1
|
Mahaki H, Nobari S, Tanzadehpanah H, Babaeizad A, Kazemzadeh G, Mehrabzadeh M, Valipour A, Yazdinezhad N, Manoochehri H, Yang P, Sheykhhasan M. Targeting VEGF signaling for tumor microenvironment remodeling and metastasis inhibition: Therapeutic strategies and insights. Biomed Pharmacother 2025; 186:118023. [PMID: 40164047 DOI: 10.1016/j.biopha.2025.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer progression and metastasis, with vascular endothelial growth factor (VEGF) signaling serving as a key regulator of tumor angiogenesis and immune evasion. VEGF induces abnormal blood vessel formation, promoting tumor growth, immune suppression, and metastasis through epithelialmesenchymal transition (EMT). As a result, VEGF signaling has become a critical therapeutic target in cancer treatment. This review examines the molecular mechanisms driving VEGF-mediated tumor growth and angiogenesis, with a focus on the interaction between tumor and endothelial cells and the dual role of VEGF in fostering vascularization and immune suppression. Current anti-VEGF therapies, including monoclonal antibodies (e.g., bevacizumab) and tyrosine kinase inhibitors (TKIs), have demonstrated efficacy and have received FDA approval for various cancers; however, therapeutic resistance remains a significant challenge. Strategies to overcome resistance, such as novel VEGF inhibitors, vascular normalization approaches, and combination therapies with immune checkpoint inhibitors, have been explored. Additionally, future directions emphasize the need for personalized approaches to improve treatment efficacy and reduce metastasis. A comprehensive understanding of VEGF signaling in the TME may pave the way for more effective cancer therapies.
Collapse
Affiliation(s)
- Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Nobari
- Deputy of Health, Iran University of Medical Science, Tehran, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Gholamhosein Kazemzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mehrabzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Valipour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nader Yazdinezhad
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Piao Yang
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
2
|
Jia M, Lin L, Yu H, Dong Z, Pan X, Song X. Integrative bioinformatics approach identifies novel drug targets for hyperaldosteronism, with a focus on SHMT1 as a promising therapeutic candidate. Sci Rep 2025; 15:1690. [PMID: 39799159 PMCID: PMC11724956 DOI: 10.1038/s41598-025-85900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Primary aldosteronism (PA), characterized by autonomous aldosterone overproduction, is a major cause of secondary hypertension with significant cardiovascular complications. Current treatments mainly focus on symptom management rather than addressing underlying mechanisms. This study aims to discover novel therapeutic targets for PA using integrated bioinformatics and experimental validation approaches. We employed a systematic approach combining: gene identification through transcriptome-wide association studies (TWAS); causal inference using summary data-based Mendelian randomization (SMR) and two-sample Mendelian randomization (MR) analyses; additional analyses included phenome-wide association analysis, enrichment analysis, protein-protein interaction (PPI) networks, drug repurposing, molecular docking and clinical validation through aldosterone-producing adenomas (APAs) tissue. Through systematic screening and prioritization, we identified 163 PA-associated genes, of which seven emerged as potential drug targets: CEP104, HIP1, TONSL, ZNF100, SHMT1, and two long non-coding RNAs (AC006369.2 and MRPL23-AS1). SHMT1 was identified as the most promising target, showing significantly elevated expression in APAs compared to adjacent non-tumorous tissues. Drug repurposing analysis identified four potential SHMT1-targeting compounds (Mimosine, Pemetrexed, Leucovorin, and Irinotecan), supported by molecular docking studies. The integration of multiple bioinformatics methods and experimental validation successfully identified novel drug targets for hyperaldosteronism. SHMT1, in particular, represents a promising candidate for future therapeutic development. These findings provide new opportunities for developing causative treatments for PA, though further clinical validation is warranted.
Collapse
Affiliation(s)
- Minyue Jia
- Department of Ultrasonography, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang Province, China
| | - Liya Lin
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang Province, China
| | - Hanxiao Yu
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang Province, China
| | - Zhichao Dong
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Xin Pan
- Department of Endocrinology, The First People's Hospital of Xiaoshan District, Hangzhou, 311200, Zhejiang, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Shangcheng District, Hangzhou, 310000, Zhejiang Province, China
| | - Xiaoxiao Song
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Shangcheng District, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
3
|
Franz C, Jötten L, Wührl M, Hartmann S, Klupp F, Schmidt T, Schneider M. Protective effect of miR-18a in resected liver metastases of colorectal cancer and FOLFOX treatment. Cancer Rep (Hoboken) 2023; 6:e1899. [PMID: 37698257 PMCID: PMC10728504 DOI: 10.1002/cnr2.1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Colorectal cancer ranks second in terms of cancer associated deaths worldwide, whereas miRNA play a pivotal role in the etiology of cancer and its metastases. AIMS Studying the expression and cellular function of miR-18a in metastatic colorectal cancer and association to progression-free survival. METHODS AND RESULTS Colorectal liver metastases (N = 123) and primary colorectal cancer (N = 27) where analyzed by RT-PCR and correlated with clinical follow up data. Invasion and migration assays were performed with the liver metastatic cell line LIM2099 after miR-18a knockdown. Cell viability under FOLFOX treatment and knockdown was measured. We found that the expression of miR-18a was increased 4.38-fold in liver metastases and 3.86-fold in colorectal tumor tissue compared to healthy liver tissue and colorectal mucosa, respectively (p ≤ .001). Patients with a high miR-18a expression in liver metastases had a progression-free survival (PFS) of 13.6 months versus 8.9 months in patients with low expression (N = 123; p = .024). In vitro migration of LIM2099 cells was reduced after miR-18a knockdown and cell viability was significantly increased after miR-18a knockdown and treatment with folinic acid or oxaliplatin. Subgroup analysis of PFS revealed significant benefits for patients with high miR-18a expression receiving 5-FU, folinic acid or oxaliplatin. CONCLUSIONS High expression of miR-18a in colorectal liver metastases might have a protective effect after resection of metastases and FOLFOX treatment regarding PFS.
Collapse
Affiliation(s)
- Clemens Franz
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Laila Jötten
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Wührl
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sibylle Hartmann
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Fee Klupp
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Su AL, Tian CQ, Ou YJ, Bao XB, Huan XJ, Miao ZH, Wang YQ. Proteasome inhibitors reduce CD73 expression partly via decreasing p-ERK in NSCLC cells. Life Sci 2023; 332:122129. [PMID: 37769804 DOI: 10.1016/j.lfs.2023.122129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Ecto-5'-nucleotidase (CD73), encoded by the NT5E gene, mediates tumor immunosuppression and has been targeted for the development of new anticancer drugs. Proteasome inhibitors impair protein degradation by inhibiting proteasome and have been used in the clinic for cancer therapy. Here we report that proteasome inhibitors reduce the protein and mRNA levels of CD73. Among 127 tested small-molecule drugs, proteasome inhibitors were found to consistently decrease the protein and mRNA levels of CD73 in NSCLC NCI-H1299 cells. This effect was further confirmed in different NSCLC cells exposed to different proteasome inhibitors. In those treated cells, the protein levels of ERK and its active form p-ERK, the vital components in the MAPK pathway, were reduced. Consistently, inhibitors of MEK and ERK, another two members of the MAPK pathway, also lowered the protein and mRNA levels of CD73. Correspondingly, treatments with fibroblast growth factor 2 (FGF2), an activator of the MAPK pathway, enhanced the levels of p-ERK and partly rescued the proteasome inhibitor-driven reduction of CD73 mRNA and protein in NSCLC cells. However, exogenous CD73 overexpression in murine Lewis lung carcinoma (LLC) cells was not lowered either in vitro or in vivo, by the treatments with proteasome inhibitors and basically, did not affect their in vitro proliferative inhibition either. In contrast, CD73 overexpression dramatically reduced the in vivo anticancer activity of Bortezomib in immunocompetent mice, with tumor growth inhibition rates from 52.18 % for LLC/vector down to 8.75 % for LLC/NT5E homografts. These findings give new insights into the anticancer mechanisms of proteasome inhibitors.
Collapse
Affiliation(s)
- Ai-Ling Su
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chang-Qing Tian
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ying-Jie Ou
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xu-Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xia-Juan Huan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Ying-Qing Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
5
|
Kaboudin B, Esfandiari H, Kakavand M, Sohrabi M, Yousefian Amirkhiz E, Neshat A, Kawazoe T, Fukaya H, Yanai H. Phosphite-imidazole catalyzed N-formylation and N-acylation of amines. Org Biomol Chem 2023; 21:8182-8189. [PMID: 37786924 DOI: 10.1039/d3ob01306e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A novel and convenient method for the N-formylation reaction of amines with DMF as a formylating agent has been developed, utilizing a catalytic amount of diethyl phosphite/imidazole. Diethyl phosphite, as a nucleophilic catalyst, plays a significant role in this conversion. The presented method has a broad substrate scope, and various N-formyl products were obtained in good to excellent yields. Moreover, by using DMA instead of DMF, the N-acetylation reaction was also successful. The reaction of o-phenylenediamines with DMF afforded the corresponding benzimidazoles. Furthermore, N-sulfonyl amidines were obtained in good to excellent yields by the reaction of sulfonamides with DMF under similar conditions.
Collapse
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Hesam Esfandiari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Meysam Kakavand
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Masoumeh Sohrabi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Elahe Yousefian Amirkhiz
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Teru Kawazoe
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Haruhiko Fukaya
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
6
|
Li C, Wirth U, Schardey J, Ehrlich-Treuenstätt VV, Bazhin AV, Werner J, Kühn F. An immune-related gene prognostic index for predicting prognosis in patients with colorectal cancer. Front Immunol 2023; 14:1156488. [PMID: 37483596 PMCID: PMC10358773 DOI: 10.3389/fimmu.2023.1156488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common solid malignant burdens worldwide. Cancer immunology and immunotherapy have become fundamental areas in CRC research and treatment. Currently, the method of generating Immune-Related Gene Prognostic Indices (IRGPIs) has been found to predict patient prognosis as an immune-related prognostic biomarker in a variety of tumors. However, their role in patients with CRC remains mostly unknown. Therefore, we aimed to establish an IRGPI for prognosis evaluation in CRC. Methods RNA-sequencing data and clinical information of CRC patients were retrieved from The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO) databases as training and validation sets, respectively. Immune-related gene data was obtained from the ImmPort and InnateDB databases. The weighted gene co-expression network analysis (WGCNA) was used to identify hub immune-related genes. An IRGPI was then constructed using Cox regression methods. Based on the median risk score of IRGPI, patients could be divided into high-risk and low-risk groups. To further investigate the immunologic differences, Gene set variation analysis (GSVA) studies were conducted. In addition, immune cell infiltration and related functional analysis were used to identify the differential immune cell subsets and related functional pathways. Results We identified 49 immune-related genes associated with the prognosis of CRC, 17 of which were selected for an IRGPI. The IRGPI model significantly differentiates the survival rates of CRC patients in the different groups. The IRGPI as an independent prognostic factor significantly correlates with clinico-pathological factors such as age and tumor stage. Furthermore, we developed a nomogram to improve the clinical utility of the IRGPI score. Immuno-correlation analysis in different IRGPI groups revealed distinct immune cell infiltration (CD4+ T cells resting memory) and associated pathways (macrophages, Type I IFNs responses, iDCs.), providing new insights into the tumor microenvironment. At last, drug sensitivity analysis revealed that the high-risk IRGPI group was sensitive to 11 and resistant to 15 drugs. Conclusion Our study established a promising immune-related risk model for predicting survival in CRC patients. This could help to better understand the correlation between immunity and the prognosis of CRC providing a new perspective for personalized treatment of CRC.
Collapse
Affiliation(s)
- Chao Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ulrich Wirth
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Josefine Schardey
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Alexandr V. Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Florian Kühn
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| |
Collapse
|
7
|
Seçme M, Kocoglu SS. Investigation of the TLR4 and IRF3 signaling pathway-mediated effects of monensin in colorectal cancer cells. Med Oncol 2023; 40:187. [PMID: 37219624 DOI: 10.1007/s12032-023-02055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Monensin is an ionophore antibiotic isolated from Streptomyces cinnamonensis with very strong antibacterial and antiparasitic effects. Although monensin is known to exhibit anticancer activity in different cancer types, there are a very limited number of studies on its anti-inflammatory effects in colorectal cancer (CRC) cells. The aim of this study was to investigate the TLR4/IRF3-mediated antiproliferative and anti-inflammatory effects of monensin in colorectal cancer cells. The dose- and time-dependent antiproliferative activity of monensin in colorectal cancer cells was determined by XTT method and its effects on mRNA expression changes of Toll-like receptors and IRF3 genes were determined by RT-PCR. TLR4 and Interferon Regulatory Factor 3 (IRF3) protein expression was evaluated by immunofluorescence method. TLR4 and type 1 interferon (IRF) levels were also evaluated by ELISA. IC50 value of monensin in HT29 cells was determined as 10.7082 µM at 48 h and 12.6288 µM at 48th for HCT116 cells. Monensin treatment decreased TLR4 and TLR7 and IRF3 mRNA expression in CRC cells. Monensin treatment decreased the expression level of IRF3 induced by LPS. Our study demonstrates for the first time the TLR4/IRF3-mediated anti-inflammatory effects of monensin in colorectal cancer cells. Further studies on the effects of monensin on TLR receptors in colorectal cancer cells are needed.
Collapse
Affiliation(s)
- Mücahit Seçme
- School of Medicine, Department of Medical Biology, Ordu University, Ordu, Turkey.
| | - Sema Serter Kocoglu
- School of Medicine, Department of Histology and Embryology, Balikesir University, Balikesir, Turkey
| |
Collapse
|
8
|
Folic Acid and Leucovorin Have Potential to Prevent SARS-CoV-2-Virus Internalization by Interacting with S-Glycoprotein/Neuropilin-1 Receptor Complex. Molecules 2023; 28:molecules28052294. [PMID: 36903540 PMCID: PMC10005443 DOI: 10.3390/molecules28052294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The interaction of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain with the host-cell ACE2 receptor is a well-known step in virus infection. Neuropilin-1 (NRP-1) is another host factor involved in virus internalization. The interaction between S-glycoprotein and NRP-1 has been identified as a potential COVID-19 treatment target. Herein, the effectiveness of folic acid and leucovorin in preventing contact between S-glycoprotein and NRP-1 receptors was investigated using in silico studies and then confirmed in vitro. The results of a molecular docking study showed that leucovorin and folic acid had lower binding energies than EG01377, a well-known NRP-1 inhibitor, and lopinavir. Two hydrogen bonds with Asp 320 and Asn 300 residues stabilized the leucovorin, while interactions with Gly 318, Thr 349, and Tyr 353 residues stabilized the folic acid. The molecular dynamic simulation revealed that the folic acid and leucovorin created very stable complexes with the NRP-1. The in vitro studies showed that the leucovorin was the most active inhibitor of the S1-glycoprotein/NRP-1 complex formation, with an IC75 value of 185.95 µg/mL. The results of this study suggest that folic acid and leucovorin could be considered as potential inhibitors of the S-glycoprotein/NRP-1 complex and, thus, could prevent the SARS-CoV-2 virus' entry into host cells.
Collapse
|
9
|
Sorokin M, Zolotovskaia M, Nikitin D, Suntsova M, Poddubskaya E, Glusker A, Garazha A, Moisseev A, Li X, Sekacheva M, Naskhletashvili D, Seryakov A, Wang Y, Buzdin A. Personalized targeted therapy prescription in colorectal cancer using algorithmic analysis of RNA sequencing data. BMC Cancer 2022; 22:1113. [PMID: 36316649 PMCID: PMC9623986 DOI: 10.1186/s12885-022-10177-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Overall survival of advanced colorectal cancer (CRC) patients remains poor, and gene expression analysis could potentially complement detection of clinically relevant mutations to personalize CRC treatments. METHODS We performed RNA sequencing of formalin-fixed, paraffin-embedded (FFPE) cancer tissue samples of 23 CRC patients and interpreted the data obtained using bioinformatic method Oncobox for expression-based rating of targeted therapeutics. Oncobox ranks cancer drugs according to the efficiency score calculated using target genes expression and molecular pathway activation data. The patients had primary and metastatic CRC with metastases in liver, peritoneum, brain, adrenal gland, lymph nodes and ovary. Two patients had mutations in NRAS, seven others had mutated KRAS gene. Patients were treated by aflibercept, bevacizumab, bortezomib, cabozantinib, cetuximab, crizotinib, denosumab, panitumumab and regorafenib as monotherapy or in combination with chemotherapy, and information on the success of totally 39 lines of therapy was collected. RESULTS Oncobox drug efficiency score was effective biomarker that could predict treatment outcomes in the experimental cohort (AUC 0.77 for all lines of therapy and 0.91 for the first line after tumor sampling). Separately for bevacizumab, it was effective in the experimental cohort (AUC 0.87) and in 3 independent literature CRC datasets, n = 107 (AUC 0.84-0.94). It also predicted progression-free survival in univariate (Hazard ratio 0.14) and multivariate (Hazard ratio 0.066) analyses. Difference in AUC scores evidences importance of using recent biosamples for the prediction quality. CONCLUSION Our results suggest that RNA sequencing analysis of tumor FFPE materials may be helpful for personalizing prescriptions of targeted therapeutics in CRC.
Collapse
Affiliation(s)
- Maxim Sorokin
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Moscow Region, Russia
- OmicsWay Corp, 91789 Walnut, CA USA
| | | | - Daniil Nikitin
- OmicsWay Corp, 91789 Walnut, CA USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Maria Suntsova
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Elena Poddubskaya
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Clinical Center Vitamed, 121309 Moscow, Russia
| | - Alexander Glusker
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Alexey Moisseev
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, University of California, 90095 Los Angeles, CA USA
| | - Marina Sekacheva
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | | | - Ye Wang
- Core Laboratory, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, 141701 Moscow Region, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Nong BL, Meng XW, Wei YY, Zhao HJ, Zhang XX. Design, synthesis, and biological evaluation of C-8 modified curcumol derivatives against colorectal cancer cell lines. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 25:1-14. [PMID: 35499464 DOI: 10.1080/10286020.2022.2067533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
A series of structurally modified curcumol derivatives at C-8 position were designed and synthesized, whose structures were confirmed by 1H NMR,13C NMR, and HRMS analysis. The tested compounds were evaluated for in vitro antitumor activity against colorectal cancer cell lines SW620, HCT116, and CaCo2. Many of the tested candidates exhibited higher inhibition efficiency than curcumol. Among them, compound 3 l shows the best inhibitory effect on the viability of SW620 with IC50 value of 19.90 ± 0.64 µM. The structure-activity relationships of these derivatives were discussed, which showed that the introduction of amino or aryl groups tended to increase the anti-cancer activity. In addition, compound 3 l may inhibit cancer cell proliferation through triggering cell apoptosis.
Collapse
Affiliation(s)
- Bin-Lu Nong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiang-Wei Meng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying-Ying Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Hua-Jun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xing-Xian Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
11
|
Benvenuto M, Ciuffa S, Focaccetti C, Sbardella D, Fazi S, Scimeca M, Tundo GR, Barillari G, Segni M, Bonanno E, Manzari V, Modesti A, Masuelli L, Coletta M, Bei R. Proteasome inhibition by bortezomib parallels a reduction in head and neck cancer cells growth, and an increase in tumor-infiltrating immune cells. Sci Rep 2021; 11:19051. [PMID: 34561494 PMCID: PMC8463577 DOI: 10.1038/s41598-021-98450-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
Head and neck cancer (HNC) has frequently an aggressive course for the development of resistance to standard chemotherapy. Thus, the use of innovative therapeutic drugs is being assessed. Bortezomib is a proteasome inhibitor with anticancer effects. In vitro antitumoral activity of Bortezomib was investigated employing human tongue (SCC-15, CAL-27), pharynx (FaDu), salivary gland (A-253) cancer cell lines and a murine cell line (SALTO-5) originated from a salivary gland adenocarcinoma arising in BALB-neuT male mice transgenic for the oncogene neu. Bortezomib inhibited cell proliferation, triggered apoptosis, modulated the expression and activation of pro-survival signaling transduction pathways proteins activated by ErbB receptors and inhibited proteasome activity in vitro. Intraperitoneal administration of Bortezomib delayed tumor growth of SALTO-5 cells transplanted in BALB-neuT mice, protracted mice survival and adjusted tumor microenvironment by increasing tumor-infiltrating immune cells (CD4+ and CD8+ T cells, B lymphocytes, macrophages, and Natural Killer cells) and by decreasing vessels density. In addition, Bortezomib modified the expression of proteasome structural subunits in transplanted SALTO-5 cells. Our findings further support the use of Bortezomib for the treatment of HNC and reveal its ineffectiveness in counteracting the activation of deregulated specific signaling pathways in HNC cell lines when resistance to proteasome inhibition is developed.
Collapse
Affiliation(s)
- Monica Benvenuto
- Saint Camillus International, University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131, Rome, Italy.,Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166, Rome, Italy
| | | | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161, Rome, Italy
| | - Manuel Scimeca
- Saint Camillus International, University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131, Rome, Italy.,Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166, Rome, Italy.,Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Maria Segni
- Department of Maternal Infantile and Urological Sciences, University of Rome "Sapienza", Viale Regina Elena 324, 00161, Rome, Italy.,Pediatric Endocrinology Unit, Policlinico Umberto I, Viale Regina Elena 364, 00161, Rome, Italy
| | - Elena Bonanno
- Saint Camillus International, University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131, Rome, Italy.,Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,"Diagnostica Medica" & "Villa Dei Platani", Neuromed Group, 83100, Avellino, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161, Rome, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,IRCCS-Fondazione Bietti, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
12
|
Nobiletin and Xanthohumol Sensitize Colorectal Cancer Stem Cells to Standard Chemotherapy. Cancers (Basel) 2021; 13:cancers13163927. [PMID: 34439086 PMCID: PMC8392547 DOI: 10.3390/cancers13163927] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Colorectal cancer stem cells (CR-CSCs) play a pivotal role in the therapy resistance and relapse of CRC patients. Herein we demonstrate that new treatment approaches comprising polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively, hamper the viability of CR-CSCs as well as synergizing with 5-fluorouracil and oxaliplatin (FOX)-based chemotherapy. Extract fractions containing Nobiletin and Xanthohumol, in combination with chemotherapy, decreased stemness properties of CR-CSCs and restrained the outgrowth of chemoresistant metastatic CR-CSCs. These data pinpoint Nobiletin and Xanthohumol as efficacious anti-cancer compounds in metastatic settings. Abstract Colorectal cancer (CRC) mortality is mainly caused by patient refractoriness to common anti-cancer therapies and consequent metastasis formation. Besides, the notorious toxic side effects of chemotherapy are a concurrent obstacle to be tackled. Thus, new treatment approaches are needed to effectively improve patient outcomes. Compelling evidence demonstrated that cancer stem cells (CSCs) are responsible for treatment failure and relapse. New natural treatment approaches showed capabilities to selectively target the CSC subpopulation by rendering them targetable by standard cytotoxic compounds. Herein we show the anti-cancer properties of the polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively. The natural biofunctional fractions, singularly and in combination, reduced the cell viability of CRC stem cells (CR-CSCs) and synergized with 5-fluorouracil and oxaliplatin (FOX) chemotherapy. These phenomena were accompanied by a reduced S and G2/M phase of the cell cycle and upregulation of cell death-related genes. Notably, both phytoextracts in combination with FOX thwarted stemness features in CR-CSCs as demonstrated by the impaired clonogenic potential and decreased Wnt pathway activation. Extracts lowered the expression of CD44v6 and affected the expansion of metastatic CR-CSCs in patients refractory to chemotherapy. Together, this study highlights the importance of polymethoxyflavones and prenylflavonoids as natural remedies to aid oncological therapies.
Collapse
|
13
|
Kumar R, Harilal S, Carradori S, Mathew B. A Comprehensive Overview of Colon Cancer- A Grim Reaper of the 21st Century. Curr Med Chem 2021; 28:2657-2696. [PMID: 33106132 DOI: 10.2174/0929867327666201026143757] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/09/2022]
Abstract
A few decades ago, the incidence of colorectal cancer (CRC) was low and is now the fourth in the list of deadly cancers producing nearly a million deaths annually. A population that is aging along with risk factors such as smoking, obesity, sedentary lifestyle with little or no physical activity, and non-healthy food habits of developed countries can increase the risk of colorectal cancer. The balance in gut microbiota and the metabolites produced during bacterial fermentation within the host plays a significant role in regulating intestinal diseases as well as colorectal cancer development. Recent progress in the understanding of illness resulted in multiple treatment options such as surgery, radiation, and chemotherapy, including targeted therapy and multitherapies. The treatment plan for CRC depends on the location, stage and grade of cancer as well as genomic biomarker tests. Despite all the advancements made in the genetic and molecular aspects of the disease, the knowledge seems inadequate as the drug action as well as the wide variation in drug response did not appear strongly correlated with the individual molecular and genetic characteristics, which suggests the requirement of comprehensive molecular understanding of this complex heterogeneous disease. Furthermore, multitherapies or a broad spectrum approach, which is an amalgamation of the various promising as well as effective therapeutic strategies that can tackle heterogeneity and act on several targets of the disease, need to be validated in clinical studies. The latest treatment options have significantly increased the survival of up to three years in the case of advanced disease. The fact that colorectal cancer is developed from a polypoid precursor, as well as the symptoms of the disease that occur at an advanced stage, underlines how screening programs can help early detection and decrease mortality as well as morbidity from CRC.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| |
Collapse
|
14
|
Teng S, Hao J, Bi H, Li C, Zhang Y, Zhang Y, Han W, Wang D. The Protection of Crocin Against Ulcerative Colitis and Colorectal Cancer via Suppression of NF-κB-Mediated Inflammation. Front Pharmacol 2021; 12:639458. [PMID: 33841156 PMCID: PMC8025585 DOI: 10.3389/fphar.2021.639458] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background: In China, the incidence of ulcerative colitis (UC) is increasing every year, but the etiology of UC remains unclear. UC is known to increase the risk of colorectal cancer (CRC). The aim of this study was to investigate the protective effects of crocin against UC and CRC in mouse models. Methods: Crocin was used to treat the dextran sodium sulfate (DSS)-induced UC mice for 3 weeks, and ApcMinC/Gpt mice with colorectal cancer for 8 weeks. Proteomics screening was used to detect changes in the protein profiles of colon tissues of UC mice. Enzyme-linked immunosorbent assays and western blot were used to verify these changes. Results: Crocin strongly reduced the disease activity index scores of UC mice, and improved the pathological symptoms of the colonic epithelium. The anti-inflammatory effects of crocin were indicated by its regulation of the activity of various cytokines, such as interleukins, via the modulation of nuclear factor kappa-B (NF-κB) signaling. Crocin significantly suppressed tumor growth in ApcMinC/Gpt mice and ameliorated pathological alterations in the colon and liver, but had no effects on spleen and kidney. Additionally, crocin significantly decreased the concentrations of interleukins and tumor necrosis factor-α in the sera and colon tissues, suggesting its anti-inflammatory effects related to NF-κB signaling. Finally, 12-h incubation of SW480 cells with crocin caused cell cycle arrest, enhanced the apoptotic rate, promoted the dissipation of mitochondrial membrane potential, and the over-accumulation of reactive oxygen species. From the theoretical analyses, phosphorylated residues on S536 may enhance the protein-protein interactions which may influence the conformational changes in the secondary structure of NF-κB. Conclusion: The protective effects of crocin on UC and CRC were due to its suppression of NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Shanshan Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Jie Hao
- School of Life Sciences, Jilin University, Changchun, China
| | - Hui Bi
- Department of Anesthesiology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Congcong Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Weiwei Han
- School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Ugurel OM, Mutlu O, Sariyer E, Kocer S, Ugurel E, Inci TG, Ata O, Turgut-Balik D. Evaluation of the potency of FDA-approved drugs on wild type and mutant SARS-CoV-2 helicase (Nsp13). Int J Biol Macromol 2020; 163:1687-1696. [PMID: 32980406 PMCID: PMC7513821 DOI: 10.1016/j.ijbiomac.2020.09.138] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 has caused COVID-19 outbreak with nearly 2 M infected people and over 100K death worldwide, until middle of April 2020. There is no confirmed drug for the treatment of COVID-19 yet. As the disease spread fast and threaten human life, repositioning of FDA approved drugs may provide fast options for treatment. In this aspect, structure-based drug design could be applied as a powerful approach in distinguishing the viral drug target regions from the host. Evaluation of variations in SARS-CoV-2 genome may ease finding specific drug targets in the viral genome. In this study, 3458 SARS-CoV-2 genome sequences isolated from all around the world were analyzed. Incidence of C17747T and A17858G mutations were observed to be much higher than others and they were on Nsp13, a vital enzyme of SARS-CoV-2. Effect of these mutations was evaluated on protein-drug interactions using in silico methods. The most potent drugs were found to interact with the key and neighbor residues of the active site responsible from ATP hydrolysis. As result, cangrelor, fludarabine, folic acid and polydatin were determined to be the most potent drugs which have potency to inhibit both the wild type and mutant SARS-CoV-2 helicase. Clinical data supporting these findings would be important towards overcoming COVID-19.
Collapse
Affiliation(s)
- Osman Mutluhan Ugurel
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, Istanbul, Turkey; Altinbas University, School of Engineering and Natural Science, Department of Basic Science, 34217 Bagcilar, Istanbul, Turkey
| | - Ozal Mutlu
- Marmara University, Faculty of Arts and Sciences, Department of Biology, Goztepe Campus, 34722 Kadikoy, Istanbul, Turkey
| | - Emrah Sariyer
- Artvin Coruh University, Vocational School of Health Services, Medical Laboratory Techniques, Artvin, Turkey
| | - Sinem Kocer
- Istanbul Yeni Yuzyil University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 34010 Cevizlibag, Istanbul, Turkey
| | - Erennur Ugurel
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, Istanbul, Turkey
| | - Tugba Gul Inci
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, Istanbul, Turkey
| | - Oguz Ata
- Altinbas University, School of Engineering and Natural Science, Department of Software Engineering, 34217 Bagcilar, Istanbul, Turkey
| | - Dilek Turgut-Balik
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, Istanbul, Turkey.
| |
Collapse
|
16
|
PAICS, a Purine Nucleotide Metabolic Enzyme, is Involved in Tumor Growth and the Metastasis of Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12040772. [PMID: 32218208 PMCID: PMC7226071 DOI: 10.3390/cancers12040772] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
The identification of colorectal cancer (CRC) molecular targets is needed for the development of drugs that improve patient survival. We investigated the functional role of phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), a de novo purine biosynthetic enzyme involved in DNA synthesis, in CRC progression and metastasis by using cell and animal models. Its clinical utility was assessed in human CRC samples. The expression of PAICS was regulated by miR-128 and transcriptionally activated by Myc in CRC cells. Increased expression of PAICS was involved in proliferation, migration, growth, and invasion of CRC cells irrespective of the p53 and microsatellite status. In mice, the depletion of PAICS in CRC cells led to reduced tumor growth and metastatic cell dissemination to the liver, lungs, and bone. Positron emission tomography imaging showed significantly reduced metastatic lesions in stable PAICS knockdown CRC cells. In cells with PAICS knockdown, there was upregulation of the epithelial mesenchymal transition marker, E-cadherin, and bromodomain inhibitor, JQ1, can target its increased expression by blocking Myc. PAICS was overexpressed in 70% of CRCs, and was associated with poor 5-year survival independent of the pathologic stage, patient’s race, gender, and age. Overall, the findings point to the usefulness of PAICS targeting in the treatment of aggressive colorectal cancer.
Collapse
|
17
|
Radu IC, Hudita A, Zaharia C, Galateanu B, Iovu H, Tanasa E(V, Georgiana Nitu S, Ginghina O, Negrei C, Tsatsakis A, Velonia K, Shtilman M, Costache M. Poly(3-hydroxybutyrate-CO-3-hydroxyvalerate) PHBHV biocompatible nanocarriers for 5-FU delivery targeting colorectal cancer. Drug Deliv 2019; 26:318-327. [PMID: 30896267 PMCID: PMC6442118 DOI: 10.1080/10717544.2019.1582729] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Aiming to address the issue of poor bioavailability of most anti-tumor medicines against colorectal cancer, we developed a targeted anticancer nanocarrier using biocarriers able to both bind and easily release their load in a controlled manner. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) carriers were obtained via the emulsification-diffusion method, loaded with 5-fluorouracil and then characterized in terms of particle morphology and size (SEM, DLS), drug uptake and release. The cytotoxic potential of the 5-fluorouracil-loaded polymer nanocarriers on human adenocarcinoma cells (HT-29 cell line) was investigated. The in vitro studies clearly demonstrated that while the nanocarriers themselves slightly alter HT-29 cell viability, when loaded with 5-fluorouracil they significantly decrease cell viability, suggesting that the polymer itself exhibits low cytotoxicity and the drug-loaded carrier acts in an efficient manner to kill HT-29 human adenocarcinoma cells.
Collapse
Affiliation(s)
- Ionut Cristian Radu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Catalin Zaharia
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | | | - Sabina Georgiana Nitu
- National Research and Development Institute for Chemistry and Petrochemistry – ICECHIM, Bucharest, Romania
| | - Octav Ginghina
- Department of Surgery, Sf. Ioan Emergency Clinical Hospital, Bucharest, Romania
- Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest
| | - Aristidis Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece
| | - Mikhail Shtilman
- Department of Polymers, D.I. Mendeleyev University of Chemical Technology, Moscow, Russia
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
18
|
Marcinkute M, Afshinjavid S, Fatokun AA, Javid FA. Fluoxetine selectively induces p53-independent apoptosis in human colorectal cancer cells. Eur J Pharmacol 2019; 857:172441. [DOI: 10.1016/j.ejphar.2019.172441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/17/2023]
|
19
|
Kim Y, Lee J, Lee D, Othmer HG. Synergistic Effects of Bortezomib-OV Therapy and Anti-Invasive Strategies in Glioblastoma: A Mathematical Model. Cancers (Basel) 2019; 11:E215. [PMID: 30781871 PMCID: PMC6406513 DOI: 10.3390/cancers11020215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
It is well-known that the tumor microenvironment (TME) plays an important role in the regulation of tumor growth and the efficacy of anti-tumor therapies. Recent studies have demonstrated the potential of combination therapies, using oncolytic viruses (OVs) in conjunction with proteosome inhibitors for the treatment of glioblastoma, but the role of the TME in such therapies has not been studied. In this paper, we develop a mathematical model for combination therapies based on the proteosome inhibitor bortezomib and the oncolytic herpes simplex virus (oHSV), with the goal of understanding their roles in bortezomib-induced endoplasmic reticulum (ER) stress, and how the balance between apoptosis and necroptosis is affected by the treatment protocol. We show that the TME plays a significant role in anti-tumor efficacy in OV combination therapy, and illustrate the effect of different spatial patterns of OV injection. The results illustrate a possible phenotypic switch within tumor populations in a given microenvironment, and suggest new anti-invasion therapies.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Korea.
| | - Junho Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Korea.
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Korea.
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
20
|
NF-κB pathways in the development and progression of colorectal cancer. Transl Res 2018; 197:43-56. [PMID: 29550444 DOI: 10.1016/j.trsl.2018.02.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Nuclear factor-κB (NF-κB) has been widely implicated in the development and progression of cancer. In colorectal cancer (CRC), NF-κB has a key role in cancer-related processes such as cell proliferation, apoptosis, angiogenesis, and metastasis. The role of NF-κB in CRC is complex, owed to the cross talk with other signaling pathways. Although there is sufficient evidence gained from cell lines and animal models that NF-κB is involved in cancer-related processes, because of a lack of studies in human tissue, the clinical evidence of its importance is limited in patients with CRC. This review summarizes evidence relating to how NF-κB is involved in the development and progression of CRC and comments on future work to be carried out.
Collapse
|
21
|
Drug repurposing screening identifies bortezomib and panobinostat as drugs targeting cancer associated fibroblasts (CAFs) by synergistic induction of apoptosis. Invest New Drugs 2018; 36:545-560. [DOI: 10.1007/s10637-017-0547-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/22/2017] [Indexed: 02/04/2023]
|