1
|
Saba L, Maindarkar M, Johri AM, Mantella L, Laird JR, Khanna NN, Paraskevas KI, Ruzsa Z, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh N, Isenovic ER, Viswanathan V, Fouda MM, Suri JS. UltraAIGenomics: Artificial Intelligence-Based Cardiovascular Disease Risk Assessment by Fusion of Ultrasound-Based Radiomics and Genomics Features for Preventive, Personalized and Precision Medicine: A Narrative Review. Rev Cardiovasc Med 2024; 25:184. [PMID: 39076491 PMCID: PMC11267214 DOI: 10.31083/j.rcm2505184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 07/31/2024] Open
Abstract
Cardiovascular disease (CVD) diagnosis and treatment are challenging since symptoms appear late in the disease's progression. Despite clinical risk scores, cardiac event prediction is inadequate, and many at-risk patients are not adequately categorised by conventional risk factors alone. Integrating genomic-based biomarkers (GBBM), specifically those found in plasma and/or serum samples, along with novel non-invasive radiomic-based biomarkers (RBBM) such as plaque area and plaque burden can improve the overall specificity of CVD risk. This review proposes two hypotheses: (i) RBBM and GBBM biomarkers have a strong correlation and can be used to detect the severity of CVD and stroke precisely, and (ii) introduces a proposed artificial intelligence (AI)-based preventive, precision, and personalized ( aiP 3 ) CVD/Stroke risk model. The PRISMA search selected 246 studies for the CVD/Stroke risk. It showed that using the RBBM and GBBM biomarkers, deep learning (DL) modelscould be used for CVD/Stroke risk stratification in the aiP 3 framework. Furthermore, we present a concise overview of platelet function, complete blood count (CBC), and diagnostic methods. As part of the AI paradigm, we discuss explainability, pruning, bias, and benchmarking against previous studies and their potential impacts. The review proposes the integration of RBBM and GBBM, an innovative solution streamlined in the DL paradigm for predicting CVD/Stroke risk in the aiP 3 framework. The combination of RBBM and GBBM introduces a powerful CVD/Stroke risk assessment paradigm. aiP 3 model signifies a promising advancement in CVD/Stroke risk assessment.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Mahesh Maindarkar
- School of Bioengineering Sciences and Research, MIT Art, Design and Technology University, 412021 Pune, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Laura Mantella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD 20742, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2368 Agios Dometios, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| |
Collapse
|
2
|
Minopoulou I, Kleyer A, Yalcin-Mutlu M, Fagni F, Kemenes S, Schmidkonz C, Atzinger A, Pachowsky M, Engel K, Folle L, Roemer F, Waldner M, D'Agostino MA, Schett G, Simon D. Imaging in inflammatory arthritis: progress towards precision medicine. Nat Rev Rheumatol 2023; 19:650-665. [PMID: 37684361 DOI: 10.1038/s41584-023-01016-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
Imaging techniques such as ultrasonography and MRI have gained ground in the diagnosis and management of inflammatory arthritis, as these imaging modalities allow a sensitive assessment of musculoskeletal inflammation and damage. However, these techniques cannot discriminate between disease subsets and are currently unable to deliver an accurate prediction of disease progression and therapeutic response in individual patients. This major shortcoming of today's technology hinders a targeted and personalized patient management approach. Technological advances in the areas of high-resolution imaging (for example, high-resolution peripheral quantitative computed tomography and ultra-high field MRI), functional and molecular-based imaging (such as chemical exchange saturation transfer MRI, positron emission tomography, fluorescence optical imaging, optoacoustic imaging and contrast-enhanced ultrasonography) and artificial intelligence-based data analysis could help to tackle these challenges. These new imaging approaches offer detailed anatomical delineation and an in vivo and non-invasive evaluation of the immunometabolic status of inflammatory reactions, thereby facilitating an in-depth characterization of inflammation. By means of these developments, the aim of earlier diagnosis, enhanced monitoring and, ultimately, a personalized treatment strategy looms closer.
Collapse
Affiliation(s)
- Ioanna Minopoulou
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Melek Yalcin-Mutlu
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Kemenes
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Institute for Medical Engineering, University of Applied Sciences Amberg-Weiden, Weiden, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Milena Pachowsky
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Lukas Folle
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frank Roemer
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maximilian Waldner
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria-Antonietta D'Agostino
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation, Laboratory of Excellence Inflamex, Montigny-Le-Bretonneux, France
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
3
|
Mandel A, Schwarting A, Cavagna L, Triantafyllias K. Novel Surrogate Markers of Cardiovascular Risk in the Setting of Autoimmune Rheumatic Diseases: Current Data and Implications for the Future. Front Med (Lausanne) 2022; 9:820263. [PMID: 35847825 PMCID: PMC9279857 DOI: 10.3389/fmed.2022.820263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
Patients suffering from rheumatologic diseases are known to have an increased risk for cardiovascular disease (CVD). Although the pathological mechanisms behind this excess risk have been increasingly better understood, there still seems to be a general lack of consensus in early detection and treatment of endothelial dysfunction and CVD risk in patients suffering from rheumatologic diseases and in particular in those who haven't yet shown symptoms of CVD. Traditional CVD prediction scores, such as Systematic Coronary Risk Evaluation (SCORE), Framingham, or PROCAM Score have been proposed as valid assessment tools of CVD risk in the general population. However, these risk calculators developed for the general population do not factor in the effect of the inflammatory burden, as well as other factors that can increase CVD risk in patients with rheumatic diseases, such as glucocorticoid therapy, abnormal lipoprotein function, endothelial dysfunction or accelerated atherosclerosis. Thus, their sole use could lead to underestimation of CVD risk in patients with rheumatic diseases. Therefore, there is a need for new biomarkers which will allow a valid and early assessment of CVD risk. In recent years, different research groups, including ours, have examined the value of different CVD risk factors such as carotid sonography, carotid-femoral pulse wave velocity, flow-mediated arterial dilation and others in the assessment of CVD risk. Moreover, various novel CVD laboratory markers have been examined in the setting of autoimmune diseases, such as Paraoxonase activity, Endocan and Osteoprotegerin. Dyslipidemia in rheumatoid arthritis (RA) is for instance better quantified by lipoproteins and apolipoproteins than by cholesterol levels; screening as well as pre-emptive carotid sonography hold promise to identify patients earlier, when prophylaxis is more likely to be effective. The early detection of subtle changes indicating CVD in asymptomatic patients has been facilitated through improved imaging methods; the inclusion of artificial intelligence (AI) shows promising results in more recent studies. Even though the pathophysiology of coronary artery disease in patients with autoimmune rheumatic diseases has been examined in multiple studies, as we continuously gain an increased understanding of this comorbidity, particularly in subclinical cases we still seem to fail in the stratification of who really is at risk—and who is not. A the time being, a multipronged and personalized approach of screening patients for traditional CVD risk factors, integrating modern imaging and further CV diagnostic tools and optimizing treatment seems to be a solid approach. There is promising research on novel biomarkers, likewise, methods using artificial intelligence in imaging provide encouraging data indicating possibilities of risk stratification that might become gold standard in the near future. The present review concentrates on showcasing the newest findings concerning CVD risk in patients with rheumatologic diseases and aims to evaluate screening methods in order to optimize CVD risk evaluation and thus avoiding underdiagnosis and undertreatment, as well as highlighting which patient groups are most at risk.
Collapse
Affiliation(s)
- Anna Mandel
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Schwarting
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Rheumatology, Rheumatology Center RL-P, Bad Kreuznach, Germany
| | - Lorenzo Cavagna
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Konstantinos Triantafyllias
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Rheumatology, Rheumatology Center RL-P, Bad Kreuznach, Germany
- *Correspondence: Konstantinos Triantafyllias
| |
Collapse
|
4
|
Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/non-COVID-19 Frameworks using Artificial Intelligence Paradigm: A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12051234. [PMID: 35626389 PMCID: PMC9140106 DOI: 10.3390/diagnostics12051234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.
Collapse
|
5
|
Anghel D, Sîrbu CA, Hoinoiu EM, Petrache OG, Pleșa CF, Negru MM, Ioniţă-Radu F. Influence of anti-TNF therapy and homocysteine level on carotid intima-media thickness in rheumatoid arthritis patients. Exp Ther Med 2021; 23:59. [PMID: 34917185 DOI: 10.3892/etm.2021.10981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023] Open
Abstract
It is a well-known fact that disruptions in the immune system and systemic inflammation are associated with accelerated atherosclerosis in rheumatoid arthritis (RA) patients. Elevated levels of tumor necrosis factor α (TNF-α), a major pro-inflammatory cytokine, are involved in endothelial cell activation of medium and large arteries, leading to increased endothelial permeability, generation of superoxide anion radical and hydrogen peroxide, and decreased availability of nitric oxide (NO). The present study aims to determine the influence of anti-TNF therapy and homocysteine (Hcy) levels on the carotid intima-media thickness (IMT) in patients with RA. Assessments were performed on 115 patients diagnosed with RA on biological treatment to determine the evolution of IMT and Hcy levels. Carotid ultrasonography was used to assess the IMT, as a fast and easy tool for the prediction of cardiovascular events in patients with RA. The first measurement of IMT was noted as IMT1, followed by a second measurement after 1 year, noted as IMT2. The group of patients was divided into approximately three equal groups, each being treated with a different biological product, respectively, etanercept, adalimumab, and infliximab. In the 3 groups, after 1 year of anti-TNF-α therapy, IMT2 progression was significantly reduced compared to baseline. No significant differences were found among the three groups of treatment. A strong association was observed between IMT1-IMT2 in the etanercept group (P<0.001, r=0.758), in the adalimumab group (P<0.001, r=0.761) and in the infliximab group (P<0.001, r=0.829). The low level of Hcy2 after 12 months of anti-TNF-α therapy was significantly correlated with a decrease in IMT2 (P<0.001) in patients who had a high level of Hcy and IMT >0.9 mm at baseline. The results from the present study showed that biological treatment and the low level of homocysteinemia reduced the cardiovascular risk in RA, regardless of the treatment chosen (infliximab, adalimumab, or etanercept).
Collapse
Affiliation(s)
- Daniela Anghel
- Department of Internal Medicine, Central Military Emergency University Hospital, 010242 Bucharest, Romania.,Department of Medico-Surgical and Prophylactic Disciplines, Faculty of Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania
| | - Carmen Adella Sîrbu
- Department of Medico-Surgical and Prophylactic Disciplines, Faculty of Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania.,Department of Neurology, Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Elena-Mădălina Hoinoiu
- Department of Internal Medicine, Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Oana-Georgiana Petrache
- Department of Internal Medicine, Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Cristina-Florentina Pleșa
- Department of Neurology, Central Military Emergency University Hospital, 010242 Bucharest, Romania.,Department of Preclinical Disciplines, Faculty of Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania
| | - Maria Magdalena Negru
- Department of Internal Medicine and Rheumatology, 'Sf. Maria' Clinical Hospital, 011172 Bucharest, Romania.,Department of Internal Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Florentina Ioniţă-Radu
- Department of Internal Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020022 Bucharest, Romania.,Department of Gastroenterology, Central Military Emergency University Hospital, 010242 Bucharest, Romania
| |
Collapse
|
6
|
Kondakov A, Lelyuk V. Clinical Molecular Imaging for Atherosclerotic Plaque. J Imaging 2021; 7:jimaging7100211. [PMID: 34677297 PMCID: PMC8538040 DOI: 10.3390/jimaging7100211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a well-known disease leading to cardiovascular events, including myocardial infarction and ischemic stroke. These conditions lead to a high mortality rate, which explains the interest in their prevention, early detection, and treatment. Molecular imaging is able to shed light on the basic pathophysiological processes, such as inflammation, that cause the progression and instability of plaque. The most common radiotracers used in clinical practice can detect increased energy metabolism (FDG), macrophage number (somatostatin receptor imaging), the intensity of cell proliferation in the area (labeled choline), and microcalcifications (fluoride imaging). These radiopharmaceuticals, especially FDG and labeled sodium fluoride, can predict cardiovascular events. The limitations of molecular imaging in atherosclerosis include low uptake of highly specific tracers, possible overlap with other diseases of the vessel wall, and specific features of certain tracers’ physiological distribution. A common protocol for patient preparation, data acquisition, and quantification is needed in the area of atherosclerosis imaging research.
Collapse
|
7
|
Rezuș E, Macovei LA, Burlui AM, Cardoneanu A, Rezuș C. Ischemic Heart Disease and Rheumatoid Arthritis-Two Conditions, the Same Background. Life (Basel) 2021; 11:life11101042. [PMID: 34685413 PMCID: PMC8537055 DOI: 10.3390/life11101042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most frequent inflammatory rheumatic diseases, having a considerably increased prevalence of mortality and morbidity due to cardiovascular disease (CVD). RA patients have an augmented risk for ischemic and non-ischemic heart disease. Increased cardiovascular (CV) risk is related to disease activity and chronic inflammation. Traditional risk factors and RA-related characteristics participate in vascular involvement, inducing subclinical changes in coronary microcirculation. RA is considered an independent risk factor for coronary artery disease (CAD). Endothelial dysfunction is a precocious marker of atherosclerosis (ATS). Pro-inflammatory cytokines (such as TNFα, IL-1, and IL-6) play an important role in synovial inflammation and ATS progression. Therefore, targeting inflammation is essential to controlling RA and preventing CVD. Present guidelines emphasize the importance of disease control, but studies show that RA- treatment has a different influence on CV risk. Based on the excessive risk for CV events in RA, permanent evaluation of CVD in these patients is critical. CVD risk calculators, designed for the general population, do not use RA-related predictive determinants; also, new scores that take into account RA-derived factors have restricted validity, with none of them encompassing imaging modalities or specific biomarkers involved in RA activity.
Collapse
Affiliation(s)
- Elena Rezuș
- Department of Rheumatology and Rehabilitation, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania; (E.R.); (A.M.B.); (A.C.)
| | - Luana Andreea Macovei
- Department of Rheumatology and Rehabilitation, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania; (E.R.); (A.M.B.); (A.C.)
- Correspondence:
| | - Alexandra Maria Burlui
- Department of Rheumatology and Rehabilitation, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania; (E.R.); (A.M.B.); (A.C.)
| | - Anca Cardoneanu
- Department of Rheumatology and Rehabilitation, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania; (E.R.); (A.M.B.); (A.C.)
| | - Ciprian Rezuș
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania;
| |
Collapse
|
8
|
Agca R, Blanken AB, van Sijl AM, Smulders YM, Voskuyl AE, van der Laken C, Boellaard R, Nurmohamed MT. Arterial wall inflammation is increased in rheumatoid arthritis compared with osteoarthritis, as a marker of early atherosclerosis. Rheumatology (Oxford) 2021; 60:3360-3368. [PMID: 33447846 PMCID: PMC8516502 DOI: 10.1093/rheumatology/keaa789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/10/2020] [Indexed: 11/29/2022] Open
Abstract
Objective RA is associated with higher risk of cardiovascular (CV) disease. Ongoing systemic inflammation is presumed to accelerate atherosclerosis by increasing inflammation in the arterial wall. However, evidence supporting this hypothesis is limited. We aimed to investigate arterial wall inflammation in RA vs OA, and its association with markers of inflammation and CV risk factors. Methods 18-fluorodeoxyglucose PET combined with CT (18F-FDG-PET/CT) was performed in RA (n = 61) and OA (n = 28) to investigate inflammatory activity in the wall of large arteries. Secondary analyses were performed in patients with early untreated RA (n = 30), and established RA, active under DMARD treatment (n = 31) vs OA. Results Patients with RA had significantly higher 18F-FDG uptake in the wall of the carotid arteries (beta 0.27, 95%CI 0.11—0.44, P <0.01) and the aorta (beta 0.47, 95%CI 0.17—0.76, P <0.01) when compared with OA, which persisted after adjustment for traditional CV risk factors. Patients with early RA had the highest 18F-FDG uptake, followed by patients with established RA and OA respectively. Higher ESR and DAS of 28 joints values were associated with higher 18F-FDG uptake in all arterial segments. Conclusion Patients with RA have increased 18F-FDG uptake in the arterial wall compared with patients with OA, as a possible marker of early atherosclerosis. Furthermore, a higher level of clinical disease activity and circulating inflammatory markers was associated with higher arterial 18F-FDG uptake, which may support a role of arterial wall inflammation in the pathogenesis of vascular complications in patients with RA.
Collapse
Affiliation(s)
- Rabia Agca
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology, Reade.,Amsterdam Rheumatology and Immunology Center, Department of Rheumatology, VU University Medical Center
| | - Annelies B Blanken
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology, Reade
| | - Alper M van Sijl
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology, Reade.,Amsterdam Rheumatology and Immunology Center, Department of Rheumatology, VU University Medical Center
| | | | - Alexandre E Voskuyl
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology, VU University Medical Center
| | - Conny van der Laken
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology, VU University Medical Center
| | - Ronald Boellaard
- Department of Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Michael T Nurmohamed
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology, Reade.,Amsterdam Rheumatology and Immunology Center, Department of Rheumatology, VU University Medical Center
| |
Collapse
|
9
|
Mangoni AA, Tommasi S, Sotgia S, Zinellu A, Paliogiannis P, Piga M, Cauli A, Pintus G, Carru C, Erre GL. Asymmetric Dimethylarginine: a Key Player in the Pathophysiology of Endothelial Dysfunction, Vascular Inflammation and Atherosclerosis in Rheumatoid Arthritis? Curr Pharm Des 2021; 27:2131-2140. [PMID: 33413061 DOI: 10.2174/1381612827666210106144247] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Patients with rheumatoid arthritis (RA), a chronic and disabling autoimmune condition that is characterized by articular and extra-articular manifestations and a pro-inflammatory and pro-oxidant state, suffer from premature atherosclerosis and excessive cardiovascular disease burden. A key step in the pathogenesis of atherosclerosis is impaired synthesis of the endogenous messenger nitric oxide (NO) by endothelial cells which, in turn, alters local homeostatic mechanisms and favors vascular damage and plaque deposition. While the exact mechanisms of endothelial dysfunction in RA remain to be established, there is good evidence that RA patients have relatively high circulating concentrations of the methylated arginine asymmetric dimethylarginine (ADMA), a potent endogenous inhibitor of endothelial NO synthase (eNOS). This review discusses the biological and pathophysiological role of ADMA, the interplay between ADMA, inflammation and oxidative stress, and the available evidence on the adverse impact of ADMA on endothelial function and atherosclerosis and potential ADMA-lowering therapies in RA patients.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Sara Tommasi
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Matteo Piga
- Rheumatology Unit, University Clinic and AOU of Cagliari, Cagliari, Italy
| | - Alberto Cauli
- Rheumatology Unit, University Clinic and AOU of Cagliari, Cagliari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Gian L Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| |
Collapse
|
10
|
Trang DAMT, Okamura K, Suto T, Sakane H, Yonemoto Y, Nakajima T, Tsushima Y, Chikuda H. Do biologic therapies reduce aortic inflammation in rheumatoid arthritis patients? Arthritis Res Ther 2021; 23:206. [PMID: 34344436 PMCID: PMC8330127 DOI: 10.1186/s13075-021-02585-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 12/31/2022] Open
Abstract
Objectives Rheumatoid arthritis (RA) patients have an increased risk of cardiovascular disease (CVD). In the present study, we evaluated the inflammatory activity of the ascending aorta in RA patients who received biological treatment. Methods We assessed the aortic wall inflammation of RA patients using 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography before and after 6 months of biologic therapies. We also compared the inflammatory activity at the aortic wall in RA patients with remission or low disease activity (RLDA) and those with moderate or high disease activity (MHDA). The aortic uptake was measured by the standardized uptake value (SUV) and the target-to-background ratio (TBR). Results A total of 64 patients were included in the analysis (mean age, 58.4 ± 13.8 years old; female, 77%). The Disease Activity Score for 28 joints (DAS28) erythrocyte sedimentation rate (ESR) had significantly decreased after 6 months: from 5.0 ± 1.2 to 3.3 ± 1.2 (p < 0.001). The FDG uptake in the ascending aorta changed from baseline to 6 months, showing a maximum SUV (SUVmax) of 1.83 ± 0.34 to 1.90 ± 0.34 (p = 0.059) and TBR of 1.71 ± 0.23 to 1.75 ± 0.24 (p = 0.222). The SUVmax and TBR after 6 months were significantly higher in the RLDA group than in the MHDA group (2.05 ± 0.32 vs. 1.79 ± 0.33 (p = 0.002) and 1.89 ± 0.33 vs. 1.65 ± 0.20 (p = 0.001), respectively). The percentage of monocytes also significantly increased from baseline to 6 months: from 5.9 ± 1.6 to 6.9 ± 2.6 (p = 0.032). Conclusion The inflammation activity at the ascending aorta in RA patients did not change significantly after 6 months of biological treatment. RA patients with a low disease activity or in clinical remission after 6 months of biological treatment still had an increased inflammatory activity at the aortic wall.
Collapse
Affiliation(s)
- D A M Thuy Trang
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showamachi 3-39-15, Maebashi, Gunma, 371-8511, Japan.,Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan.,Radiology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Koichi Okamura
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showamachi 3-39-15, Maebashi, Gunma, 371-8511, Japan.
| | - Takahito Suto
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showamachi 3-39-15, Maebashi, Gunma, 371-8511, Japan
| | - Hideo Sakane
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showamachi 3-39-15, Maebashi, Gunma, 371-8511, Japan
| | - Yukio Yonemoto
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showamachi 3-39-15, Maebashi, Gunma, 371-8511, Japan
| | - Takahito Nakajima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan.,Department of Diagnostic Radiology and Interventional Radiology, Tsukuba University, Tsukuba, Ibaraki, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Showa-machi 3-39-15, Maebashi, Gunma, 371-8511, Japan.,Research Program for Diagnostic and Molecular Imaging, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Showamachi 3-39-15, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
11
|
Blanken AB, Agca R, van Sijl AM, Voskuyl AE, Boellaard R, Smulders YM, van der Laken CJ, Nurmohamed MT. Arterial wall inflammation in rheumatoid arthritis is reduced by anti-inflammatory treatment. Semin Arthritis Rheum 2021; 51:457-463. [PMID: 33770536 DOI: 10.1016/j.semarthrit.2021.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) patients have an increased risk of cardiovascular disease (CVD), partly due to an increased prevalence of cardiovascular risk factors, but also due to chronic systemic inflammation inducing atherosclerotic changes of the arterial wall. The aim of this study was to determine whether anti-inflammatory therapy for the treatment of RA has favorable effects on arterial wall inflammation in RA patients. METHODS Arterial wall inflammation before and after 6 months of anti-inflammatory treatment was assessed in 49 early and established RA patients using 18F-fluorodeoxyglucose-positron emission tomography with computed tomography (18F-FDG-PET/CT). Arterial 18F-FDG uptake was quantified as maximum standardized uptake value (SUVmax) in the thoracic aorta, abdominal aorta, carotid, iliac and femoral arteries. Early RA patients (n = 26) were treated with conventional synthetic disease modifying anti-rheumatic drugs with or without corticosteroids, whereas established RA patients (n = 23) were treated with adalimumab. RESULTS In RA patients, overall SUVmax was over time reduced by 4% (difference -0.06, 95%CI -0.12 to -0.01, p = 0.02), with largest reductions in carotid (-8%, p = 0.001) and femoral arteries (-7%, p = 0.005). There was no difference in arterial wall inflammation change between early and established RA patients (SUVmax difference 0.003, 95%CI -0.11 to 0.12, p = 0.95). Change in arterial wall inflammation significantly correlated with change in serological inflammatory markers (erythrocyte sedimentation rate and C-reactive protein). CONCLUSION Arterial wall inflammation in RA patients is reduced by anti-inflammatory treatment and this reduction correlates with reductions of serological inflammatory markers. These results suggest that anti-inflammatory treatment of RA has favorable effects on the risk of cardiovascular events in RA patients.
Collapse
Affiliation(s)
- Annelies B Blanken
- Amsterdam Rheumatology and immunology Center, location Reade, Department of Rheumatology, Dr. Jan van Breemstraat 2, PO box 58271, 1040 HG Amsterdam, the Netherlands; Amsterdam Rheumatology and immunology Center, location Amsterdam UMC, VU University Medical Center, Department of Rheumatology, Amsterdam, the Netherlands.
| | - Rabia Agca
- Amsterdam Rheumatology and immunology Center, location Reade, Department of Rheumatology, Dr. Jan van Breemstraat 2, PO box 58271, 1040 HG Amsterdam, the Netherlands; Amsterdam Rheumatology and immunology Center, location Amsterdam UMC, VU University Medical Center, Department of Rheumatology, Amsterdam, the Netherlands
| | - Alper M van Sijl
- Amsterdam Rheumatology and immunology Center, location Reade, Department of Rheumatology, Dr. Jan van Breemstraat 2, PO box 58271, 1040 HG Amsterdam, the Netherlands; Amsterdam Rheumatology and immunology Center, location Amsterdam UMC, VU University Medical Center, Department of Rheumatology, Amsterdam, the Netherlands
| | - Alexandre E Voskuyl
- Amsterdam Rheumatology and immunology Center, location Amsterdam UMC, VU University Medical Center, Department of Rheumatology, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Amsterdam UMC, location VU University Medical Center, Department of Nuclear Medicine, Amsterdam, the Netherlands
| | - Yvo M Smulders
- Amsterdam UMC, location VU University Medical Center, Department of Internal Medicine, Amsterdam, the Netherlands
| | - Conny J van der Laken
- Amsterdam Rheumatology and immunology Center, location Amsterdam UMC, VU University Medical Center, Department of Rheumatology, Amsterdam, the Netherlands
| | - Michael T Nurmohamed
- Amsterdam Rheumatology and immunology Center, location Reade, Department of Rheumatology, Dr. Jan van Breemstraat 2, PO box 58271, 1040 HG Amsterdam, the Netherlands; Amsterdam Rheumatology and immunology Center, location Amsterdam UMC, VU University Medical Center, Department of Rheumatology, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Carbone F, Bonaventura A, Liberale L, Paolino S, Torre F, Dallegri F, Montecucco F, Cutolo M. Atherosclerosis in Rheumatoid Arthritis: Promoters and Opponents. Clin Rev Allergy Immunol 2020; 58:1-14. [PMID: 30259381 DOI: 10.1007/s12016-018-8714-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Substantial epidemiological data identified cardiovascular (CV) diseases as a main cause of mortality in patients with rheumatoid arthritis (RA). In light of this, RA patients may benefit from additional CV risk screening and more intensive prevention strategies. Nevertheless, current algorithms for CV risk stratification still remain tailored on general population and are burdened by a significant underestimation of CV risk in RA patients. Acute CV events in patients with RA are largely related to an accelerated atherosclerosis. As pathophysiological features of atherosclerosis overlap those occurring in the inflamed RA synovium, the understanding of those common pathways represents an urgent need and a leading challenge for CV prevention in patients with RA. Genetic background, metabolic status, gut microbiome, and systemic inflammation have been also suggested as additional key pro-atherosclerotic factors. The aim of this narrative review is to update the current knowledge about pathophysiology of atherogenesis in RA patients and potential anti-atherosclerotic effects of disease-modifying anti-rheumatic drugs.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,Center for Molecular Cardiology, University of Zürich, 12 Wagistrasse, 8952, Schlieren, Switzerland
| | - Sabrina Paolino
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, San Martino Polyclinic Hospital, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy
| | - Francesco Torre
- IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy.,Clinic of Emergency Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Maurizio Cutolo
- IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy. .,Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, San Martino Polyclinic Hospital, Genoa, Italy.
| |
Collapse
|
13
|
Jamthikar AD, Gupta D, Puvvula A, Johri AM, Khanna NN, Saba L, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Kitas GD, Kolluri R, Sharma AM, Viswanathan V, Rathore VS, Suri JS. Cardiovascular risk assessment in patients with rheumatoid arthritis using carotid ultrasound B-mode imaging. Rheumatol Int 2020; 40:1921-1939. [PMID: 32857281 PMCID: PMC7453675 DOI: 10.1007/s00296-020-04691-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that affects synovial joints and has various extra-articular manifestations, including atherosclerotic cardiovascular disease (CVD). Patients with RA experience a higher risk of CVD, leading to increased morbidity and mortality. Inflammation is a common phenomenon in RA and CVD. The pathophysiological association between these diseases is still not clear, and, thus, the risk assessment and detection of CVD in such patients is of clinical importance. Recently, artificial intelligence (AI) has gained prominence in advancing healthcare and, therefore, may further help to investigate the RA-CVD association. There are three aims of this review: (1) to summarize the three pathophysiological pathways that link RA to CVD; (2) to identify several traditional and carotid ultrasound image-based CVD risk calculators useful for RA patients, and (3) to understand the role of artificial intelligence in CVD risk assessment in RA patients. Our search strategy involves extensively searches in PubMed and Web of Science databases using search terms associated with CVD risk assessment in RA patients. A total of 120 peer-reviewed articles were screened for this review. We conclude that (a) two of the three pathways directly affect the atherosclerotic process, leading to heart injury, (b) carotid ultrasound image-based calculators have shown superior performance compared with conventional calculators, and (c) AI-based technologies in CVD risk assessment in RA patients are aggressively being adapted for routine practice of RA patients.
Collapse
Affiliation(s)
- Ankush D Jamthikar
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, MH, India
| | - Deep Gupta
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, MH, India
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital, Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, Athens, Greece
| | - George D Kitas
- Department of Rheumatology, Dudley Group NHS Foundation Trust, Dudley, UK
| | | | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Vijay S Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
14
|
Genkel VV, Shaposhnik II. Conceptualization of Heterogeneity of Chronic Diseases and Atherosclerosis as a Pathway to Precision Medicine: Endophenotype, Endotype, and Residual Cardiovascular Risk. Int J Chronic Dis 2020; 2020:5950813. [PMID: 32099839 PMCID: PMC7038435 DOI: 10.1155/2020/5950813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/30/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
The article discusses modern approaches to the conceptualization of pathogenetic heterogeneity in various branches of medical science. The concepts of endophenotype, endotype, and residual cardiovascular risk and the scope of their application in internal medicine and cardiology are considered. Based on the latest results of studies of the genetic architecture of atherosclerosis, five endotypes of atherosclerosis have been proposed. Each of the presented endotypes represents one or another pathophysiological mechanism of atherogenesis, having an established genetic substrate, a characteristic panel of biomarkers, and a number of clinical features. Clinical implications and perspectives for the study of endotypes of atherosclerosis are briefly reviewed.
Collapse
Affiliation(s)
- Vadim V. Genkel
- Department of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education “South-Ural State Medical University” of the Ministry of Healthcare of the Russian Federation, Vorovskogo St. 64, 454092 Chelyabinsk, Russia
| | - Igor I. Shaposhnik
- Department of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education “South-Ural State Medical University” of the Ministry of Healthcare of the Russian Federation, Vorovskogo St. 64, 454092 Chelyabinsk, Russia
| |
Collapse
|
15
|
Choi H, Uceda DE, Dey AK, Mehta NN. Application of Non-invasive Imaging in Inflammatory Disease Conditions to Evaluate Subclinical Coronary Artery Disease. Curr Rheumatol Rep 2019; 22:1. [PMID: 31832865 DOI: 10.1007/s11926-019-0875-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Traditional risk models, such as the Framingham risk score, fail to capture the increased cardiovascular disease risk seen in patients with chronic inflammatory diseases. This review will cover imaging modalities and their emerging applications in assessing subclinical cardiovascular disease for both research and clinical care in patients with chronic inflammatory diseases. RECENT FINDINGS Multiple imaging modalities have been studied to assess for subclinical cardiovascular disease via functional/physiologic, inflammatory, and anatomic assessment in patients with chronic inflammatory diseases. The use of imaging to evaluate subclinical cardiovascular disease in patients with chronic inflammatory diseases has the potential to capture early sub-clinical atherosclerosis, to improve risk stratification of future cardiovascular events, and to guide effective disease management.
Collapse
Affiliation(s)
- Harry Choi
- National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Domingo E Uceda
- National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amit K Dey
- National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nehal N Mehta
- National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Ikonomidis I, Makavos G, Katsimbri P, Boumpas DT, Parissis J, Iliodromitis E. Imaging Risk in Multisystem Inflammatory Diseases. JACC Cardiovasc Imaging 2019; 12:2517-2537. [DOI: 10.1016/j.jcmg.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 05/29/2018] [Accepted: 06/28/2018] [Indexed: 11/17/2022]
|
17
|
Royzman D, Andreev D, Stich L, Rauh M, Bäuerle T, Ellmann S, Boon L, Kindermann M, Peckert K, Bozec A, Schett G, Steinkasserer A, Zinser E. Soluble CD83 Triggers Resolution of Arthritis and Sustained Inflammation Control in IDO Dependent Manner. Front Immunol 2019; 10:633. [PMID: 31001257 PMCID: PMC6455294 DOI: 10.3389/fimmu.2019.00633] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Interference with autoimmune-mediated cytokine production is a key yet poorly developed approach to treat autoimmune and inflammatory diseases such as rheumatoid arthritis. Herein, we show that soluble CD83 (sCD83) enhances the resolution of autoimmune antigen-induced arthritis (AIA) by strongly reducing the expression levels of cytokines such as IL-17A, IFNγ, IL-6, and TNFα within the joints. Noteworthy, also the expression of RANKL, osteoclast differentiation, and joint destruction was significantly inhibited by sCD83. In addition, osteoclasts which were cultured in the presence of synovial T cells, derived from sCD83 treated AIA mice, showed a strongly reduced number of multinuclear large osteoclasts compared to mock controls. Enhanced resolution of arthritis by sCD83 was mechanistically based on IDO, since inhibition of IDO by 1-methyltryptophan completely abrogated sCD83 effects on AIA. Blocking experiments, using anti-TGF-β antibodies further revealed that also TGF-β is mechanistically involved in the sCD83 induced reduction of bone destruction and cartilage damage as well as enhanced resolution of inflammation. Resolution of arthritis was associated with increased numbers of regulatory T cells, which are induced in a sCD83-IDO-TGF-β dependent manner. Taken together, sCD83 represents an interesting approach for downregulating cytokine production, inducing regulatory T cells and inducing resolution of autoimmune arthritis.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Antigens, CD/immunology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Cytokines/immunology
- Female
- Immunoglobulins/immunology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Inflammation/drug therapy
- Inflammation/immunology
- Inflammation/pathology
- Joints/immunology
- Joints/pathology
- Membrane Glycoproteins/immunology
- Mice
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Solubility
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/immunology
- Tryptophan/analogs & derivatives
- Tryptophan/pharmacology
- CD83 Antigen
Collapse
Affiliation(s)
- Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Darja Andreev
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stephan Ellmann
- Institute of Radiology, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Markus Kindermann
- Department of Internal Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katrin Peckert
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
18
|
Bissell LA, Erhayiem B, Fent G, Hensor EMA, Burska A, Donica H, Plein S, Buch MH, Greenwood JP, Andrews J. Carotid artery volumetric measures associate with clinical ten-year cardiovascular (CV) risk scores and individual traditional CV risk factors in rheumatoid arthritis; a carotid-MRI feasibility study. Arthritis Res Ther 2018; 20:266. [PMID: 30509325 PMCID: PMC6278168 DOI: 10.1186/s13075-018-1761-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Common carotid artery intima-media thickness (CIMT), as measured by ultrasound, has utility in stratification of the accelerated cardiovascular risk seen in rheumatoid arthritis (RA); however, the technique has limitations. Carotid magnetic resonance imaging (MRI) is emerging as a useful research tool in the general population, but has yet to be applied in RA populations. Our objectives were to describe the utility of carotid artery MRI (carotid-MRI) in patients with RA in comparison to healthy controls and to describe the association with RA disease phenotype. METHODS Sixty-four patients with RA and no history of cardiovascular (CV) disease/diabetes mellitus were assessed for RA and CV profile, including homeostasis model assessment-estimated insulin resistance (HOMA-IR) and N-terminal pro-brain natriuretic peptide (NT-proBNP). All underwent carotid-MRI (3 T), and were compared to 24 healthy controls. Univariable analysis (UVA) and multivariable linear regression models (MVA) were used to determine associations between disease phenotype and carotid-MRI measures. RESULTS There were no significant differences in carotid arterial wall measurements between patients with RA and controls. Wall and luminal volume correlated with 10-year CV risk scores (adjusted as per 2017 European League Against Rheumatism (EULAR) guidance); rho = 0.33 (p = 0.012) and rho = 0.35 (p = 0.008), respectively, for Joint British Societies-2 risk score. In UVA, carotid-MRI volumetric measures predominantly were associated with traditional CV risk factors including age, ever-smoking and HOMA-IR (p < 0.05). Lower body mass index was associated with wall maximum thickness (r = - 0.25 p = 0.026). In MVA, age was independently associated with wall volume (B 1.13 (95% CI 0.32, 1.93), p = 0.007) and luminal volume (B 3.69 (95% CI 0.55, 6.83, p = 0.022), and RA disease duration was associated with luminal volume (B 3.88 (95% CI 0.80, 6.97), p = 0.015). CONCLUSIONS This study demonstrates the utility of carotid-MRI in RA, reporting an association between three-dimensional measures in particular and CV risk scores, individual traditional CV risk factors and RA disease duration. Carotid-MRI in RA is a promising research tool in the investigation of CVD.
Collapse
Affiliation(s)
- Lesley-Anne Bissell
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Bara Erhayiem
- Multidisciplinary Cardiovascular Research Centre & The Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Graham Fent
- Multidisciplinary Cardiovascular Research Centre & The Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Elizabeth M A Hensor
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Agata Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds, UK
| | | | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre & The Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Maya H Buch
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - John P Greenwood
- Multidisciplinary Cardiovascular Research Centre & The Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Jacqueline Andrews
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Centre, Leeds, UK.
| |
Collapse
|
19
|
Abstract
Computational cardiology is the scientific field devoted to the development of methodologies that enhance our mechanistic understanding, diagnosis and treatment of cardiovascular disease. In this regard, the field embraces the extraordinary pace of discovery in imaging, computational modeling, and cardiovascular informatics at the intersection of atherogenesis and vascular biology. This paper highlights existing methods, practices, and computational models and proposes new strategies to support a multidisciplinary effort in this space. We focus on the means by that to leverage and coalesce these multiple disciplines to advance translational science and computational cardiology. Analyzing the scientific trends and understanding the current needs we present our perspective for the future of cardiovascular treatment.
Collapse
|
20
|
Edwards N, Langford-Smith AWW, Wilkinson FL, Alexander MY. Endothelial Progenitor Cells: New Targets for Therapeutics for Inflammatory Conditions With High Cardiovascular Risk. Front Med (Lausanne) 2018; 5:200. [PMID: 30042945 PMCID: PMC6048266 DOI: 10.3389/fmed.2018.00200] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, we have witnessed an exponential growth of interest into the role of endothelial progenitor cells (EPCs) in cardiovascular disease. While the major thinking revolves around EPC angiogenic repair properties, we have used a hypothesis-driven approach to discover disease-related defects in their characteristics and based on these findings, have identified opportunities for functional enhancement, which offer an exciting avenue for translation into clinical intervention. In this review, we focus on two groups; circulating myeloid angiogenic cells (MACs) and late outgrowth endothelial colony forming cells (ECFCs), and will discuss the unique properties and defects of each population, as new insights have been gained into the potential function of each sub-type using current techniques and multiomic technology. We will discuss their role in inflammatory disorders and alterations in mitochondrial function. In addition, we share key insights into the glycocalyx, and propose this network of membrane-bound proteoglycans and glycoproteins, covering the endothelium warrants further investigation in order to clarify its significance in ECFC regulation of vascularization and angiogenesis and ultimately for potential translational therapeutic aspects.
Collapse
Affiliation(s)
- Nicola Edwards
- Cardiovascular Science, Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alexander W W Langford-Smith
- Cardiovascular Science, Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Fiona L Wilkinson
- Cardiovascular Science, Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - M Yvonne Alexander
- Cardiovascular Science, Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
21
|
Lee UK, Chang TI, Garrett N, Friedlander AH. Males With Rheumatoid Arthritis Often Evidence Carotid Atheromas on Panoramic Imaging: A Risk Indicator of Future Cardiovascular Events. J Oral Maxillofac Surg 2018; 76:1447-1453. [PMID: 29406256 DOI: 10.1016/j.joms.2018.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/20/2022]
Abstract
PURPOSE Males with rheumatoid arthritis (RA) are at an exceedingly high risk of adverse intraoperative ischemic events, given the role of systemic inflammation in the atherogenic process. We hypothesized that their panoramic images would demonstrate calcified carotid artery atheromas (CCAPs) significantly more often than those from a general population of similarly aged men. PATIENTS AND METHODS We implemented a retrospective observational study. The sample was composed of male patients older than 55 years of age who had undergone panoramic imaging studies. The predictor variable was the diagnosis of RA confirmed by a positive rheumatoid factor (RF) titer, and the outcome variable was the prevalence rate of CCAPs. The other major study variable was the level of RF among the patients evidencing CCAPs. The prevalence of CCAPs among the patients with RA was then compared with that of a historical general population of similarly aged men. Descriptive and bivariate statistics were computed, and the P value was set at .05. RESULTS Of the 100 men (mean age 69.89 ± 8.927 years) with RA, 29 (29%; mean age 72.10 ± 7.68 years) had atheromas (CCAP+). Of these 29 men, 25 (86%; mean age 71.88 ± 7.43 years) had a RF titer of ≥41 IU/mL, twice that of normal. A statistically significant (P < .05) association was found between a diagnosis of RA and the presence of an atheroma on the panoramic image compared with the 3% rate found in the historical cohort. CONCLUSIONS The results of the present study suggest that CCAP, a risk indicator of future adverse cardiovascular events, is frequently seen on panoramic images of male patients with RA and that these individuals routinely manifest high titer levels of RF, a biologic marker of inflammation. Oral and maxillofacial surgeons planning surgery for male patients with RA must be uniquely vigilant for the presence of these lesions.
Collapse
Affiliation(s)
- Urie K Lee
- Oral and Maxillofacial Surgery Veterans Affairs Special Fellow, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Tina I Chang
- Director, Research Fellowship and Inpatient Oral and Maxillofacial Surgery, Veterans Affairs Great Los Angeles Healthcare System, Los Angeles, CA; and Instructor, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of California, Los Angeles, CA
| | - Neal Garrett
- Professor Emeritus, School of Dentistry, University of California, Los Angeles, CA
| | - Arthur H Friedlander
- Associate Chief of Staff, Graduate Medical Education, Veterans Affairs Greater Los Angeles Healthcare System; Director, Quality Assurance Hospital Dental Service, Ronald Reagan UCLA Medical Center; and Professor-in-Residence, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of California, Los Angeles, CA.
| |
Collapse
|
22
|
Anderson CJ, Lewis JS. Current status and future challenges for molecular imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2017.0023. [PMID: 29038378 DOI: 10.1098/rsta.2017.0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Molecular imaging (MI), used in its wider sense of biology at the molecular level, is a field that lies at the intersection of molecular biology and traditional medical imaging. As advances in medicine have exponentially expanded over the last few decades, so has our need to better understand the fundamental behaviour of living organisms in a non-invasive and timely manner. This commentary draws from topics the authors addressed in their presentations at the 2017 Royal Society Meeting 'Challenges for chemistry in molecular imaging', as well as a discussion of where MI is today and where it is heading in the future.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
Collapse
Affiliation(s)
- Carolyn J Anderson
- Departments of Medicine, Radiology, Bioengineering, and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jason S Lewis
- Department of Radiology and the Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|