1
|
Shdeour O, Tal-Perry N, Glickman M, Yuval-Greenberg S. Exposure to temporal variability promotes subsequent adaptation to new temporal regularities. Cognition 2024; 244:105695. [PMID: 38183867 DOI: 10.1016/j.cognition.2023.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024]
Abstract
Noise is intuitively thought to interfere with perceptual learning; However, human and machine learning studies suggest that, in certain contexts, variability may reduce overfitting and improve generalizability. Whereas previous studies have examined the effects of variability in learned stimuli or tasks, it is hitherto unknown what are the effects of variability in the temporal environment. Here, we examined this question in two groups of adult participants (N = 40) presented with visual targets at either random or fixed temporal routines and then tested on the same type of targets at a new nearly-fixed temporal routine. Findings reveal that participants of the random group performed better and adapted quicker following a change in the timing routine, relative to participants of the fixed group. Corroborated with eye-tracking and computational modeling, these findings suggest that prior exposure to temporal variability promotes the formation of new temporal expectations and enhances generalizability in a dynamic environment. We conclude that noise plays an important role in promoting perceptual learning in the temporal domain: rather than interfering with the formation of temporal expectations, noise enhances them. This counterintuitive effect is hypothesized to be achieved through eliminating overfitting and promoting generalizability.
Collapse
Affiliation(s)
- Orit Shdeour
- School of Psychological Sciences, Tel-Aviv University, Israel; Sagol School of Neuroscience, Tel-Aviv University, Israel.
| | - Noam Tal-Perry
- School of Psychological Sciences, Tel-Aviv University, Israel
| | - Moshe Glickman
- Department of Experimental Psychology, University College London, UK; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, UK
| | - Shlomit Yuval-Greenberg
- School of Psychological Sciences, Tel-Aviv University, Israel; Sagol School of Neuroscience, Tel-Aviv University, Israel
| |
Collapse
|
2
|
Yang HW, Choe JY, Noh SR, Kim JL, Han JW, Kim KW. Exploring age-related changes in saccades during cognitive tasks in healthy adults. Front Behav Neurosci 2024; 17:1301318. [PMID: 38249127 PMCID: PMC10796470 DOI: 10.3389/fnbeh.2023.1301318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Although eye movements such as saccades are related to internal cognitive processes and are independent of visual processing, few studies have investigated whether non-visual cognitive tasks simultaneously affect horizontal and vertical saccades in younger and older adults. Methods We recruited 28 younger adults aged 20-29 years and 26 older adults aged >60 years through advertisements in community settings. All participants were free of major psychiatric, neurological, or ocular diseases. All participants performed the mental arithmetic task (MAT) and verbal fluency task (VFT). The primary measures were saccade parameters, including frequency, mean amplitude, and mean velocity. Results During MAT and VFT, the frequencies of horizontal and vertical saccades increased (p = 0.0005 for horizontal saccade in MAT; p < 0.0001 for horizontal saccade in VFT; p = 0.012 for vertical saccade in MAT; p = 0.001 for vertical saccade in VFT), but were comparable between MAT and VFT. The old group showed a slower vertical saccade than the young group during the tasks (p = 0.011 in the MAT phase; p = 0.006 in the VFT phase). The amplitude of the horizontal saccade decreased in both groups during MAT compared to the resting period (p = 0.013), but did not change significantly during VFT. Discussion Saccade parameters can change during non-visual cognitive tasks with differences between age groups and saccade directions. This study significantly contributes to our understanding of the distinct dynamics of horizontal and vertical saccades across various age group in cognitive aging, despite its restricted focus on specific saccade parameters and cognitive tasks, and inclusion solely of cognitively normal individuals. This study highlights the importance of saccade analysis in elucidating age-related cognitive changes. In conclusion, saccades should be examined in future studies as a potential non-invasive biomarker for early detection of cognitive decline and neurodegenerative diseases.
Collapse
Affiliation(s)
- Hee Won Yang
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Yeong Choe
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Soo Rim Noh
- Department of Psychology, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong Lan Kim
- Department of Psychiatry, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
González-Vides L, Hernández-Verdejo JL, Cañadas-Suárez P. Eye Tracking in Optometry: A Systematic Review. J Eye Mov Res 2023; 16:10.16910/jemr.16.3.3. [PMID: 38111688 PMCID: PMC10725735 DOI: 10.16910/jemr.16.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
This systematic review examines the use of eye-tracking devices in optometry, describing their main characteristics, areas of application and metrics used. Using the PRISMA method, a systematic search was performed of three databases. The search strategy identified 141 reports relevant to this topic, indicating the exponential growth over the past ten years of the use of eye trackers in optometry. Eye-tracking technology was applied in at least 12 areas of the field of optometry and rehabilitation, the main ones being optometric device technology, and the assessment, treatment, and analysis of ocular disorders. The main devices reported on were infrared light-based and had an image capture frequency of 60 Hz to 2000 Hz. The main metrics mentioned were fixations, saccadic movements, smooth pursuit, microsaccades, and pupil variables. Study quality was sometimes limited in that incomplete information was provided regarding the devices used, the study design, the methods used, participants' visual function and statistical treatment of data. While there is still a need for more research in this area, eye-tracking devices should be more actively incorporated as a useful tool with both clinical and research applications. This review highlights the robustness this technology offers to obtain objective information about a person's vision in terms of optometry and visual function, with implications for improving visual health services and our understanding of the vision process.
Collapse
|
4
|
Snapiri L, Kaplan Y, Shalev N, Landau AN. Rhythmic modulation of visual discrimination is linked to individuals' spontaneous motor tempo. Eur J Neurosci 2023; 57:646-656. [PMID: 36512369 DOI: 10.1111/ejn.15898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
The impact of external rhythmic structure on perception has been demonstrated across different modalities and experimental paradigms. However, recent findings emphasize substantial individual differences in rhythm-based perceptual modulation. Here, we examine the link between spontaneous rhythmic preferences, as measured through the motor system, and individual differences in rhythmic modulation of visual discrimination. As a first step, we measure individual rhythmic preferences using the spontaneous tapping task. Then we assess perceptual rhythmic modulation using a visual discrimination task in which targets can appear either in-phase or out-of-phase with a preceding rhythmic stream of visual stimuli. The tempo of the preceding stream was manipulated over different experimental blocks (0.77 Hz, 1.4 Hz, 2 Hz). We find that visual rhythmic stimulation modulates discrimination performance. The modulation is dependent on the tempo of stimulation, with maximal perceptual benefits for the slowest tempo of stimulation (0.77 Hz). Most importantly, the strength of modulation is also linked to individuals' spontaneous motor tempo. Individuals with slower spontaneous tempi show greater rhythmic modulation compared to individuals with faster spontaneous tempi. This finding suggests that different tempi affect the cognitive system with varying levels of efficiency and that self-generated rhythms impact our ability to utilize rhythmic structure in the environment for guiding perception and performance.
Collapse
Affiliation(s)
- Leah Snapiri
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Kaplan
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nir Shalev
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Ayelet N Landau
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cognitive Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Nikolaev AR, Bramão I, Johansson R, Johansson M. Episodic memory formation in unrestricted viewing. Neuroimage 2023; 266:119821. [PMID: 36535321 DOI: 10.1016/j.neuroimage.2022.119821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The brain systems of episodic memory and oculomotor control are tightly linked, suggesting a crucial role of eye movements in memory. But little is known about the neural mechanisms of memory formation across eye movements in unrestricted viewing behavior. Here, we leverage simultaneous eye tracking and EEG recording to examine episodic memory formation in free viewing. Participants memorized multi-element events while their EEG and eye movements were concurrently recorded. Each event comprised elements from three categories (face, object, place), with two exemplars from each category, in different locations on the screen. A subsequent associative memory test assessed participants' memory for the between-category associations that specified each event. We used a deconvolution approach to overcome the problem of overlapping EEG responses to sequential saccades in free viewing. Brain activity was time-locked to the fixation onsets, and we examined EEG power in the theta and alpha frequency bands, the putative oscillatory correlates of episodic encoding mechanisms. Three modulations of fixation-related EEG predicted high subsequent memory performance: (1) theta increase at fixations after between-category gaze transitions, (2) theta and alpha increase at fixations after within-element gaze transitions, (3) alpha decrease at fixations after between-exemplar gaze transitions. Thus, event encoding with unrestricted viewing behavior was characterized by three neural mechanisms, manifested in fixation-locked theta and alpha EEG activity that rapidly turned on and off during the unfolding eye movement sequences. These three distinct neural mechanisms may be the essential building blocks that subserve the buildup of coherent episodic memories during unrestricted viewing behavior.
Collapse
Affiliation(s)
- Andrey R Nikolaev
- Department of Psychology, Lund Memory Lab, Lund University, Lund, Sweden; Brain and Cognition Research Unit, KU Leuven, Leuven, Belgium.
| | - Inês Bramão
- Department of Psychology, Lund Memory Lab, Lund University, Lund, Sweden
| | - Roger Johansson
- Department of Psychology, Lund Memory Lab, Lund University, Lund, Sweden
| | - Mikael Johansson
- Department of Psychology, Lund Memory Lab, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Kaneko T, Komatsu M, Yamamori T, Ichinohe N, Okano H. Cortical neural dynamics unveil the rhythm of natural visual behavior in marmosets. Commun Biol 2022; 5:108. [PMID: 35115680 PMCID: PMC8814246 DOI: 10.1038/s42003-022-03052-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/13/2022] [Indexed: 01/13/2023] Open
Abstract
Numerous studies have shown that the visual system consists of functionally distinct ventral and dorsal streams; however, its exact spatial-temporal dynamics during natural visual behavior remain to be investigated. Here, we report cerebral neural dynamics during active visual exploration recorded by an electrocorticographic array covering the entire lateral surface of the marmoset cortex. We found that the dorsal stream was activated before the primary visual cortex with saccades and followed by the alteration of suppression and activation signals along the ventral stream. Similarly, the signal that propagated from the dorsal to ventral visual areas was accompanied by a travelling wave of low frequency oscillations. Such signal dynamics occurred at an average of 220 ms after saccades, which corresponded to the timing when whole-brain activation returned to background levels. We also demonstrated that saccades could occur at any point of signal flow, indicating the parallel computation of motor commands. Overall, this study reveals the neural dynamics of active vision, which are efficiently linked to the natural rhythms of visual exploration.
Collapse
Affiliation(s)
- Takaaki Kaneko
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan. .,Systems Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan.
| | - Misako Komatsu
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan. .,Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
7
|
Putative rhythms in attentional switching can be explained by aperiodic temporal structure. Nat Hum Behav 2022; 6:1280-1291. [PMID: 35680992 PMCID: PMC9489532 DOI: 10.1038/s41562-022-01364-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/25/2022] [Indexed: 02/02/2023]
Abstract
The neural and perceptual effects of attention were traditionally assumed to be sustained over time, but recent work suggests that covert attention rhythmically switches between objects at 3-8 Hz. Here I use simulations to demonstrate that the analysis approaches commonly used to test for rhythmic oscillations generate false positives in the presence of aperiodic temporal structure. I then propose two alternative analyses that are better able to discriminate between periodic and aperiodic structure in time series. Finally, I apply these alternative analyses to published datasets and find no evidence for behavioural rhythms in attentional switching after accounting for aperiodic temporal structure. The techniques presented here will help clarify the periodic and aperiodic dynamics of perception and of cognition more broadly.
Collapse
|
8
|
Abekawa N, Gomi H, Diedrichsen J. Gaze control during reaching is flexibly modulated to optimize task outcome. J Neurophysiol 2021; 126:816-826. [PMID: 34320845 DOI: 10.1152/jn.00134.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When reaching for an object with the hand, the gaze is usually directed at the target. In a laboratory setting, fixation is strongly maintained at the reach target until the reaching is completed, a phenomenon known as "gaze anchoring." While conventional accounts of such tight eye-hand coordination have often emphasized the internal synergetic linkage between both motor systems, more recent optimal control theories regard motor coordination as the adaptive solution to task requirements. We here investigated to what degree gaze control during reaching is modulated by task demands. We adopted a gaze-anchoring paradigm in which participants had to reach for a target location. During the reach, they additionally had to make a saccadic eye movement to a salient visual cue presented at locations other than the target. We manipulated the task demands by independently changing reward contingencies for saccade reaction time (RT) and reaching accuracy. On average, both saccade RTs and reach error varied systematically with reward condition, with reach accuracy improving when the saccade was delayed. The distribution of the saccade RTs showed two types of eye movements: fast saccades with short RTs, and voluntary saccade with longer RTs. Increased reward for high reach accuracy reduced the probability of fast saccades but left their latency unchanged. The results suggest that gaze anchoring acts through a suppression of fast saccades, a mechanism that can be adaptively adjusted to the current task demands.NEW & NOTEWORTHY During visually guided reaching, our eyes usually fixate the target and saccades elsewhere are delayed ("gaze anchoring"). We here show that the degree of gaze anchoring is flexibly modulated by the reward contingencies of saccade latency and reach accuracy. Reach error became larger when saccades occurred earlier. These results suggest that early saccades are costly for reaching and the brain modulates inhibitory online coordination from the hand to the eye system depending on task requirements.
Collapse
Affiliation(s)
- Naotoshi Abekawa
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Kanagawa, Japan.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Kanagawa, Japan
| | - Jörn Diedrichsen
- The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
9
|
Abeles D, Yuval-Greenberg S. Active sensing and overt avoidance: Gaze shifts as a mechanism of predictive avoidance in vision. Cognition 2021; 211:104648. [PMID: 33714871 DOI: 10.1016/j.cognition.2021.104648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022]
Abstract
Sensory organs are not only involved in passively transmitting sensory input, but are also involved in actively seeking it. Some sensory organs move dynamically to allow highly prioritized input to be detected by their most sensitive parts. Such 'active sensing' systems engage in pursuing relevant input, relying on attentional prioritizations. However, pursuing input may not always be advantageous. Task-irrelevant input may be distracting and interfere with task performance. We hypothesize that an efficient 'active sensing' mechanism should be able to not only pursue relevant input but also to predict irrelevant input and avoid it. Moreover, we hypothesize that this mechanism should be evident even when the task is non-visual and all visual information acts as a distractor. In this study, we demonstrate the existence of a predictive 'overt avoidance' mechanism in vision. In two experiments, participants were asked to perform a continuous mental-arithmetic task while occasionally being presented with task-irrelevant crowded displays limited to one quadrant of a screen. The locations of these visual stimuli were constant within a block but varied between blocks. Results show that gaze was consistently shifted away from the predicted location of distraction, even prior to its appearance, confirming the existence of a predictive 'overt avoidance' mechanism in vision. Based on these findings, we propose a conceptual model to explain how an 'active sensing' system, hardwired to explore, can overcome this drive when presented with distracting information. According to the model, distraction is handled through a dual mechanism of suppression and avoidance processes that are causally linked. This framework demonstrates how perception and motion work together to approach relevant information while avoiding irrelevant distraction.
Collapse
Affiliation(s)
- Dekel Abeles
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Yuval-Greenberg
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Tal-Perry N, Yuval-Greenberg S. Pre-target oculomotor inhibition reflects temporal orienting rather than certainty. Sci Rep 2020; 10:21478. [PMID: 33293658 PMCID: PMC7722715 DOI: 10.1038/s41598-020-78189-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Recent studies suggested that eye movements are linked to temporal predictability. These studies manipulated predictability by setting the cue-target interval (foreperiod) to be fixed or random throughout the block. Findings showed that pre-target oculomotor behavior was reduced in the fixed relative to the random condition. This effect was interpreted as reflecting the formation of temporal expectation. However, it is unknown whether the effect is driven by target-specific temporal orienting, or rather a result of a more context-dependent state of certainty that participants may experience during blocks with a high predictability rate. In this study we dissociated certainty and orienting in a tilt-discrimination task. In each trial, a temporal cue (fixation color change) was followed by a tilted grating-patch. The foreperiod distribution was varied between blocks to be either fully fixed (same foreperiod in 100% of trials), mostly fixed (80% of trials with one foreperiod and 20% with another) or random (five foreperiods in equal probabilities). The two hypotheses led to different prediction models which were tested against the experimental data. Results were consistent with the orienting hypothesis and inconsistent with the certainty hypothesis, supporting the link between oculomotor inhibition and temporal orienting and its validity as a temporal expectations marker.
Collapse
Affiliation(s)
- Noam Tal-Perry
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shlomit Yuval-Greenberg
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel. .,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
11
|
O'Connell MN, Barczak A, McGinnis T, Mackin K, Mowery T, Schroeder CE, Lakatos P. The Role of Motor and Environmental Visual Rhythms in Structuring Auditory Cortical Excitability. iScience 2020; 23:101374. [PMID: 32738615 PMCID: PMC7394914 DOI: 10.1016/j.isci.2020.101374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 10/26/2022] Open
Abstract
Previous studies indicate that motor sampling patterns modulate neuronal excitability in sensory brain regions by entraining brain rhythms, a process termed motor-initiated entrainment. In addition, rhythms of the external environment are also capable of entraining brain rhythms. Our first goal was to investigate the properties of motor-initiated entrainment in the auditory system using a prominent visual motor sampling pattern in primates, saccades. Second, we wanted to determine whether/how motor-initiated entrainment interacts with visual environmental entrainment. We examined laminar profiles of neuronal ensemble activity in primary auditory cortex and found that whereas motor-initiated entrainment has a suppressive effect, visual environmental entrainment has an enhancive effect. We also found that these processes are temporally coupled, and their temporal relationship ensures that their effect on excitability is complementary rather than interfering. Altogether, our results demonstrate that motor and sensory systems continuously interact in orchestrating the brain's context for the optimal sampling of our multisensory environment.
Collapse
Affiliation(s)
- Monica N O'Connell
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Annamaria Barczak
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Tammy McGinnis
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Kieran Mackin
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Todd Mowery
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Charles E Schroeder
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Peter Lakatos
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
12
|
Abstract
Tracking of eye movements is an established measurement for many types of experimental paradigms. More complex and more prolonged visual stimuli have made algorithmic approaches to eye-movement event classification the most pragmatic option. A recent analysis revealed that many current algorithms are lackluster when it comes to data from viewing dynamic stimuli such as video sequences. Here we present an event classification algorithm—built on an existing velocity-based approach—that is suitable for both static and dynamic stimulation, and is capable of classifying saccades, post-saccadic oscillations, fixations, and smooth pursuit events. We validated classification performance and robustness on three public datasets: 1) manually annotated, trial-based gaze trajectories for viewing static images, moving dots, and short video sequences, 2) lab-quality gaze recordings for a feature-length movie, and 3) gaze recordings acquired under suboptimal lighting conditions inside the bore of a magnetic resonance imaging (MRI) scanner for the same full-length movie. We found that the proposed algorithm performs on par or better compared to state-of-the-art alternatives for static stimulation. Moreover, it yields eye-movement events with biologically plausible characteristics on prolonged dynamic recordings. Lastly, algorithm performance is robust on data acquired under suboptimal conditions that exhibit a temporally varying noise level. These results indicate that the proposed algorithm is a robust tool with improved classification accuracy across a range of use cases. The algorithm is cross-platform compatible, implemented using the Python programming language, and readily available as free and open-source software from public sources.
Collapse
|
13
|
Abeles D, Amit R, Tal-Perry N, Carrasco M, Yuval-Greenberg S. Oculomotor inhibition precedes temporally expected auditory targets. Nat Commun 2020; 11:3524. [PMID: 32665559 PMCID: PMC7360783 DOI: 10.1038/s41467-020-17158-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
Eye movements are inhibited prior to the onset of temporally-predictable visual targets. This oculomotor inhibition effect could be considered a marker for the formation of temporal expectations and the allocation of temporal attention in the visual domain. Here we show that eye movements are also inhibited before predictable auditory targets. In two experiments, we manipulate the period between a cue and an auditory target to be either predictable or unpredictable. The findings show that although there is no perceptual gain from avoiding gaze-shifts in this procedure, saccades and blinks are inhibited prior to predictable relative to unpredictable auditory targets. These findings show that oculomotor inhibition occurs prior to auditory targets. This link between auditory expectation and oculomotor behavior reveals a multimodal perception action coupling, which has a central role in temporal expectations.
Collapse
Affiliation(s)
- Dekel Abeles
- School of Psychological Sciences, Tel-Aviv University, Ramat Aviv, 6997801, Tel Aviv-Yafo, Israel
| | - Roy Amit
- Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, 6997801, Tel Aviv-Yafo, Israel
| | - Noam Tal-Perry
- School of Psychological Sciences, Tel-Aviv University, Ramat Aviv, 6997801, Tel Aviv-Yafo, Israel
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, 6 Washington Place, New York, NY, 10003, USA
| | - Shlomit Yuval-Greenberg
- School of Psychological Sciences, Tel-Aviv University, Ramat Aviv, 6997801, Tel Aviv-Yafo, Israel. .,Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, 6997801, Tel Aviv-Yafo, Israel.
| |
Collapse
|
14
|
Badde S, Myers CF, Yuval-Greenberg S, Carrasco M. Oculomotor freezing reflects tactile temporal expectation and aids tactile perception. Nat Commun 2020; 11:3341. [PMID: 32620746 PMCID: PMC7335189 DOI: 10.1038/s41467-020-17160-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023] Open
Abstract
The oculomotor system keeps the eyes steady in expectation of visual events. Here, recording microsaccades while people performed a tactile, frequency discrimination task enabled us to test whether the oculomotor system shows an analogous preparatory response for unrelated tactile events. We manipulated the temporal predictability of tactile targets using tactile cues, which preceded the target by either constant (high predictability) or variable (low predictability) time intervals. We find that microsaccades are inhibited prior to tactile targets and more so for constant than variable intervals, revealing a tight crossmodal link between tactile temporal expectation and oculomotor action. These findings portray oculomotor freezing as a marker of crossmodal temporal expectation. Moreover, microsaccades occurring around the tactile target presentation are associated with reduced task performance, suggesting that oculomotor freezing mitigates potential detrimental, concomitant effects of microsaccades and revealing a crossmodal coupling between tactile perception and oculomotor action.
Collapse
Affiliation(s)
- Stephanie Badde
- Department of Psychology, New York University, 6 Washington Place, New York, NY, 10003, USA.
- Center for Neural Science, New York University, 6 Washington Place, New York, NY, 10003, USA.
| | - Caroline F Myers
- Department of Psychology, New York University, 6 Washington Place, New York, NY, 10003, USA
| | - Shlomit Yuval-Greenberg
- School of Psychological Sciences, Tel-Aviv University, Ramat Aviv, 6997801, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, 6997801, Tel Aviv-Yafo, Israel
| | - Marisa Carrasco
- Department of Psychology, New York University, 6 Washington Place, New York, NY, 10003, USA
- Center for Neural Science, New York University, 6 Washington Place, New York, NY, 10003, USA
| |
Collapse
|
15
|
Paul JM, Reeve RA, Forte JD. Enumeration strategy differences revealed by saccade-terminated eye tracking. Cognition 2020; 198:104204. [PMID: 32014714 DOI: 10.1016/j.cognition.2020.104204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Brain regions involved in saccadic eye movements partially overlap with a frontoparietal network implicated in encoding numerosities. Eye movement patterns may plausibly reflect strategic scanning behaviours to resolve the open-ended task of efficiently enumerating visual arrays. If so, these patterns may help explain individual differences in enumeration acuity in terms of well-understood visual attention mechanisms. Most enumeration eye-tracking paradigms, however, do not allow for direct manipulation of eye movement behaviours to test these claims. In the current study we terminated trials after a specified number of saccades to systematically probe the time course of enumeration strategies. Fifteen adults (11 naïve, 4 informed) enumerated random dot arrays under three conditions: (1) a novel saccade-terminated design where arrays were visible until one, two or four saccades had occurred; (2) a duration-terminated design where arrays were shown for 250, 500 or 1000 ms; and (3) a response-terminated design where arrays were visible until a response. Participants gave more accurate responses when enumerating saccade-terminated trials despite taking a similar time as in the duration-terminated trials. When participants were informed how trials would terminate, their saccade onset latencies shifted to match task demands. Rotating saccade vectors to align with salient image locations accounted for variability in the orientation of saccade trajectories. These findings (1) show a combination of stimulus-derived visual processing and task-based strategic demands account for enumeration eye movements patterns, (2) validate a novel saccade-contingent trial termination procedure for studying sequences of enumeration eye movements, and (3) highlight the need to include analyses of spatial and temporal eye movement patterns into models of visual enumeration strategies.
Collapse
Affiliation(s)
- Jacob M Paul
- Melbourne School of Psychological Sciences, University of Melbourne, 3010, Victoria, Australia.
| | - Robert A Reeve
- Melbourne School of Psychological Sciences, University of Melbourne, 3010, Victoria, Australia
| | - Jason D Forte
- Melbourne School of Psychological Sciences, University of Melbourne, 3010, Victoria, Australia
| |
Collapse
|
16
|
Re D, Inbar M, Richter CG, Landau AN. Feature-Based Attention Samples Stimuli Rhythmically. Curr Biol 2019; 29:693-699.e4. [DOI: 10.1016/j.cub.2019.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/05/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
|
17
|
Denison RN, Yuval-Greenberg S, Carrasco M. Directing Voluntary Temporal Attention Increases Fixational Stability. J Neurosci 2019; 39:353-363. [PMID: 30459223 PMCID: PMC6325259 DOI: 10.1523/jneurosci.1926-18.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 11/21/2022] Open
Abstract
Our visual input is constantly changing, but not all moments are equally relevant. Visual temporal attention, the prioritization of visual information at specific points in time, increases perceptual sensitivity at behaviorally relevant times. The dynamic processes underlying this increase are unclear. During fixation, humans make small eye movements called microsaccades, and inhibiting microsaccades improves perception of brief stimuli. Here, we investigated whether temporal attention changes the pattern of microsaccades in anticipation of brief stimuli. Human observers (female and male) judged stimuli presented within a short sequence. Observers were given either an informative precue to attend to one of the stimuli, which was likely to be probed, or an uninformative (neutral) precue. We found strong microsaccadic inhibition before the stimulus sequence, likely due to its predictable onset. Critically, this anticipatory inhibition was stronger when the first target in the sequence (T1) was precued (task-relevant) than when the precue was uninformative. Moreover, the timing of the last microsaccade before T1 and the first microsaccade after T1 shifted such that both occurred earlier when T1 was precued than when the precue was uninformative. Finally, the timing of the nearest pre- and post-T1 microsaccades affected task performance. Directing voluntary temporal attention therefore affects microsaccades, helping to stabilize fixation at the most relevant moments over and above the effect of predictability. Just as saccading to a relevant stimulus can be an overt correlate of the allocation of spatial attention, precisely timed gaze stabilization can be an overt correlate of the allocation of temporal attention.SIGNIFICANCE STATEMENT We pay attention at moments in time when a relevant event is likely to occur. Such temporal attention improves our visual perception, but how it does so is not well understood. Here, we discovered a new behavioral correlate of voluntary, or goal-directed, temporal attention. We found that the pattern of small fixational eye movements called microsaccades changes around behaviorally relevant moments in a way that stabilizes the position of the eyes. Microsaccades during a brief visual stimulus can impair perception of that stimulus. Therefore, such fixation stabilization may contribute to the improvement of visual perception at attended times. This link suggests that, in addition to cortical areas, subcortical areas mediating eye movements may be recruited with temporal attention.
Collapse
Affiliation(s)
- Rachel N Denison
- Department of Psychology and Center for Neural Science, New York University, New York, New York 10003 and
| | - Shlomit Yuval-Greenberg
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, New York 10003 and
| |
Collapse
|
18
|
Amit R, Abeles D, Yuval-Greenberg S. Transient and sustained effects of stimulus properties on the generation of microsaccades. J Vis 2019; 19:6. [PMID: 30640374 DOI: 10.1167/19.1.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Saccades shift the gaze rapidly every few hundred milliseconds from one fixated location to the next, producing a flow of visual input into the visual system even in the absence of changes in the environment. During fixation, small saccades called microsaccades are produced 1-3 times per second, generating a flow of visual input. The characteristics of this visual flow are determined by the timings of the saccades and by the characteristics of the visual stimuli on which they are performed. Previous models of microsaccade generation have accounted for the effects of external stimulation on the production of microsaccades, but they have not considered the effects of the prolonged background stimulus on which microsaccades are performed. The effects of this stimulus on the process of microsaccade generation could be sustained, following its prolonged presentation, or transient, through the visual transients produced by the microsaccades themselves. In four experiments, we varied the properties of the constant displays and examined the resulting modulation of microsaccade properties: their sizes, their timings, and the correlations between properties of consecutive microsaccades. Findings show that displays of higher spatial frequency and contrast produce smaller microsaccades and longer minimal intervals between consecutive microsaccades; and smaller microsaccades are followed by smaller and delayed microsaccades. We explain these findings in light of previous models and suggest a conceptual model by which both sustained and transient effects of the stimulus have central roles in determining the generation of microsaccades.
Collapse
Affiliation(s)
- Roy Amit
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dekel Abeles
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Yuval-Greenberg
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Oculomotor inhibition reflects temporal expectations. Neuroimage 2019; 184:279-292. [DOI: 10.1016/j.neuroimage.2018.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 11/21/2022] Open
|
20
|
Abstract
People are unable to accurately report on their own eye movements most of the time. Can this be explained as a lack of attention to the objects we fixate? Here, we elicited eye-movement errors using the classic oculomotor capture paradigm, in which people tend to look at sudden onsets even when they are irrelevant. In the first experiment, participants were able to report their own errors on about a quarter of the trials on which they occurred. The aim of the second experiment was to assess what differentiates errors that are detected from those that are not. Specifically, we estimated the relative influence of two possible factors: how long the onset distractor was fixated (dwell time), and a measure of how much attention was allocated to the onset distractor. Longer dwell times were associated with awareness of the error, but the measure of attention was not. The effect of the distractor identity on target discrimination reaction time was similar whether or not the participant was aware they had fixated the distractor. The results suggest that both attentional and oculomotor capture can occur in the absence of awareness, and have important implications for our understanding of the relationship between attention, eye movements, and awareness.
Collapse
|
21
|
Palva S, Palva JM. Roles of Brain Criticality and Multiscale Oscillations in Temporal Predictions for Sensorimotor Processing. Trends Neurosci 2018; 41:729-743. [DOI: 10.1016/j.tins.2018.08.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
|
22
|
Lange EB, Pieczykolan A, Trukenbrod HA, Huestegge L. The rhythm of cognition - Effects of an auditory beat on oculomotor control in reading and sequential scanning. J Eye Mov Res 2018; 11:10.16910/jemr.11.2.9. [PMID: 33828692 PMCID: PMC7886406 DOI: 10.16910/jemr.11.2.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eye-movement behavior is inherently rhythmic. Even without cognitive input, the eyes never rest, as saccades are generated 3 to 4 times per second. Based on an embodied view of cognition, we asked whether mental processing in visual cognitive tasks is also rhythmic in nature by studying the effects of an external auditory beat (rhythmic background music) on saccade generation in exemplary cognitive tasks (reading and sequential scanning). While in applied settings background music has been demonstrated to impair reading comprehension, the effect of musical tempo on eye-movement control during reading or scanning has not been investigated so far. We implemented a tempo manipulation in four steps as well as a silent baseline condition, while participants completed a text reading or a sequential scanning task that differed from each other in terms of underlying cognitive processing requirements. The results revealed that increased tempo of the musical beat sped up fixations in text reading, while the presence (vs. absence) of the auditory stimulus generally reduced overall reading time. In contrast, sequential scanning was unaffected by the auditory pacemaker. These results were supported by additionally applying Bayesian inference statistics. Our study provides evidence against a cognitive load account (i.e., that spare resources during low-demand sequential scanning allow for enhanced processing of the external beat). Instead, the data suggest an interpretation in favor of a modulation of the oculomotor saccade timer by irrelevant background music in cases involving highly automatized oculomotor control routines (here: in text reading).
Collapse
Affiliation(s)
- Elke B Lange
- Max-Planck-Institute for Empirical Aesthetics, Frankfurt, Germany
| | | | | | | |
Collapse
|
23
|
Tal N, Yuval‐Greenberg S. Reducing saccadic artifacts and confounds in brain imaging studies through experimental design. Psychophysiology 2018; 55:e13215. [DOI: 10.1111/psyp.13215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Noam Tal
- School of Psychological SciencesTel‐Aviv University Tel‐Aviv Israel
| | - Shlomit Yuval‐Greenberg
- School of Psychological SciencesTel‐Aviv University Tel‐Aviv Israel
- Sagol School of NeuroscienceTel‐Aviv University Tel‐Aviv Israel
| |
Collapse
|
24
|
Kienitz R, Schmiedt JT, Shapcott KA, Kouroupaki K, Saunders RC, Schmid MC. Theta Rhythmic Neuronal Activity and Reaction Times Arising from Cortical Receptive Field Interactions during Distributed Attention. Curr Biol 2018; 28:2377-2387.e5. [PMID: 30017481 PMCID: PMC6089835 DOI: 10.1016/j.cub.2018.05.086] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/26/2018] [Accepted: 05/30/2018] [Indexed: 11/16/2022]
Abstract
Growing evidence suggests that distributed spatial attention may invoke theta (3-9 Hz) rhythmic sampling processes. The neuronal basis of such attentional sampling is, however, not fully understood. Here we show using array recordings in visual cortical area V4 of two awake macaques that presenting separate visual stimuli to the excitatory center and suppressive surround of neuronal receptive fields (RFs) elicits rhythmic multi-unit activity (MUA) at 3-6 Hz. This neuronal rhythm did not depend on small fixational eye movements. In the context of a distributed spatial attention task, during which the monkeys detected a spatially and temporally uncertain target, reaction times (RTs) exhibited similar rhythmic fluctuations. RTs were fast or slow depending on the target occurrence during high or low MUA, resulting in rhythmic MUA-RT cross-correlations at theta frequencies. These findings show that theta rhythmic neuronal activity can arise from competitive RF interactions and that this rhythm may result in rhythmic RTs potentially subserving attentional sampling.
Collapse
Affiliation(s)
- Ricardo Kienitz
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt a.M., Germany; Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Schleusenweg 2-16, 60528 Frankfurt a.M., Germany; Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Joscha T Schmiedt
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt a.M., Germany
| | - Katharine A Shapcott
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt a.M., Germany
| | - Kleopatra Kouroupaki
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt a.M., Germany
| | - Richard C Saunders
- Laboratory of Neuropsychology, NIMH, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Michael Christoph Schmid
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt a.M., Germany; Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|