. Skare
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Brandon L. Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
4
|
Cleveland DW, Anderson CC, Brissette CA. Borrelia miyamotoi: A Comprehensive Review. Pathogens 2023; 12:267. [PMID: 36839539 PMCID: PMC9967256 DOI: 10.3390/pathogens12020267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Borrelia miyamotoi is an emerging tick-borne pathogen in the Northern Hemisphere and is the causative agent of Borrelia miyamotoi disease (BMD). Borrelia miyamotoi is vectored by the same hard-bodied ticks as Lyme disease Borrelia, yet phylogenetically groups with relapsing fever Borrelia, and thus, has been uniquely labeled a hard tick-borne relapsing fever Borrelia. Burgeoning research has uncovered new aspects of B. miyamotoi in human patients, nature, and the lab. Of particular interest are novel findings on disease pathology, prevalence, diagnostic methods, ecological maintenance, transmission, and genetic characteristics. Herein, we review recent literature on B. miyamotoi, discuss how findings adapt to current Borrelia doctrines, and briefly consider what remains unknown about B. miyamotoi.
Collapse
Affiliation(s)
| | | | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
5
|
Booth CE, Powell-Pierce AD, Skare JT, Garcia BL. Borrelia miyamotoi FbpA and FbpB Are Immunomodulatory Outer Surface Lipoproteins With Distinct Structures and Functions. Front Immunol 2022; 13:886733. [PMID: 35693799 PMCID: PMC9186069 DOI: 10.3389/fimmu.2022.886733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
Pathogens that traffic in the blood of their hosts must employ mechanisms to evade the host innate immune system, including the complement cascade. The Lyme disease spirochete, Borreliella burgdorferi, has evolved numerous outer membrane lipoproteins that interact directly with host proteins. Compared to Lyme disease-associated spirochetes, relatively little is known about how an emerging tick-borne spirochetal pathogen, Borrelia miyamotoi, utilizes surface lipoproteins to interact with a human host. B. burgdorferi expresses the multifunctional lipoprotein, BBK32, that inhibits the classical pathway of complement through interaction with the initiating protease C1r, and also interacts with fibronectin using a separate intrinsically disordered domain. B. miyamotoi encodes two separate bbk32 orthologs denoted fbpA and fbpB; however, the activities of these proteins are unknown. Here, we show that B. miyamotoi FbpA binds human fibronectin in a manner similar to B. burgdorferi BBK32, whereas FbpB does not. FbpA and FbpB both bind human complement C1r and protect a serum-sensitive B. burgdorferi strain from complement-mediated killing, but surprisingly, differ in their ability to recognize activated C1r versus zymogen states of C1r. To better understand the observed differences in C1r recognition and inhibition properties, high-resolution X-ray crystallography structures were solved of the C1r-binding regions of B. miyamotoi FbpA and FbpB at 1.9Å and 2.1Å, respectively. Collectively, these data suggest that FbpA and FbpB have partially overlapping functions but are functionally and structurally distinct. The data presented herein enhances our overall understanding of how bloodborne pathogens interact with fibronectin and modulate the complement system.
Collapse
Affiliation(s)
- Charles E Booth
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Alexandra D Powell-Pierce
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Jon T Skare
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
6
|
Kogan K, Haapasalo K, Kotila T, Moore R, Lappalainen P, Goldman A, Meri T. Mechanism of Borrelia immune evasion by FhbA-related proteins. PLoS Pathog 2022; 18:e1010338. [PMID: 35303742 PMCID: PMC8967061 DOI: 10.1371/journal.ppat.1010338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/30/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Immune evasion facilitates survival of Borrelia, leading to infections like relapsing fever and Lyme disease. Important mechanism for complement evasion is acquisition of the main host complement inhibitor, factor H (FH). By determining the 2.2 Å crystal structure of Factor H binding protein A (FhbA) from Borrelia hermsii in complex with FH domains 19–20, combined with extensive mutagenesis, we identified the structural mechanism by which B. hermsii utilizes FhbA in immune evasion. Moreover, structure-guided sequence database analysis identified a new family of FhbA-related immune evasion molecules from Lyme disease and relapsing fever Borrelia. Conserved FH-binding mechanism within the FhbA-family was verified by analysis of a novel FH-binding protein from B. duttonii. By sequence analysis, we were able to group FH-binding proteins of Borrelia into four distinct phyletic types and identified novel putative FH-binding proteins. The conserved FH-binding mechanism of the FhbA-related proteins could aid in developing new approaches to inhibit virulence and complement resistance in Borrelia. Relapsing fever and Lyme Disease are infectious diseases caused by borrelia bacteria. Relapsing fever occurs sporadically worldwide, whereas distribution of Lyme Disease is restricted to the Northern Hemisphere. Both infections are transmitted to humans by blood eating ticks or lice. These infections are often difficult to diagnose due to nonspecific symptoms. To be able to cause infection, borrelia must circumvent the human immune responses. Here we describe a mechanism, how borrelia bacteria protect themselves in the human host by utilizing host proteins. By using X-ray crystallography, we solved the structure of an outer membrane protein FhbA from a relapsing fever causing borreliae, Borrelia hermsii, in complex with human complement regulator factor H. FhbA has a unique alpha-helical fold that has not been reported earlier. The structure of the complex revealed how FhbA binds factor H in a very specific manner. Factor H bound to FhbA on the surface of borrelia protects bacteria from the complement system and lysis. Based on the structure, we performed structure-guided sequence database analysis, which suggests that similar proteins are present in all relapsing fever causing borrelia and possibly in some Lyme disease agents.
Collapse
Affiliation(s)
- Konstantin Kogan
- HiLife Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Tommi Kotila
- HiLife Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Robin Moore
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pekka Lappalainen
- HiLife Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Adrian Goldman
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Taru Meri
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
7
|
Passalia FJ, Heinemann MB, Vieira ML, Nascimento ALTO. A Novel Leptospira interrogans Protein LIC13086 Inhibits Fibrin Clot Formation and Interacts With Host Components. Front Cell Infect Microbiol 2021; 11:708739. [PMID: 34277477 PMCID: PMC8280789 DOI: 10.3389/fcimb.2021.708739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Leptospirosis is a neglected zoonosis, caused by pathogenic spirochetes bacteria of the genus Leptospira. The molecular mechanisms of leptospirosis infection are complex, and it is becoming clear that leptospires express several functionally redundant proteins to invade, disseminate, and escape the host’s immune response. Here, we describe a novel leptospiral protein encoded by the gene LIC13086 as an outer membrane protein. The recombinant protein LIC13086 can interact with the extracellular matrix component laminin and bind plasminogen, thus possibly participating during the adhesion process and dissemination. Also, by interacting with fibrinogen and plasma fibronectin, the protein LIC13086 probably has an inhibitory effect in the fibrin clot formation during the infection process. The newly characterized protein can also bind molecules of the complement system and the regulator C4BP and, thus, might have a role in the evasion mechanism of Leptospira. Taken together, our results suggest that the protein LIC13086 may have a multifunctional role in leptospiral pathogenesis, participating in host invasion, dissemination, and immune evasion processes.
Collapse
Affiliation(s)
- Felipe José Passalia
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Mônica Larucci Vieira
- Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | |
Collapse
|
8
|
Sato K, Kumagai Y, Sekizuka T, Kuroda M, Hayashi T, Takano A, Gaowa, Taylor KR, Ohnishi M, Kawabata H. Vitronectin binding protein, BOM1093, confers serum resistance on Borrelia miyamotoi. Sci Rep 2021; 11:5462. [PMID: 33750855 PMCID: PMC7943577 DOI: 10.1038/s41598-021-85069-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Borrelia miyamotoi, a member of the tick-borne relapsing fever spirochetes, shows a serum-resistant phenotype in vitro. This ability of B. miyamotoi may contribute to bacterial evasion of the host innate immune system. To investigate the molecular mechanism of serum-resistance, we constructed a membrane protein-encoding gene library of B. miyamotoi using Borrelia garinii strain HT59G, which shows a transformable and serum-susceptible phenotype. By screening the library, we found that bom1093 and bom1515 of B. miyamotoi provided a serum-resistant phenotype to the recipient B. garinii. These B. miyamotoi genes are predicted to encode P35-like antigen genes and are conserved among relapsing fever borreliae. Functional analysis revealed that BOM1093 bound to serum vitronectin and that the C-terminal region of BOM1093 was involved in the vitronectin-binding property. Importantly, the B. garinii transformant was not serum-resistant when the C terminus-truncated BOM1093 was expressed. We also observed that the depletion of vitronectin from human serum enhances the bactericidal activity of BOM1093 expressing B. garinii, and the survival rate of BOM1093 expressing B. garinii in vitronectin-depleted serum is enhanced by the addition of purified vitronectin. Our data suggests that B. miyamotoi utilize BOM1093-mediated binding to vitronectin as a mechanism of serum resistance.
Collapse
Affiliation(s)
- Kozue Sato
- Department of Bacteriology-I, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
| | - Yumi Kumagai
- Department of Bacteriology-I, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
- Department of Host Defense and Biochemical Research, School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Disease, Tokyo, 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Disease, Tokyo, 162-8640, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ai Takano
- Laboratory of Veterinary Epidemiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8511, Japan
| | - Gaowa
- Inner Mongolia Key Laboratory of Tick-Borne Zoonotic Infectious Disease, Department of Medicine, College of Hetao, Bayannur, China
| | - Kyle R Taylor
- College of Veterinary Medicine, Washington State University, Pullman, USA
| | - Makoto Ohnishi
- Department of Bacteriology-I, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
| | - Hiroki Kawabata
- Department of Bacteriology-I, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan.
| |
Collapse
|
9
|
Schmidt FL, Sürth V, Berg TK, Lin YP, Hovius JW, Kraiczy P. Interaction between Borrelia miyamotoi variable major proteins Vlp15/16 and Vlp18 with plasminogen and complement. Sci Rep 2021; 11:4964. [PMID: 33654183 PMCID: PMC7925540 DOI: 10.1038/s41598-021-84533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Borrelia miyamotoi, a relapsing fever spirochete transmitted by Ixodid ticks causes B. miyamotoi disease (BMD). To evade the human host´s immune response, relapsing fever borreliae, including B. miyamotoi, produce distinct variable major proteins. Here, we investigated Vsp1, Vlp15/16, and Vlp18 all of which are currently being evaluated as antigens for the serodiagnosis of BMD. Comparative analyses identified Vlp15/16 but not Vsp1 and Vlp18 as a plasminogen-interacting protein of B. miyamotoi. Furthermore, Vlp15/16 bound plasminogen in a dose-dependent fashion with high affinity. Binding of plasminogen to Vlp15/16 was significantly inhibited by the lysine analog tranexamic acid suggesting that the protein–protein interaction is mediated by lysine residues. By contrast, ionic strength did not have an effect on binding of plasminogen to Vlp15/16. Of relevance, plasminogen bound to the borrelial protein cleaved the chromogenic substrate S-2251 upon conversion by urokinase-type plasminogen activator (uPa), demonstrating it retained its physiological activity. Interestingly, further analyses revealed a complement inhibitory activity of Vlp15/16 and Vlp18 on the alternative pathway by a Factor H-independent mechanism. More importantly, both borrelial proteins protect serum sensitive Borrelia garinii cells from complement-mediated lysis suggesting multiple roles of these two variable major proteins in immune evasion of B. miyamotoi.
Collapse
Affiliation(s)
- Frederik L Schmidt
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Valerie Sürth
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Tim K Berg
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Science, State University of New York at Albany, Albany, NY, USA
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany.
| |
Collapse
|
10
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
11
|
Abstract
Relapsing fever (RF) is caused by several species of Borrelia; all, except two species, are transmitted to humans by soft (argasid) ticks. The species B. recurrentis is transmitted from one human to another by the body louse, while B. miyamotoi is vectored by hard-bodied ixodid tick species. RF Borrelia have several pathogenic features that facilitate invasion and dissemination in the infected host. In this article we discuss the dynamics of vector acquisition and subsequent transmission of RF Borrelia to their vertebrate hosts. We also review taxonomic challenges for RF Borrelia as new species have been isolated throughout the globe. Moreover, aspects of pathogenesis including symptomology, neurotropism, erythrocyte and platelet adhesion are discussed. We expound on RF Borrelia evasion strategies for innate and adaptive immunity, focusing on the most fundamental pathogenetic attributes, multiphasic antigenic variation. Lastly, we review new and emerging species of RF Borrelia and discuss future directions for this global disease.
Collapse
Affiliation(s)
- Job Lopez
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston TX, USA
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Medical centers, location Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sven Bergström
- Department of Molecular Biology, Umeå Center for Microbial Research, Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Sharma S, Bhatnagar R, Gaur D. Complement Evasion Strategies of Human Pathogenic Bacteria. Indian J Microbiol 2020; 60:283-296. [PMID: 32655196 PMCID: PMC7329968 DOI: 10.1007/s12088-020-00872-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Human pathogens need to overcome an elaborate network of host defense mechanisms in order to establish their infection, colonization, proliferation and eventual dissemination. The interaction of pathogens with different effector molecules of the immune system results in their neutralization and elimination from the host. The complement system is one such integral component of innate immunity that is critically involved in the early recognition and elimination of the pathogen. Hence, under this immune pressure, all virulent pathogens capable of inducing active infections have evolved immune evasive strategies that primarily target the complement system, which plays an essential and central role for host defense. Recent reports on several bacterial pathogens have elucidated the molecular mechanisms underlying complement evasion, inhibition of opsonic phagocytosis and cell lysis. This review aims to comprehensively summarize the recent findings on the various strategies adopted by pathogenic bacteria to escape complement-mediated clearance.
Collapse
Affiliation(s)
- Shikhar Sharma
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| |
Collapse
|
13
|
Röttgerding F, Kraiczy P. Immune Evasion Strategies of Relapsing Fever Spirochetes. Front Immunol 2020; 11:1560. [PMID: 32793216 PMCID: PMC7390862 DOI: 10.3389/fimmu.2020.01560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Relapsing fever (RF) is claimed a neglected arthropod-borne disease caused by a number of diverse human pathogenic Borrelia (B.) species. These RF borreliae are separated into the groups of tick-transmitted species including B. duttonii, B. hermsii, B. parkeri, B. turicatae, B. hispanica, B. persica, B. caucasica, and B. myiamotoi, and the louse-borne Borrelia species B. recurrentis. As typical blood-borne pathogens achieving high cell concentrations in human blood, RF borreliae (RFB) must outwit innate immunity, in particular complement as the first line of defense. One prominent strategy developed by RFB to evade innate immunity involves inactivation of complement by recruiting distinct complement regulatory proteins, e.g., C1 esterase inhibitor (C1-INH), C4b-binding protein (C4BP), factor H (FH), FH-like protein-1 (FHL-1), and factor H-related proteins FHR-1 and FHR-2, or binding of individual complement components and plasminogen, respectively. A number of multi-functional, complement and plasminogen-binding molecules from distinct Borrelia species have previously been identified and characterized, exhibiting considerable heterogeneity in their sequences, structures, gene localization, and their capacity to bind host-derived proteins. In addition, RFB possess a unique system of antigenic variation, allowing them to change the composition of surface-exposed variable major proteins, thus evading the acquired immune response of the human host. This review focuses on the current knowledge of the immune evasion strategies by RFB and highlights the role of complement-interfering and infection-associated molecules for the pathogenesis of RFB.
Collapse
Affiliation(s)
- Florian Röttgerding
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
14
|
Cutler S, Vayssier-Taussat M, Estrada-Peña A, Potkonjak A, Mihalca AD, Zeller H. A new Borrelia on the block: Borrelia miyamotoi - a human health risk? ACTA ACUST UNITED AC 2020; 24. [PMID: 31064634 PMCID: PMC6505184 DOI: 10.2807/1560-7917.es.2019.24.18.1800170] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Borrelia miyamotoi clusters phylogenetically among relapsing fever borreliae, but is transmitted by hard ticks. Recent recognition as a human pathogen has intensified research into its ecology and pathogenic potential. Aims We aimed to provide a timely critical integrative evaluation of our knowledge on B. miyamotoi, to assess its public health relevance and guide future research. Methods This narrative review used peer-reviewed literature in English from January 1994 to December 2018. Results Borrelia miyamotoi occurs in the world’s northern hemisphere where it co-circulates with B. burgdorferi sensu lato, which causes Lyme disease. The two borreliae have overlapping vertebrate and tick hosts. While ticks serve as vectors for both species, they are also reservoirs for B. miyamotoi. Three B. miyamotoi genotypes are described, but further diversity is being recognised. The lack of sufficient cultivable isolates and vertebrate models compromise investigation of human infection and its consequences. Our understanding mainly originates from limited case series. In these, human infections mostly present as influenza-like illness, with relapsing fever in sporadic cases and neurological disease reported in immunocompromised patients. Unspecific clinical presentation, also occasionally resulting from Lyme- or other co-infections, complicates diagnosis, likely contributing to under-reporting. Diagnostics mainly employ PCR and serology. Borrelia miyamotoi infections are treated with antimicrobials according to regimes used for Lyme disease. Conclusions With co-infection of tick-borne pathogens being commonplace, diagnostic improvements remain important. Developing in vivo models might allow more insight into human pathogenesis. Continued ecological and human case studies are key to better epidemiological understanding, guiding intervention strategies.
Collapse
Affiliation(s)
- Sally Cutler
- School of Health, Sport & Bioscience, University of East London, London, United Kingdom
| | | | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Spain
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Serbia
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania
| | - Hervé Zeller
- European Centre for Disease Prevention and Control, Solna, Sweden
| |
Collapse
|
15
|
Passalia FJ, Carvalho E, Heinemann MB, Vieira ML, Nascimento ALTO. The Leptospira interrogans LIC10774 is a multifunctional surface protein that binds calcium and interacts with host components. Microbiol Res 2020; 235:126470. [PMID: 32247916 DOI: 10.1016/j.micres.2020.126470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
Leptospirosis is a global re-emerging zoonosis, caused by pathogenic bacteria of the genus Leptospira. Humans are infected mainly through contact with contaminated water or soil. The understanding of the molecular mechanisms of leptospirosis through the characterization of unknown outer membrane proteins may contribute to the development of new treatments, diagnostic methods and vaccines. We have identified using bioinformatics analysis a protein that is encoded by the gene LIC10774, predicted to be localized at the leptospiral outer membrane and exhibit beta-roll folding. Surface exposure was confirmed by flow cytometry, ELISA and immunofluorescence-based confocal microscopy. Through circular dichroism spectroscopy and hydrophobic dye binding we have shown that rLIC10774 binds calcium ions, which imposes changes to secondary and tertiary structures. The recombinant protein was capable of binding to several host extracellular matrix and serum components. Therefore, we describe LIC10774 as a calcium-binding protein exposed in the outer surface of pathogenic leptospires with possible multifunctional roles in adhesion to host tissues, evasion of the immune system and participation in dissemination processes during leptospirosis. In addition, we hypothesize that the calcium binding is important for temperature-dependent functional roles during leptospirosis.
Collapse
Affiliation(s)
- Felipe José Passalia
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, 05503-900, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, Brazil
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, 05503-900, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Brazil
| | - Mônica Larucci Vieira
- Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | - Ana Lucia T O Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, 05503-900, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, Brazil.
| |
Collapse
|
16
|
Franck M, Ghozzi R, Pajaud J, Lawson-Hogban NE, Mas M, Lacout A, Perronne C. Borrelia miyamotoi: 43 Cases Diagnosed in France by Real-Time PCR in Patients With Persistent Polymorphic Signs and Symptoms. Front Med (Lausanne) 2020; 7:55. [PMID: 32181254 PMCID: PMC7059645 DOI: 10.3389/fmed.2020.00055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/06/2020] [Indexed: 12/05/2022] Open
Abstract
Background:Borrelia species are divided into three groups depending on the induced disease and the tick vector. Borrelia miyamotoi is a relapsing fever Borrelia but can induce symptoms related to Lyme disease. Discovered in 1995, it is found in ticks around the world. In France, this species of Borrelia has been isolated in ticks and rodents, but was not yet observed in humans. Objective: The aim of the study was to look for B. miyamotoi in symptomatic patients. Methods: Real-time PCR was performed on 824 blood samples from patients presenting symptoms of persistent polymorphic syndrome possibly due to tick bite, a syndrome recognized by the French Authority for Health, which is close to the post-treatment Lyme disease syndrome. PCR was also performed on 24 healthy control persons. The primers were specifically designed for this particular species of Borrelia. The sequence of interest of 94 bp is located on the glpQ gene. Sequencing of amplification products, randomly chosen, confirmed the amplification specificity. To better investigate cases, a clinical questionnaire was sent to the patients PCR-positive for B. miyamotoi and to their physician. Results: This search revealed a positive PCR for B. miyamotoi in the blood from 43 patients out of 824 (5.22%). PCR was negative in all control persons. A clinical chart was obtained from 31 of the 43 patients. A history of erythema migrans was reported in five of these 31 patients (16%). All patients complained about fatigue, joint pain and neuro-cognitive disorders. Some patients complained about respiratory problems (chest tightness and/or lack of air in 41.9%). Episodes of relapsing fever were reported by 11 of the 31 patients (35.5%). Chilliness, hot flushes and/or sweats were reported by around half of the patients. B. miyamotoi may not cross-react with B. burgdorferi serology. Conclusion: This study is the first to detect B. miyamotoi in human blood in France. This series of human B. miyamotoi infection is the largest in patients with long term persistent syndrome. Our data suggest that this infection may be persistent, even on the long term.
Collapse
Affiliation(s)
| | - Raouf Ghozzi
- Hôpital de Lannemezan, Service Infectiologie, Fédération Française contre les Maladies Vectorielles à Tiques, Lannemezan, France
| | | | | | - Marie Mas
- Clinique Convert, Médecine Générale, Service des Urgences, Bourg en Bresse, France
| | - Alexis Lacout
- Centre de diagnostic ELSAN, Centre Médico - Chirurgical, Aurillac, France
| | - Christian Perronne
- Hôpital Universitaire Raymond Poincaré (Assistance Publique - Hôpitaux de Paris), Département d'Infectiologie, Université de Versailles - Saint Quentin, Paris-Saclay, Garches, France
| |
Collapse
|
17
|
Walter L, Sürth V, Röttgerding F, Zipfel PF, Fritz-Wolf K, Kraiczy P. Elucidating the Immune Evasion Mechanisms of Borrelia mayonii, the Causative Agent of Lyme Disease. Front Immunol 2019; 10:2722. [PMID: 31849943 PMCID: PMC6902028 DOI: 10.3389/fimmu.2019.02722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023] Open
Abstract
Borrelia (B.) mayonii sp. nov. has recently been reported as a novel human pathogenic spirochete causing Lyme disease (LD) in North America. Previous data reveal a higher spirochaetemia in the blood compared to patients infected by LD spirochetes belonging to the B. burgdorferi sensu lato complex, suggesting that this novel genospecies must exploit strategies to overcome innate immunity, in particular complement. To elucidate the molecular mechanisms of immune evasion, we utilized various methodologies to phenotypically characterize B. mayonii and to identify determinants involved in the interaction with complement. Employing serum bactericidal assays, we demonstrated that B. mayonii resists complement-mediated killing. To further elucidate the role of the key regulators of the alternative pathway (AP), factor H (FH), and FH-like protein 1 (FHL-1) in immune evasion of B. mayonii, serum adsorption experiments were conducted. The data revealed that viable spirochetes recruit both regulators from human serum and FH retained its factor I-mediated C3b-inactivating activity when bound to the bacterial cells. In addition, two prominent FH-binding proteins of approximately 30 and 18 kDa were detected in B. mayonii strain MN14-1420. Bioinformatics identified a gene, exhibiting 60% identity at the DNA level to the cspA encoding gene of B. burgdorferi. Following PCR amplification, the gene product was produced as a His-tagged protein. The CspA-orthologous protein of B. mayonii interacted with FH and FHL-1, and both bound regulators promoted inactivation of C3b in the presence of factor I. Additionally, the CspA ortholog counteracted complement activation by inhibiting the alternative and terminal but not the classical and Lectin pathways, respectively. Increasing concentrations of CspA of B. mayonii also strongly affected C9 polymerization, terminating the formation of the membrane attack complex. To assess the role of CspA of B. mayonii in facilitating serum resistance, a gain-of-function strain was generated, harboring a shuttle vector allowing expression of the CspA encoding gene under its native promotor. Spirochetes producing the native protein on the cell surface overcame complement-mediated killing, indicating that CspA facilitates serum resistance of B. mayonii. In conclusion, here we describe the molecular mechanism utilized by B. mayonii to resists complement-mediated killing by capturing human immune regulators.
Collapse
Affiliation(s)
- Lea Walter
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Valerie Sürth
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Florian Röttgerding
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz-Institute for Natural Products Research and Infection Biology, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Karin Fritz-Wolf
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
18
|
Immunoproteomic analysis of Borrelia miyamotoi for the identification of serodiagnostic antigens. Sci Rep 2019; 9:16808. [PMID: 31727932 PMCID: PMC6856195 DOI: 10.1038/s41598-019-53248-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/28/2019] [Indexed: 01/05/2023] Open
Abstract
The tick-borne spirochete, Borrelia miyamotoi, is an emerging pathogen of public health significance. Current B. miyamotoi serodiagnostic testing depends on reactivity against GlpQ which is not highly sensitive on acute phase serum samples. Additionally, anti-B. miyamotoi antibodies can cross-react with C6 antigen testing for B. burgdorferi, the causative agent of Lyme disease, underscoring the need for improved serological assays that produce accurate diagnostic results. We performed an immunoproteomics analysis of B. miyamotoi proteins to identify novel serodiagnostic antigens. Sera from mice infected with B. miyamotoi by subcutaneous inoculation or tick bite were collected for immunoblotting against B. miyamotoi membrane-associated proteins separated by 2-dimensional electrophoresis (2DE). In total, 88 proteins in 40 2DE immunoreactive spots were identified via mass spectrometry. Multiple variable large proteins (Vlps) and a putative lipoprotein were among those identified and analyzed. Reactivity of anti-B. miyamotoi sera against recombinant Vlps and the putative lipoprotein confirmed their immunogenicity. Mouse anti-B. burgdorferi serum was cross-reactive to all recombinant Vlps, but not against the putative lipoprotein by IgG. Furthermore, antibodies against the recombinant putative lipoprotein were present in serum from a B. miyamotoi-infected human patient, but not a Lyme disease patient. Results presented here provide a comprehensive profile of B. miyamotoi antigens that induce the host immune response and identify a putative lipoprotein as a potentially specific antigen for B. miyamotoi serodetection.
Collapse
|
19
|
Line Immunoblot Assay for Tick-Borne Relapsing Fever and Findings in Patient Sera from Australia, Ukraine and the USA. Healthcare (Basel) 2019; 7:healthcare7040121. [PMID: 31640151 PMCID: PMC6955669 DOI: 10.3390/healthcare7040121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022] Open
Abstract
Tick-borne relapsing fever (TBRF) is caused by spirochete bacteria of the genus Borrelia termed relapsing fever Borreliae (RFB). TBRF shares symptoms with Lyme disease (LD) caused by related Lyme disease Borreliae (LDB). TBRF and LD are transmitted by ticks and occur in overlapping localities worldwide. Serological detection of antibodies used for laboratory confirmation of LD is not established for TBRF. A line immunoblot assay using recombinant proteins from different RFB species, termed TBRF IB, was developed and its diagnostic utility investigated. The TBRF IBs were able to differentiate between antibodies to RFB and LDB and had estimated sensitivity, specificity, and positive and negative predictive values of 70.5%, 99.5%, 97.3%, and 93.4%, respectively, based on results with reference sera from patients known to be positive and negative for TBRF. The use of TBRF IBs and analogous immunoblots for LD to test sera of patients from Australia, Ukraine, and the USA with LD symptoms revealed infection with TBRF alone, LD alone, and both TBRF and LD. Diagnosis by clinical criteria alone can, therefore, underestimate the incidence of TBRF. TBRF IBs will be useful for laboratory confirmation of TBRF and understanding its epidemiology worldwide.
Collapse
|
20
|
Talagrand-Reboul E, Boyer PH, Bergström S, Vial L, Boulanger N. Relapsing Fevers: Neglected Tick-Borne Diseases. Front Cell Infect Microbiol 2018; 8:98. [PMID: 29670860 PMCID: PMC5893795 DOI: 10.3389/fcimb.2018.00098] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
Relapsing fever still remains a neglected disease and little is known on its reservoir, tick vector and physiopathology in the vertebrate host. The disease occurs in temperate as well as tropical countries. Relapsing fever borreliae are spirochaetes, members of the Borreliaceae family which also contain Lyme disease spirochaetes. They are mainly transmitted by Ornithodoros soft ticks, but some species are vectored by ixodid ticks. Traditionally a Borrelia species is associated with a specific vector in a particular geographical area. However, new species are regularly described, and taxonomical uncertainties deserve further investigations to better understand Borrelia vector/host adaptation. The medical importance of Borrelia miyamotoi, transmitted by Ixodes spp., has recently spawned new interest in this bacterial group. In this review, recent data on tick-host-pathogen interactions for tick-borne relapsing fevers is presented, with special focus on B. miyamotoi.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Pierre H. Boyer
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Laurence Vial
- CIRAD BIOS, UMR15 CIRAD/Institut National de la Recherche Agronomique “Contrôle des Maladies Animales Exotiques et Emergentes,” Equipe “Vecteurs,” Campus International de Baillarguet, Montpellier, France
| | - Nathalie Boulanger
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
- Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| |
Collapse
|
21
|
Nguyen NTT, Röttgerding F, Devraj G, Lin YP, Koenigs A, Kraiczy P. The Complement Binding and Inhibitory Protein CbiA of Borrelia miyamotoi Degrades Extracellular Matrix Components by Interacting with Plasmin(ogen). Front Cell Infect Microbiol 2018; 8:23. [PMID: 29456970 PMCID: PMC5801413 DOI: 10.3389/fcimb.2018.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
Abstract
The emerging relapsing fever spirochete Borrelia (B.) miyamotoi is transmitted by ixodid ticks and causes the so-called hard tick-borne relapsing fever or B. miyamotoi disease (BMD). More recently, we identified a surface-exposed molecule, CbiA exhibiting complement binding and inhibitory capacity and rendering spirochetes resistant to complement-mediated lysis. To gain deeper insight into the molecular principles of B. miyamotoi-host interaction, we examined CbiA as a plasmin(ogen) receptor that enables B. miyamotoi to interact with the serine protease plasmin(ogen). Recombinant CbiA was able to bind plasminogen in a dose-dependent fashion. Moreover, lysine residues appear to play a crucial role in the protein-protein interaction as binding of plasminogen was inhibited by the lysine analog tranexamic acid as well as increasing ionic strength. Of relevance, plasminogen bound to CbiA can be converted by urokinase-type plasminogen activator (uPa) to active plasmin which cleaved both, the chromogenic substrate S-2251 and its physiologic substrate fibrinogen. Concerning the involvement of specific amino acids in the interaction with plasminogen, lysine residues located at the C-terminus are frequently involved in the binding as reported for various other plasminogen-interacting proteins of Lyme disease spirochetes. Lysine residues located within the C-terminal domain were substituted with alanine to generate single, double, triple, and quadruple point mutants. However, binding of plasminogen to the mutated CbiA proteins was not affected, suggesting that lysine residues distant from the C-terminus might be involved in the interaction.
Collapse
Affiliation(s)
- Ngoc T T Nguyen
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Florian Röttgerding
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Gayatri Devraj
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Arno Koenigs
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany.,VIROTECH Diagnostics GmbH, Rüsselsheim, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
22
|
Cheng ZX, Gong QY, Wang Z, Chen ZG, Ye JZ, Li J, Wang J, Yang MJ, Ling XP, Peng B. Edwardsiella tarda Tunes Tricarboxylic Acid Cycle to Evade Complement-Mediated Killing. Front Immunol 2017; 8:1706. [PMID: 29270172 PMCID: PMC5725468 DOI: 10.3389/fimmu.2017.01706] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023] Open
Abstract
Evasion of complement-mediated killing is a common phenotype for many different types of pathogens, but the mechanism is still poorly understood. Most of the clinic isolates of Edwardsiella tarda, an important pathogen infecting both of human and fish, are commonly found serum-resistant. To explore the potential mechanisms, we applied gas chromatography-mass spectrometry (GC-MS)-based metabolomics approaches to profile the metabolomes of E. tarda EIB202 in the presence or absence of serum stress. We found that tricarboxylic acid (TCA) cycle was greatly enhanced in the presence of serum. The quantitative real-time PCR (qRT-PCR) and enzyme activity assays validated this result. Furthermore, exogenous succinate that promotes the TCA cycle increased serum resistance, while TCA cycle inhibitors (bromopyruvate and propanedioic acid) that inhibit TCA cycle, attenuated serum resistance. Moreover, the enhanced TCA cycle increased membrane potential, thus decreased the formation of membrane attack complex at cell surface, resulting serum resistance. These evidences suggested a previously unknown membrane potential-dependent mechanism of serum resistance. Therefore, our findings reveal that pathogen mounts a metabolic trick to cope with the serum complement-mediated killing.
Collapse
Affiliation(s)
- Zhi-Xue Cheng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Yang Gong
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhe Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuang-Gui Chen
- Pediatric Intensive Care Unit, Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin-Zhou Ye
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Man-Jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Peng Ling
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|