1
|
Reschke R, Deitert B, Enk AH, Hassel JC. The role of tissue-resident memory T cells as mediators for response and toxicity in immunotherapy-treated melanoma-two sides of the same coin? Front Immunol 2024; 15:1385781. [PMID: 38562921 PMCID: PMC10982392 DOI: 10.3389/fimmu.2024.1385781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Tissue-resident memory T cells (TRM cells) have become an interesting subject of study for antitumor immunity in melanoma and other solid tumors. In the initial phases of antitumor immunity, they maintain an immune equilibrium and protect against challenges with tumor cells and the formation of primary melanomas. In metastatic settings, they are a prime target cell population for immune checkpoint inhibition (ICI) because they highly express inhibitory checkpoint molecules such as PD-1, CTLA-4, or LAG-3. Once melanoma patients are treated with ICI, TRM cells residing in the tumor are reactivated and expand. Tumor killing is achieved by secreting effector molecules such as IFN-γ. However, off-target effects are also observed. Immune-related adverse events, such as those affecting barrier organs like the skin, can be mediated by ICI-induced TRM cells. Therefore, a detailed understanding of this memory T-cell type is obligatory to better guide and improve immunotherapy regimens.
Collapse
Affiliation(s)
- Robin Reschke
- Department of Dermatology, National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
| | - Benjamin Deitert
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alex H. Enk
- Department of Dermatology, National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
| | - Jessica C. Hassel
- Department of Dermatology, National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
| |
Collapse
|
2
|
Parwani KK, Branella GM, Burnham RE, Burnham AJ, Bustamante AYS, Foppiani EM, Knight KA, Petrich BG, Horwitz EM, Doering CB, Spencer HT. Directing the migration of serum-free, ex vivo-expanded Vγ9Vδ2 T cells. Front Immunol 2024; 15:1331322. [PMID: 38487542 PMCID: PMC10937339 DOI: 10.3389/fimmu.2024.1331322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
Vγ9Vδ2 T cells represent a promising cancer therapy platform because the implementation of allogenic, off-the-shelf product candidates is possible. However, intravenous administration of human Vγ9Vδ2 T cells manufactured under good manufacturing practice (GMP)-compliant, serum-free conditions are not tested easily in most mouse models, mainly because they lack the ability to migrate from the blood to tissues or tumors. We demonstrate that these T cells do not migrate from the circulation to the mouse bone marrow (BM), the site of many malignancies. Thus, there is a need to better characterize human γδ T-cell migration in vivo and develop strategies to direct these cells to in vivo sites of therapeutic interest. To better understand the migration of these cells and possibly influence their migration, NSG mice were conditioned with agents to clear BM cellular compartments, i.e., busulfan or total body irradiation (TBI), or promote T-cell migration to inflamed BM, i.e., incomplete Freund's adjuvant (IFA), prior to administering γδ T cells. Conditioning with TBI, unlike busulfan or IFA, increases the percentage and number of γδ T cells accumulating in the mouse BM, and cells in the peripheral blood (PB) and BM display identical surface protein profiles. To better understand the mechanism by which cells migrate to the BM, mice were conditioned with TBI and administered γδ T cells or tracker-stained red blood cells. The mechanism by which γδ T cells enter the BM after radiation is passive migration from the circulation, not homing. We tested if these ex vivo-expanded cells can migrate based on chemokine expression patterns and showed that it is possible to initiate homing by utilizing highly expressed chemokine receptors on the expanded γδ T cells. γδ T cells highly express CCR2, which provides chemokine attraction to C-C motif chemokine ligand 2 (CCL2)-expressing cells. IFNγ-primed mesenchymal stromal cells (MSCs) (γMSCs) express CCL2, and we developed in vitro and in vivo models to test γδ T-cell homing to CCL2-expressing cells. Using an established neuroblastoma NSG mouse model, we show that intratumorally-injected γMSCs increase the homing of γδ T cells to this tumor. These studies provide insight into the migration of serum-free, ex vivo-expanded Vγ9Vδ2 T cells in NSG mice, which is critical to understanding the fundamental properties of these cells.
Collapse
Affiliation(s)
- Kiran K Parwani
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Gianna M Branella
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Rebecca E Burnham
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Andre J Burnham
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Austre Y Schiaffino Bustamante
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Elisabetta Manuela Foppiani
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Kristopher A Knight
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | | | - Edwin M Horwitz
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
3
|
Kim IK, Diamond MS, Yuan S, Kemp SB, Kahn BM, Li Q, Lin JH, Li J, Norgard RJ, Thomas SK, Merolle M, Katsuda T, Tobias JW, Baslan T, Politi K, Vonderheide RH, Stanger BZ. Plasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy in pancreatic ductal adenocarcinoma. Nat Commun 2024; 15:1532. [PMID: 38378697 PMCID: PMC10879147 DOI: 10.1038/s41467-024-46048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
Acquired resistance to immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we find that resistance is reproducibly associated with an epithelial-to-mesenchymal transition (EMT), with EMT-transcription factors ZEB1 and SNAIL functioning as master genetic and epigenetic regulators of this effect. Acquired resistance in this model is not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, resistance is due to a tumor cell-intrinsic defect in T-cell killing. Molecularly, EMT leads to the epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), rendering tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings indicate that acquired resistance to immunotherapy may be mediated by programs distinct from those governing primary resistance, including plasticity programs that render tumor cells impervious to T-cell killing.
Collapse
Affiliation(s)
- Il-Kyu Kim
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark S Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salina Yuan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha B Kemp
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin M Kahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qinglan Li
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey H Lin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinyang Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Norgard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stacy K Thomas
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Merolle
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Takeshi Katsuda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, PA, USA
| | - Timour Baslan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katerina Politi
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Robert H Vonderheide
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Pimenta J, Prada J, Pires I, Cotovio M. Programmed Cell Death-Ligand 1 (PD-L1) Immunohistochemical Expression in Equine Melanocytic Tumors. Animals (Basel) 2023; 14:48. [PMID: 38200779 PMCID: PMC10778310 DOI: 10.3390/ani14010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Currently available treatments for equine melanocytic tumors have limitations, mainly due to mass localization and dimension, or the presence of metastases. Therefore, a search for new therapies is necessary. Programmed cell death-ligand 1 (PD-L1) is expressed by several tumors, blocking T cell-mediated elimination of the tumor cells by binding to programmed cell death protein 1 (PD-1). A novel therapeutic approach using PD-1/PD-L1 blockade in human melanoma resulted in tumor regression and prolonged tumor-free survival. This study aimed to evaluate the immunohistochemical expression of PD-L1 in equine melanocytic tumors. A total of 77 melanocytic tumors were classified as benign or malignant and evaluated by extension of labeling. A total of 59.7% of the tumors showed >50% of immunolabeled cells. Regarding malignant tumors, 24/38 tumors presented >50% of labeled cells, 13 tumors presented between 25-50% and one tumor presented <10%. Regarding benign tumors, 22/39 tumors presented >50% of labeled cells, nine tumors presented 25-50%, three tumors presented 10-25%, two tumors presented <10% and three tumors did not present expression. Our results suggest that PD-L1 blockade may be a potential target for immunotherapy in equine melanocytic tumors and that future clinical research trials into the clinical efficacy of the anti-PD-L1 antibody are necessary.
Collapse
Affiliation(s)
- José Pimenta
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Justina Prada
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Mário Cotovio
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal
| |
Collapse
|
5
|
Kim IK, Diamond M, Yuan S, Kemp S, Li Q, Lin J, Li J, Norgard R, Thomas S, Merolle M, Katsuda T, Tobias J, Politi K, Vonderheide R, Stanger B. Plasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy. RESEARCH SQUARE 2023:rs.3.rs-2960521. [PMID: 37398248 PMCID: PMC10312946 DOI: 10.21203/rs.3.rs-2960521/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Acquired resistance to immune checkpoint immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we found that tumors underwent an epithelial-to-mesenchymal transition (EMT) that resulted in reduced sensitivity to T cell-mediated killing. EMT-transcription factors (EMT-TFs) ZEB1 and SNAIL function as master genetic and epigenetic regulators of this tumor-intrinsic effect. Acquired resistance was not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, EMT was associated with epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), which renders tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings show how resistance to immunotherapy in PDAC can be acquired through plasticity programs that render tumor cells impervious to T cell killing.
Collapse
|
6
|
Jiang M, Fiering S, Shao Q. Combining energy-based focal ablation and immune checkpoint inhibitors: preclinical research and clinical trials. Front Oncol 2023; 13:1153066. [PMID: 37251920 PMCID: PMC10211342 DOI: 10.3389/fonc.2023.1153066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Energy-based focal therapy (FT) uses targeted, minimally invasive procedures to destroy tumors while preserving normal tissue and function. There is strong emerging interest in understanding how systemic immunity against the tumor can occur with cancer immunotherapy, most notably immune checkpoint inhibitors (ICI). The motivation for combining FT and ICI in cancer management relies on the synergy between the two different therapies: FT complements ICI by reducing tumor burden, increasing objective response rate, and reducing side effects of ICI; ICI supplements FT by reducing local recurrence, controlling distal metastases, and providing long-term protection. This combinatorial strategy has shown promising results in preclinical study (since 2004) and the clinical trials (since 2011). Understanding the synergy calls for understanding the physics and biology behind the two different therapies with distinctive mechanisms of action. In this review, we introduce different types of energy-based FT by covering the biophysics of tissue-energy interaction and present the immunomodulatory properties of FT. We discuss the basis of cancer immunotherapy with the emphasis on ICI. We examine the approaches researchers have been using and the results from both preclinical models and clinical trials from our exhaustive literature research. Finally, the challenges of the combinatory strategy and opportunities of future research is discussed extensively.
Collapse
Affiliation(s)
- Minhan Jiang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Dartmouth Cancer Center, Dartmouth Geisel School of Medicine and Dartmouth Health, Lebanon, NH, United States
| | - Qi Shao
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
7
|
Ziogas DC, Theocharopoulos C, Koutouratsas T, Haanen J, Gogas H. Mechanisms of resistance to immune checkpoint inhibitors in melanoma: What we have to overcome? Cancer Treat Rev 2023; 113:102499. [PMID: 36542945 DOI: 10.1016/j.ctrv.2022.102499] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Marching into the second decade after the approval of ipilimumab, it is clear that immune checkpoint inhibitors (ICIs) have dramatically improved the prognosis of melanoma. Although the current edge is already high, with a 4-year OS% of 77.9% for adjuvant nivolumab and a 6.5-year OS% of 49% for nivolumab/ipilimumab combination in the metastatic setting, a high proportion of patients with advanced melanoma have no benefit from immunotherapy, or experience an early disease relapse/progression in the first few months of treatment, surviving much less. Reasonably, the primary and acquired resistance to ICIs has entered into the focus of clinical research with positive (e.g., nivolumab and relatlimab combination) and negative feedbacks (e.g., nivolumab with pegylated-IL2, pembrolizumab with T-VEC, nivolumab with epacadostat, and combinatorial triplets of BRAF/MEK inhibitors with immunotherapy). Many intrinsic (intracellular or intra-tumoral) but also extrinsic (systematic) events are considered to be involved in the development of this resistance to ICIs: i) melanoma cell immunogenicity (e.g., tumor mutational burden, antigen-processing machinery and immunogenic cell death, neoantigen affinity and heterogeneity, genomic instability, melanoma dedifferentiation and phenotypic plasticity), ii) immune cell trafficking, T-cell priming, and cell death evasion, iii) melanoma neovascularization, cellular TME components(e.g., Tregs, CAFs) and extracellular matrix modulation, iv) metabolic antagonism in the TME(highly glycolytic status, upregulated CD39/CD73/adenosine pathway, iDO-dependent tryptophan catabolism), v) T-cell exhaustion and negative immune checkpoints, and vi) gut microbiota. In the present overview, we discuss how these parameters compromise the efficacy of ICIs, with an emphasis on the lessons learned by the latest melanoma studies; and in parallel, we describe the main ongoing approaches to overcome the resistance to immunotherapy. Summarizing this information will improve the understanding of how these complicated dynamics contribute to immune escape and will help to develop more effective strategies on how anti-tumor immunity can surpass existing barriers of ICI-refractory melanoma.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Tilemachos Koutouratsas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - John Haanen
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
8
|
Hua H, He W, Chen N, He Y, Wu G, Ye F, Zhou X, Li Y, Ding Y, Zhong W, Teng L, Jiang W, Sheng Q. Genomic and transcriptomic analysis of MSI-H colorectal cancer patients with targetable alterations identifies clinical implications for immunotherapy. Front Immunol 2023; 13:974793. [PMID: 36700211 PMCID: PMC9870311 DOI: 10.3389/fimmu.2022.974793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/03/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Targetable alterations such as BRAFV600E mutation and NTRK fusion are enriched in microsatellite instability-high (MSI-H) colorectal cancer (CRC). MSI-H with targetable alterations (MSI-H altered) might present unique opportunities for both targeted therapy and immunotherapy. We systematically evaluated the molecular characteristics and immune-related features of MSI-H altered and MSI-H without targetable alterations (MSI-H wt) CRC patients in our study. Methods Among 1938 continuously enrolled CRC patients, 126 patients with MSI-H status (6.50%) were included in this retrospective study. Genomic and transcriptomic data were investigated by next-generation sequencing (NGS) and gene expression profiling (GEP), respectively. Results BRAFV600E, NTRK1, and FGFR2 mutations were the most frequent targetable alterations in MSI-H CRC patients. The MSI-H altered phenotype was significantly associated with older age (p< 0.001), right side (p=0.024) and females (p= 0.036). No lynch syndrome (LS) patients were identified in MSI-H altered group. The tumor mutational burden (TMB), and tumor neoantigen burden (TNB) of MSI-H altered and wt subgroups were comparable (p<0.05). Subsequently, transcriptomic study analysis further revealed MSI-H altered CRC patients were linked to an immune-active tumor microenvironment with higher levels of Teff IFN-gamma, CYT, and MERCK 18 signatures, and lower levels of the IPRES gene signature, EMT and TGF Beta signatures. In addition, case study supported MSI-H CRC patient harboring targetable alterations might also achieved a long-term disease-free survival benefit from immunotherapy. Discussion Our study preliminary revealed MSI-H altered as a novel subtype of MSI-H CRC patients with unique molecular signatures and immune-active tumor microenvironment. Given the accessibility of immune checkpoint inhibitors (ICIs) treatment, our results might provide clinical evidence for immunotherapy in MSI-H CRC patients with targetable alterations.
Collapse
Affiliation(s)
- Hanju Hua
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wenguang He
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Chen
- Department of Colorectal Surgery, Yuyao Hospital of Traditional Chinese Medicine, Yuyao, China
| | - Yinjun He
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Guosheng Wu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Feng Ye
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xile Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yandong Li
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weixiang Zhong
- Department of Pathology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Qinsong Sheng, ; Weiqin Jiang, ; Lisong Teng,
| | - Weiqin Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China,*Correspondence: Qinsong Sheng, ; Weiqin Jiang, ; Lisong Teng,
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China,*Correspondence: Qinsong Sheng, ; Weiqin Jiang, ; Lisong Teng,
| |
Collapse
|
9
|
Zebley CC, Youngblood B. Mechanisms of T cell exhaustion guiding next-generation immunotherapy. Trends Cancer 2022; 8:726-734. [PMID: 35570136 PMCID: PMC9388609 DOI: 10.1016/j.trecan.2022.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
The functional decline in T cells during their chronic stimulation, commonly referred to as T cell exhaustion, is a major limitation for current immunotherapy approaches. As modern medicine embraces therapeutic approaches that exploit the immuno-oncology interface, a primary question is how is T cell function maintained over time in scenarios of prolonged tumor burden. Deciphering the molecular mechanisms of T cell exhaustion is now enabling the field to begin using cardinal features of T cell differentiation to develop biomarkers that can delineate responders from nonresponders prior to treatment with T cell-based therapeutics. Furthermore, applying principles of basic T cell immunity toward the development of cancer treatments is laying a foundation for rational approaches to improve immunotherapy by redirecting T cells away from a dysfunctional developmental trajectory.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Ben Youngblood
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
10
|
High IGKC-Expressing Intratumoral Plasma Cells Predict Response to Immune Checkpoint Blockade. Int J Mol Sci 2022; 23:ijms23169124. [PMID: 36012390 PMCID: PMC9408876 DOI: 10.3390/ijms23169124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
Resistance to Immune Checkpoint Blockade (ICB) constitutes the current limiting factor for the optimal implementation of this novel therapy, which otherwise demonstrates durable responses with acceptable toxicity scores. This limitation is exacerbated by a lack of robust biomarkers. In this study, we have dissected the basal TME composition at the gene expression and cellular levels that predict response to Nivolumab and prognosis. BCR, TCR and HLA profiling were employed for further characterization of the molecular variables associated with response. The findings were validated using a single-cell RNA-seq data of metastatic melanoma patients treated with ICB, and by multispectral immunofluorescence. Finally, machine learning was employed to construct a prediction algorithm that was validated across eight metastatic melanoma cohorts treated with ICB. Using this strategy, we have unmasked a major role played by basal intratumoral Plasma cells expressing high levels of IGKC in efficacy. IGKC, differentially expressed in good responders, was also identified within the Top response-related BCR clonotypes, together with IGK variants. These results were validated at gene, cellular and protein levels; CD138+ Plasma-like and Plasma cells were more abundant in good responders and correlated with the same RNA-seq-defined fraction. Finally, we generated a 15-gene prediction model that outperformed the current reference score in eight ICB-treated metastatic melanoma cohorts. The evidenced major contribution of basal intratumoral IGKC and Plasma cells in good response and outcome in ICB in metastatic melanoma is a groundbreaking finding in the field beyond the role of T lymphocytes.
Collapse
|
11
|
Robinson I, Lucia GS, Li A, Oberholtzer N, Plante J, Quinn KM, Reuben D, Mehrotra S, Valdebran M. Eosinophils and melanoma: Implications for immunotherapy. Pigment Cell Melanoma Res 2022; 35:192-202. [PMID: 34927354 PMCID: PMC9012984 DOI: 10.1111/pcmr.13025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
New therapies such as immune checkpoint blockers (ICB) have offered extended survival to patients affected by advanced melanoma. However, ICBs have demonstrated debilitating side effects on the joints, liver, lungs, skin, and gut. Several biomarkers have been identified for their role in predicting which patients better tolerate ICBs. Still, these biomarkers are limited by immunologic and genetic heterogeneity and the complexity of translation into clinical practice. Recent observational studies have suggested eosinophil counts, and serum levels of eosinophil cationic protein are significantly associated with prolonged survival in advanced-stage melanoma. It is likely that eosinophils thereby modulate treatment response through mechanisms yet to be explored. Here, we review the functionality of eosinophils, their oncogenic role in melanoma and discuss how these mechanisms may influence patient response to ICBs and their implications in clinical practice.
Collapse
Affiliation(s)
- India Robinson
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Gabriella Santa Lucia
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Andraia Li
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Nathaniel Oberholtzer
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - John Plante
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Kristen M Quinn
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel Reuben
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Manuel Valdebran
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
12
|
Pennington TE, Zhao CY, Colebatch AJ, Fernandez-Peñas P, Guitera P, Burke H, Scolyer RA, Menzies AM, Carlino MS, Lo S, Long GV, Saw RP. Clinicopathological characteristics of new primary melanomas in patients receiving immune checkpoint inhibitor therapy for metastatic melanoma. Australas J Dermatol 2022; 63:e133-e137. [PMID: 35188271 PMCID: PMC9303670 DOI: 10.1111/ajd.13807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/14/2021] [Accepted: 01/27/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors have improved survival in advanced stage melanoma patients. Rates of new primary melanomas (NPM) in patients with prior melanoma have been reported to be as high as 12%. Little is currently known regarding the frequency or characteristics of NPMs occurring in melanoma patients treated with immune checkpoint inhibitors. AIM To determine the frequency and describe clinicopathologic characteristics of NPMs diagnosed in patients during or after treatment with immune checkpoint inhibitors for metastatic melanoma. METHODS A retrospective analysis of prospectively collected data from the Melanoma Institute Australia and Westmead Hospital Dermatology databases. Clinicopathological data for the initial primary melanoma (IPM) and NPM were compared. RESULTS Between 2013-2017, 14 NPMs in 13 patients (out of a total of 1047) treated with checkpoint inhibitors were identified. NPMs were significantly thinner than the IPM (median Breslow thickness 0.35 mm vs 2.0 mm, P = 0.0003), less likely to be ulcerated (0/14 vs 6/13, P = 0.004) and less likely to have nodal metastases (0/14 vs 6/13, P = 0.004). NPMs were significantly more likely to be detected in the in-situ stage (6/14 vs 0/13, P = 0.0016). CONCLUSION NPMs are infrequent in patients treated with checkpoint inhibitors. When they occur, they are usually detected at an early stage and have features associated with a favourable prognosis, most likely reflecting close surveillance. Further study is required to determine long-term risk in patients achieving a durable response to immune checkpoint inhibitors, and to determine whether the immunotherapy itself influences both their development and biology.
Collapse
Affiliation(s)
- Thomas E Pennington
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | - Andrew J Colebatch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,New South Wales Health Pathology, Sydney, NSW, Australia
| | - Pablo Fernandez-Peñas
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Westmead Hospital, Westmead, New South Wales, Australia
| | - Pascale Guitera
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Hazel Burke
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,New South Wales Health Pathology, Sydney, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Royal North Shore Hospital, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Westmead Hospital, Westmead, New South Wales, Australia
| | - Serigne Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Royal North Shore Hospital, Sydney, NSW, Australia
| | - Robyn Pm Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
13
|
Xu B, Lu M, Yan L, Ge M, Ren Y, Wang R, Shu Y, Hou L, Guo H. A Pan-Cancer Analysis of Predictive Methylation Signatures of Response to Cancer Immunotherapy. Front Immunol 2021; 12:796647. [PMID: 34956232 PMCID: PMC8695566 DOI: 10.3389/fimmu.2021.796647] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, tumor immunotherapy based on immune checkpoint inhibitors (ICI) has been introduced and widely adopted for various tumor types. Nevertheless, tumor immunotherapy has a few drawbacks, including significant uncertainty of outcome, the possibility of severe immune-related adverse events for patients receiving such treatments, and the lack of effective biomarkers to determine the ICI treatments' responsiveness. DNA methylation profiles were recently identified as an indicator of the tumor immune microenvironment. They serve as a potential hot spot for predicting responses to ICI treatment for their stability and convenience of measurement by liquid biopsy. We demonstrated the possibility of DNA methylation profiles as a predictor for responses to the ICI treatments at the pan-cancer level by analyzing DNA methylation profiles considered responsive and non-responsive to the treatments. An SVM model was built based on this differential analysis in the pan-cancer levels. The performance of the model was then assessed both at the pan-cancer level and in specific tumor types. It was also compared to the existing gene expression profile-based method. DNA methylation profiles were shown to be predictable for the responses to the ICI treatments in the TCGA cases in pan-cancer levels. The proposed SVM model was shown to have high performance in pan-cancer and specific cancer types. This performance was comparable to that of gene expression profile-based one. The combination of the two models had even higher performance, indicating the potential complementarity of the DNA methylation and gene expression profiles in the prediction of ICI treatment responses.
Collapse
Affiliation(s)
- Bingxiang Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China.,Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Mingjie Lu
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linlin Yan
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China.,Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Minghui Ge
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China.,Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Yong Ren
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China.,Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Yongqian Shu
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Hou
- Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China.,Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| |
Collapse
|
14
|
Terranova CJ, Tang M, Maitituoheti M, Raman AT, Ghosh AK, Schulz J, Amin SB, Orouji E, Tomczak K, Sarkar S, Oba J, Creasy C, Wu CJ, Khan S, Lazcano R, Wani K, Singh A, Barrodia P, Zhao D, Chen K, Haydu LE, Wang WL, Lazar AJ, Woodman SE, Bernatchez C, Rai K. Reprogramming of bivalent chromatin states in NRAS mutant melanoma suggests PRC2 inhibition as a therapeutic strategy. Cell Rep 2021; 36:109410. [PMID: 34289358 PMCID: PMC8369408 DOI: 10.1016/j.celrep.2021.109410] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
The dynamic evolution of chromatin state patterns during metastasis, their relationship with bona fide genetic drivers, and their therapeutic vulnerabilities are not completely understood. Combinatorial chromatin state profiling of 46 melanoma samples reveals an association of NRAS mutants with bivalent histone H3 lysine 27 trimethylation (H3K27me3) and Polycomb repressive complex 2. Reprogramming of bivalent domains during metastasis occurs on master transcription factors of a mesenchymal phenotype, including ZEB1, TWIST1, and CDH1. Resolution of bivalency using pharmacological inhibition of EZH2 decreases invasive capacity of melanoma cells and markedly reduces tumor burden in vivo, specifically in NRAS mutants. Coincident with bivalent reprogramming, the increased expression of pro-metastatic and melanocyte-specific cell-identity genes is associated with exceptionally wide H3K4me3 domains, suggesting a role for this epigenetic element. Overall, we demonstrate that reprogramming of bivalent and broad domains represents key epigenetic alterations in metastatic melanoma and that EZH2 plus MEK inhibition may provide a promising therapeutic strategy for NRAS mutant melanoma patients.
Collapse
Affiliation(s)
- Christopher J Terranova
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ming Tang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; FAS informatics, Department of Molecular Biology, Harvard, Cambridge, MA 02138, USA
| | - Mayinuer Maitituoheti
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ayush T Raman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Graduate Program in Quantitative Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Archit K Ghosh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jonathan Schulz
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Samir B Amin
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Elias Orouji
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Epigenetics Initiative, Princess Margaret Genomics Centre, Toronto, ON M5G 2C1, Canada
| | - Katarzyna Tomczak
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sharmistha Sarkar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Junna Oba
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Caitlin Creasy
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Samia Khan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Anand Singh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Praveen Barrodia
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dongyu Zhao
- Houston Methodist Academic Institute, Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lauren E Haydu
- Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Wei-Lien Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alexander J Lazar
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Scott E Woodman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
15
|
Shenderov E, Kandasamy M, Gileadi U, Chen J, Shepherd D, Gibbs J, Prota G, Silk JD, Yewdell JW, Cerundolo V. Generation and characterization of HLA-A2 transgenic mice expressing the human TCR 1G4 specific for the HLA-A2 restricted NY-ESO-1 157-165 tumor-specific peptide. J Immunother Cancer 2021; 9:jitc-2021-002544. [PMID: 34088742 PMCID: PMC8183295 DOI: 10.1136/jitc-2021-002544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background NY-ESO-1 is a tumor-specific, highly immunogenic, human germ cell antigen of the MAGE-1 family that is a promising vaccine and cell therapy candidate in clinical trial development. The mouse genome does not encode an NY-ESO-1 homolog thereby not subjecting transgenic T-cells to thymic tolerance mechanisms that might impair in-vivo studies. We hypothesized that an NY-ESO-1 T cell receptor (TCR) transgenic mouse would provide the unique opportunity to study avidity of TCR response against NY-ESO-1 for tumor vaccine and cellular therapy development against this clinically relevant and physiological human antigen. Methods To study in vitro and in vivo the requirements for shaping an effective T cell response against the clinically relevant NY-ESO-1, we generated a C57BL/6 HLA-A*0201 background TCR transgenic mouse encoding the 1G4 TCR specific for the human HLA-A2 restricted, NY-ESO-1157-165 SLLMWITQC (9C), initially identified in an NY-ESO-1 positive melanoma patient. Results The HLA-A*0201 restricted TCR was positively selected on both CD4+ and CD8+ cells. Mouse 1G4 T cells were not activated by endogenous autoimmune targets or a large library of non-cognate viral antigens. In contrast, their activation by HLA-A2 NY-ESO-1157-165 complexes was evident by proliferation, CD69 upregulation, interferon-γ production, and interleukin-2 production, and could be tuned using a twofold higher affinity altered peptide ligand, NY-ESO-1157-165V. NY-ESO-1157-165V recombinant vaccination of syngeneic mice adoptively transferred with m1G4 CD8+ T cells controlled tumor growth in vivo. 1G4 transgenic mice suppressed growth of syngeneic methylcholanthrene (MCA) induced HHD tumor cells expressing the full-length human NY-ESO-1 protein but not MCA HHD tumor cells lacking NY-ESO-1. Conclusions The 1G4 TCR mouse model for the physiological human TCR against the clinically relevant antigen, NY-ESO-1, is a valuable tool with the potential to accelerate clinical development of NY-ESO-1-targeted T-cell and vaccine therapies.
Collapse
Affiliation(s)
- Eugene Shenderov
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK .,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Matheswaran Kandasamy
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Jili Chen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Dawn Shepherd
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - James Gibbs
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gennaro Prota
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Jonathan D Silk
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK.,Next Generation Research, Adaptimmune, Abingdon, UK
| | - Jonathan W Yewdell
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK
| |
Collapse
|
16
|
Efficacy and safety results from CheckMate 140, a phase 2 study of nivolumab for relapsed/refractory follicular lymphoma. Blood 2021; 137:637-645. [PMID: 32870269 DOI: 10.1182/blood.2019004753] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Nivolumab, an anti-programmed death-1 (PD-1) monoclonal antibody, showed promising activity in relapsed or refractory (R/R) follicular lymphoma (FL) in a phase 1 study. We conducted a phase 2 trial to further evaluate its efficacy and safety in patients with R/R FL and to explore biomarkers of response. Patients with R/R FL and at least 2 prior lines of therapy, each containing a CD20 antibody or an alkylating agent, were treated with nivolumab 3 mg/kg every 2 weeks. The primary end point was objective response rate (ORR) assessed by an independent radiologic review committee. Biomarker analyses included gene expression profiling and multiplex immunofluorescence studies of pretreatment tumor samples. A total of 92 patients were treated. After a minimum follow-up of 12 months, ORR was 4% (4 of 92 patients). Median progression-free survival (PFS) was 2.2 months (95% confidence interval [CI], 1.9-3.6 months). Median duration of response was 11 months (95% CI, 8-14 months). Exploratory analyses suggested that responders had significantly higher proportion of CD3+ T cells in the tumor microenvironment than nonresponders, but no significant differences in PD-1 or programmed death-ligand 1 expression were observed. High expression of a set of tumor-associated macrophage genes was associated with reduced PFS (hazard ratio, 3.28; 95% CI, 1.76-6.11; P = .001). The safety profile was consistent with previous reports of nivolumab. In conclusion, nivolumab monotherapy was associated with very limited activity in patients with R/R FL. Better understanding of the immune biology of this disease may facilitate the development of effective checkpoint-based strategies. This trial was registered at www.clinicaltrials.gov as #NCT02038946.
Collapse
|
17
|
De Lombaerde E, De Wever O, De Geest BG. Delivery routes matter: Safety and efficacy of intratumoral immunotherapy. Biochim Biophys Acta Rev Cancer 2021; 1875:188526. [PMID: 33617921 DOI: 10.1016/j.bbcan.2021.188526] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023]
Abstract
Many anticancer immunotherapeutic agents, including the monoclonal immune checkpoint blocking antibodies, toll-like receptor (TLR) agonists, cytokines and immunostimulatory mRNA are commonly administrated by the intravenous route. Unfortunately, this route is prone to inducing, often life-threatening, side effects through accumulation of these immunotherapeutic agents at off-target tissues. Moreover, additional biological barriers need to be overcome before reaching the tumor microenvironment. By contrast, direct intratumoral injection allows for accomplishing local immune activation and multiple (pre)clinical studies have demonstrated decreased systemic toxicity, improved efficacy as well as abscopal effects. The approval of the oncolytic herpes simplex virus type 1 talimogene laherparepvec (T-VEC) as first approved intratumoral oncolytic virotherapy has fueled the interest to study intensively other immunotherapeutic approaches in preclinical models as well as in clinical context. Moreover, it has been shown that intratumoral administration of immunostimulatory agents successfully synergizes with immune checkpoint inhibitor therapy. Here we review the current state of the art in (pre)clinical intratumoral immunotherapy.
Collapse
Affiliation(s)
- Emily De Lombaerde
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
18
|
Martinez M, Kim S, St Jean N, O'Brien S, Lian L, Sun J, Verona RI, Moon E. Addition of anti-TIM3 or anti-TIGIT Antibodies to anti-PD1 Blockade Augments Human T cell Adoptive Cell Transfer. Oncoimmunology 2021; 10:1873607. [PMID: 33537176 PMCID: PMC7833767 DOI: 10.1080/2162402x.2021.1873607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
PD1 blockade to reinvigorate T cells has become part of standard of care for patients with NSCLC across disease stages. However, the majority of patients still do not respond. One potential mechanism of resistance is increased expression of other checkpoint inhibitory molecules on T cells leading to their suppression; however, this phenomenon has not been well studied in tumor-reactive, human T cells. The purpose of this study was to evaluate this compensatory mechanism in a novel model using human effector T cells infiltrating and reactive against human lung cancer. Immunodeficient mice with flank tumors established from a human lung cancer cell line expressing the NYESO1 antigen were treated with activated human T cells expressing a TCR reactive to NYESO1 (Ly95) with or without anti-PD1 alone and with combinations of anti-PD1 plus anti-TIM3 or anti-TIGIT. A month later, the effect on tumor growth and the phenotype and ex vivo function of the TILs were analyzed. Anti-PD1 and Ly95 T cells led to greater tumor control than Ly95 T cells alone; however, tumors continued to grow. The ex-vivo function of PD1-blocked Ly95 TILs was suppressed and was associated with increased T cell expression of TIM3/TIGIT. Administering combinatorial blockade of PD1+ TIM3 or PD1+ TIGIT with Ly95 T cells led to greater tumor control than blocking PD1 alone. In our model, PD1 blockade was suboptimally therapeutic alone. The effect of TIM3 and TIGIT was upregulated on T cells in response to PD1 blockade and anti-tumor activity could be enhanced when these inhibitory receptors were also blocked with antibodies in combination with anti-PD1 therapy.
Collapse
Affiliation(s)
- Marina Martinez
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Soyeon Kim
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Naomi St Jean
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Shaun O'Brien
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Lurong Lian
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Jing Sun
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | | | - Edmund Moon
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
19
|
EZH1/2 Inhibitors Favor ILC3 Development from Human HSPC-CD34 + Cells. Cancers (Basel) 2021; 13:cancers13020319. [PMID: 33467134 PMCID: PMC7830003 DOI: 10.3390/cancers13020319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary It has been well-demonstrated that EZH1/2 enzymes are involved not only in tumor development and progression, but also in the regulation of normal hematopoiesis from CD34+-HSPC. Given the crucial role of NK cells in tumor immune surveillance, in this study, we investigated whether EZH1/2 inhibitors can interfere with NK cell differentiation and functional maturation. Our results suggest that EZH1/2 inhibitors push CD56+ precursor proliferation, skewing precursor cell lineage commitment towards ILC3. In recent years, several clinical trials on the use of EZH1/2 inhibitors against solid tumors have been carried out. Since these in vitro observations revealed possible epigenetic mechanisms involved in NK/ILC development, it is important to evaluate patient monitoring of competent NK cells repertoire in order to design appropriate therapeutic protocols. Abstract The dysregulation of epigenetic modifications has a well-established role in the development and progression of hematological malignancies and of solid tumors. In this context, EZH1/2 inhibitors have been designed to interfere with EZH1/2 enzymes involved in histone methylation (e.g., H3K27me3), leading to tumor growth arrest or the restoration of tumor suppressor gene transcription. However, these compounds also affect normal hematopoiesis, interfering with self-renewal and differentiation of CD34+-Hematopoietic Stem/Progenitor Cells (HSPC), and, in turn, could modulate the generation of potential anti-tumor effector lymphocytes. Given the important role of NK cells in the immune surveillance of tumors, it would be useful to understand whether epigenetic drugs can modulate NK cell differentiation and functional maturation. CD34+-HSPC were cultured in the absence or in the presence of the EZH1/2 inhibitor UNC1999 and EZH2 inhibitor GSK126. Our results show that UNC1999 and GSK126 increased CD56+ cell proliferation compared to the control condition. However, UNC1999 and GSK 126 favored the proliferation of no-cytotoxic CD56+ILC3, according to the early expression of the AHR and ROR-γt transcription factors. Our results describe novel epigenetic mechanisms involved in the modulation of NK cell maturation that may provide new tools for designing NK cell-based immunotherapy.
Collapse
|
20
|
Identification of Phytochemical-Based β-Catenin Nuclear Localization Inhibitor in NSCLC: Differential Targeting Population from Member of Isothiocyanates. Molecules 2021; 26:molecules26020399. [PMID: 33451160 PMCID: PMC7828655 DOI: 10.3390/molecules26020399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
Decades of research has convinced us that phytochemical compounds contained within the plant products are the real deal, and they provide benefits such as health maintenance an d cure to illnesses. One of the deadliest noncommunicable diseases today is lung cancer, hence its disease management still deserves attention. Wnt/β-catenin pathway activation conferring cancer stem cell (CSC) activities to non-small cell lung carcinomas (NSCLCs) may explain why the disease is still difficult to cure. In the present study, we assessed several representatives of phytochemical categories consisting of alkaloids, chalcones and isothiocyanates for their inhibitory activity to nuclear localization of β-catenin—an important event for Wnt/β-catenin pathway activation, in lung cancer cell lines. Real-time cell analyzer confirmed that evodiamine (EVO), chelidonine (CHE), isoliquiritigenin (ISO), licochalcone-A (LICO), benzyl isothiocyanate (BI) and phenethylisothiocyanate (PI) exhibited anti-proliferative activities and cytotoxicities to adenocarcinoma cell line SK-LU-1 and human lung CSC primary cell line (HLCSC). Immunofluorescence assay identified that CHE, ISO, LICO, BI and PI were capable of reducing the number of cells harboring β-catenin within the nuclei of these cells. We extended the characterizations of BI and PI in Wnt-dependent squamous cell carcinoma cell line NCI-H1703 on several CSC functions and found that BI was better at inhibiting soft agar colony formation as an output of self-renewal ability, whereas PI was more effective in inhibiting the growth of multicellular tumor spheroid model mimicking micrometastases. Both however were not able to inhibit migration and invasion of NCI-H1703. In conclusion, BI could potentially be used as a safer alternative to target undifferentiated CSCs as adjuvant therapy, whereas PI could be used as chemotherapy to remove bulk tumor.
Collapse
|
21
|
Carreira B, Acúrcio RC, Matos AI, Peres C, Pozzi S, Vaskovich‐Koubi D, Kleiner R, Bento M, Satchi‐Fainaro R, Florindo HF. Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ana I. Matos
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Mariana Bento
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| |
Collapse
|
22
|
Turan T, Kongpachith S, Halliwill K, Roelands J, Hendrickx W, Marincola FM, Hudson TJ, Jacob HJ, Bedognetti D, Samayoa J, Ceccarelli M. A balance score between immune stimulatory and suppressive microenvironments identifies mediators of tumour immunity and predicts pan-cancer survival. Br J Cancer 2020; 124:760-769. [PMID: 33139798 PMCID: PMC7884411 DOI: 10.1038/s41416-020-01145-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The balance between immune-stimulatory and immune-suppressive mechanisms in the tumour microenvironment is associated with tumour rejection and can predict the efficacy of immune checkpoint-inhibition therapies. METHODS We consider the observed differences between the transcriptional programmes associated with cancer types where the levels of immune infiltration predict a favourable prognosis versus those in which the immune infiltration predicts an unfavourable prognosis and defined a score named Mediators of Immune Response Against Cancer in soLid microEnvironments (MIRACLE). MIRACLE deconvolves T cell infiltration, from inhibitory mechanisms, such as TGFβ, EMT and PI3Kγ signatures. RESULTS Our score outperforms current state-of-the-art immune signatures as a predictive marker of survival in TCGA (n = 9305, HR: 0.043, p value: 6.7 × 10-36). In a validation cohort (n = 7623), MIRACLE predicts better survival compared to other immune metrics (HR: 0.1985, p value: 2.73 × 10-38). MIRACLE also predicts response to checkpoint-inhibitor therapies (n = 333). The tumour-intrinsic factors inversely associated with the reported score such as EGFR, PRKAR1A and MAP3K1 are frequently associated with immune-suppressive phenotypes. CONCLUSIONS The association of cancer outcome with the level of infiltrating immune cells is mediated by the balance of activatory and suppressive factors. MIRACLE accounts for this balance and predicts favourable cancer outcomes.
Collapse
Affiliation(s)
- Tolga Turan
- Computational Immunology and Oncology (CIAO), AbbVie, Redwood City, CA, USA
| | - Sarah Kongpachith
- Computational Immunology and Oncology (CIAO), AbbVie, Redwood City, CA, USA
| | - Kyle Halliwill
- Computational Immunology and Oncology (CIAO), AbbVie, Redwood City, CA, USA
| | - Jessica Roelands
- Cancer Research Department, Sidra Medicine, Doha, Qatar.,Department of Surgery, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | | | - Thomas J Hudson
- Computational Immunology and Oncology (CIAO), AbbVie, Redwood City, CA, USA
| | - Howard J Jacob
- Genomics Research Center (GRC), AbbVie, Lake County, IL, USA
| | - Davide Bedognetti
- Cancer Research Department, Sidra Medicine, Doha, Qatar. .,Dipartimento di Medicina Interna e Specialità Mediche, Università degli Studi di Genova, Genova, Italy.
| | - Josue Samayoa
- Computational Immunology and Oncology (CIAO), AbbVie, Redwood City, CA, USA.
| | - Michele Ceccarelli
- Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy. .,Istituto di Ricerche Genetiche "G. Salvatore", Biogem s.c.ar.l, 83031, Ariano Irpino, Italy.
| |
Collapse
|
23
|
Kuriyama K, Yokobori T, Sohda M, Nakazawa N, Yajima T, Naruse I, Kuwano H, Shirabe K, Kaira K, Saeki H. Plasma plastin-3: A tumor marker in patients with non-small-cell lung cancer treated with nivolumab. Oncol Lett 2020; 21:11. [PMID: 33240417 DOI: 10.3892/ol.2020.12272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022] Open
Abstract
Plastin-3 (PLS3) is a circulating tumor cell marker associated with aggressive cancer phenotypes. The present study aimed to investigate the usability of plasma PLS3 concentration in assessing the diagnosis, prognosis and sensitivity to treatment in patients with non-small-cell lung cancer (NSCLC) treated with nivolumab. A total of 33 patients with recurrent or advanced NSCLC were treated with nivolumab, and 10 healthy volunteers were retrospectively enrolled. Plasma concentrations of PLS3 were determined by ELISA. Plasma PLS3 concentration in patients with NSCLC was significantly higher compared with that in healthy volunteers (median 7.64 ng/ml vs. 3.13 ng/ml, P<0.001). Univariate analysis indicated that PLS3 ≤5.43 ng/ml was a predictor of partial response. Patients with PLS3 >8.55 ng/ml exhibited a poorer prognosis compared with those in the PLS3 ≤8.55 ng/ml group. A high plasma PLS3 concentration was a predictor of poor overall survival. In conclusion, plasma PLS3 concentration was identified as a marker for the diagnosis, treatment sensitivity and prognosis in patients with NSCLC treated with nivolumab. Plasma PLS3 may be a clinically useful tumor marker in patients with NSCLC; future prospective studies may confirm these results and explore its use in other cancers.
Collapse
Affiliation(s)
- Kengo Kuriyama
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Nobuhiro Nakazawa
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Toshiki Yajima
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Innovative Cancer Immunotherapy, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Ichiro Naruse
- Division of Respiratory Medicine, Hidaka Hospital, Takasaki, Gunma 370-0001, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kyoichi Kaira
- Department of Respiration Medicine, Saitama Medical University, International Medical Center, Hidaka, Saitama 350-1298, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
24
|
Ruiz-de-Angulo A, Bilbao-Asensio M, Cronin J, Evans SJ, Clift MJ, Llop J, Feiner IV, Beadman R, Bascarán KZ, Mareque-Rivas JC. Chemically Programmed Vaccines: Iron Catalysis in Nanoparticles Enhances Combination Immunotherapy and Immunotherapy-Promoted Tumor Ferroptosis. iScience 2020; 23:101499. [PMID: 32919370 PMCID: PMC7490994 DOI: 10.1016/j.isci.2020.101499] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy has yielded impressive results, but only for a minority of patients with cancer. Therefore, new approaches that potentiate immunotherapy are a pressing medical need. Ferroptosis is a newly described type of programmed cell death driven by iron-dependent phospholipid peroxidation via Fenton chemistry. Here, we developed iron oxide-loaded nanovaccines (IONVs), which, chemically programmed to integrate iron catalysis, drug delivery, and tracking exploiting the characteristics of the tumor microenvironment (TME), improves immunotherapy and activation of ferroptosis. The IONVs trigger danger signals and use molecular disassembly and reversible covalent bonds for targeted antigen delivery and improved immunostimulatory capacity and catalytic iron for targeting tumor cell ferroptosis. IONV- and antibody-mediated TME modulation interfaced with imaging was important toward achieving complete eradication of aggressive and established tumors, eliciting long-lived protective antitumor immunity with no toxicities. This work establishes the feasibility of using nanoparticle iron catalytic activity as a versatile and effective feature for enhancing immunotherapy.
Collapse
Affiliation(s)
- Ane Ruiz-de-Angulo
- Chemical Immunology Laboratory, CIC BioGUNE, Building 801A, Derio 48160, Spain
| | - Marc Bilbao-Asensio
- Department of Chemistry and Centre for NanoHealth, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - James Cronin
- Swansea University Medical School, Institute of Life Science, Singleton Park, Swansea SA2 8PP, UK
| | - Stephen J. Evans
- Swansea University Medical School, Institute of Life Science, Singleton Park, Swansea SA2 8PP, UK
| | - Martin J.D. Clift
- Swansea University Medical School, Institute of Life Science, Singleton Park, Swansea SA2 8PP, UK
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Laboratory, CIC BiomaGUNE, Paseo Miramón 182, San Sebastián 20014, Spain
| | - Irene V.J. Feiner
- Radiochemistry and Nuclear Imaging Laboratory, CIC BiomaGUNE, Paseo Miramón 182, San Sebastián 20014, Spain
| | - Rhiannon Beadman
- Swansea University Medical School, Institute of Life Science, Singleton Park, Swansea SA2 8PP, UK
| | - Kepa Zamacola Bascarán
- Radiochemistry and Nuclear Imaging Laboratory, CIC BiomaGUNE, Paseo Miramón 182, San Sebastián 20014, Spain
| | - Juan C. Mareque-Rivas
- Department of Chemistry and Centre for NanoHealth, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
25
|
Zippel D, Yalon T, Nevo Y, Markel G, Asher N, Schachter J, Goitein D, Segal TA, Nissan A, Hazzan D. The non-responding adrenal metastasis in melanoma: The case for minimally invasive adrenalectomy in the age of modern therapies. Am J Surg 2020; 220:349-353. [DOI: 10.1016/j.amjsurg.2019.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
|
26
|
Kim H, Ha SY, Kim J, Kang M, Lee J. Severe cytomegalovirus gastritis after pembrolizumab in a patient with melanoma. Curr Oncol 2020; 27:e436-e439. [PMID: 32905211 PMCID: PMC7467798 DOI: 10.3747/co.27.6163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has emerged as a standard of cancer treatment, with an increasing number of indications. Recently, opportunistic infections have been reported in several cases in which immunotherapy has led to an increased susceptibility to infection. The present case is the first report of cytomegalovirus (cmv) gastritis occurring in a patient with melanoma during immunotherapy without immune-related adverse events (iraes) and without the use of immunosuppressant agents. A 43-year-old woman presented with stage iii malignant melanoma. She underwent wide excision of skin, with lymph node dissection, and she started immunotherapy with a 3-week cycle of pembrolizumab. The patient demonstrated stable disease response, and no iraes were observed during her initial treatment courses. However, after the 9th treatment cycle, she began to experience epigastric pain that worsened significantly, requiring a visit to the emergency centre. Imaging by computed tomography (ct) and integrated positron-emission tomography/ct revealed severe diffuse gastroduodenitis with acute pancreatitis. Esophagogastroduodenoscopy showed diffuse oozing, hemorrhagic, edematous, and exfoliative mucosa involving the entire gastric wall, defined as acute hemorrhagic gastritis. Biopsies of the gastric wall revealed cmv infection. Those findings were consistent with a diagnosis of cmv gastritis, and the patient received antiviral therapy with ganciclovir. After treatment, she recovered enough to resume immunotherapy. This case report presents a rare occurrence of cmv gastritis related to immunotherapy. As more patients are treated with immunotherapy, incidences of cmv infections are expected to increase; a high index of clinical suspicion is therefore needed in symptomatic patients.
Collapse
Affiliation(s)
- H Kim
- Division of Hematology-Oncology, Department of Medicine
| | - S Y Ha
- Department of Pathology and Translational Genomics
| | - J Kim
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, R.O.K
| | - M Kang
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, R.O.K
| | - J Lee
- Division of Hematology-Oncology, Department of Medicine
| |
Collapse
|
27
|
Ruiz-Patiño A, Barrón F, Cardona AF, Corrales L, Mas L, Martín C, Zatarain-Barrón ZL, Recondo G, Ricaurte L, Rojas L, Archila P, Rodríguez J, Sotelo C, Viola L, Vargas C, Carranza H, Otero J, Pino LE, Rolfo C, Rosell R, Arrieta O. Antibiotics impair immune checkpoint inhibitor effectiveness in Hispanic patients with non-small cell lung cancer (AB-CLICaP). Thorac Cancer 2020; 11:2552-2560. [PMID: 32705787 PMCID: PMC7471049 DOI: 10.1111/1759-7714.13573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background The intestinal microbiota is an important factor in modulating immune‐mediated tumor cell destruction. Alterations in the microbiome composition have been linked to reduced efficacy of immune checkpoint inhibitor (ICI) therapies. Therefore, antibiotic treatment (ATB), which modifies the diversity of the gut bacteria populations, could lead to a reduced efficacy of ICI treatments. Methods This was a retrospective cohort study. Patients with advanced non‐small cell lung cancer (NSCLC) treated with anti‐programmed cell death ligand‐1 (PD‐L1) alone, or in combination in three different countries in Latin America were included. After identification, patients were placed into three groups: Non‐ATB exposed (no‐ATB), exposed within 30 days of the first dose of ICI (pre‐ICI ATB) and patients receiving ATB concomitantly with ICI (ICI‐ATB). Progression‐free survival (PFS), overall survival (OS) and response rates to treatment with ICI were assessed. Results A total of 140 patients were included, of which 32 patients (23%) received ATB treatment. The most common ATB types were fluoroquinolones and B‐lactams. No differences in survival according to antibiotic type were identified. Median OS in patients not exposed to ATB was 40.6 months (95% CI: 32–67.7), compared with 20.3 months (95% CI: 12.1‐non‐reached [NR]) for patients with pre‐ICI ATB treatment and 24.7 months (95% CI: 13‐NR) for patients treated with ATB concomitantly with ICI. There were no significant differences in terms of PFS, or response rates across all treatment groups. Conclusions Antibiotic treatment was associated with reduced OS in Hispanic patients with NSCLC treated with ICIs.
Collapse
Affiliation(s)
- Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia
| | - Feliciano Barrón
- Thoracic Oncology Unit, Instituto Nacional de Cancerología, México City, Mexico
| | - Andrés F Cardona
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia.,Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
| | - Luis Corrales
- Medical Oncology Department, Hospital San Juan de Dios, San José, Costa Rica.,Thoracic Oncology Department, Centro de Investigación y Manejo del Cáncer - CIMCA, San José, Costa Rica
| | - Luis Mas
- Oncology Department, Instituto Nacional de Enfermedades Neoplásicas - IneN, Lima, Peru
| | - Claudio Martín
- Medical Oncology Department, Thoracic Oncology Section, Instituto Fleming, Buenos Aires, Argentina
| | | | - Gonzalo Recondo
- Medical Oncology Department, Center for Medical Education and Clinical Research (CEMIC), Buenos Aires, Argentina
| | - Luisa Ricaurte
- Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia
| | - Leonardo Rojas
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia.,Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Clinical Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | - Pilar Archila
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
| | - July Rodríguez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
| | - Lucia Viola
- Thoracic Oncology Unit, Fundación Neumológica Colombiana- FNC, Bogotá, Colombia
| | - Carlos Vargas
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia.,Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
| | - Hernán Carranza
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia.,Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
| | - Jorge Otero
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia
| | - Luis E Pino
- Oncology Department, Institute of Oncology - ICAL, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Christian Rolfo
- Thoracic Oncology Unit, Marlene and Stewart Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Rafael Rosell
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain.,Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología, México City, Mexico
| | | |
Collapse
|
28
|
Epigenetic Mechanisms of Resistance to Immune Checkpoint Inhibitors. Biomolecules 2020; 10:biom10071061. [PMID: 32708698 PMCID: PMC7407667 DOI: 10.3390/biom10071061] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated to be highly efficient in treating solid tumors; however, many patients have limited benefits in terms of response and survival. This rapidly led to the investigation of combination therapies to enhance response rates. Moreover, predictive biomarkers were assessed to better select patients. Although PD-L1 expression remains the only validated marker in clinics, molecular profiling has brought valuable information, showing that the tumor mutation load and microsatellite instability (MSI) status were associated to higher response rates in nearly all cancer types. Moreover, in lung cancer, EGFR and MET mutations, oncogene fusions or STK11 inactivating mutations were associated with low response rates. Cancer progression towards invasive phenotypes that impede immune surveillance relies on complex regulatory networks and cell interactions within the tumor microenvironment. Epigenetic modifications, such as the alteration of histone patterns, chromatin structure, DNA methylation status at specific promoters and changes in microRNA levels, may alter the cell phenotype and reshape the tumor microenvironment, allowing cells to grow and escape from immune surveillance. The objective of this review is to make an update on the identified epigenetic changes that target immune surveillance and, ultimately, ICI responses, such as histone marks, DNA methylation and miR signatures. Translational studies or clinical trials, when available, and potential epigenetic biomarkers will be discussed as perspectives in the context of combination treatment strategies to enhance ICI responses in patients with solid tumors.
Collapse
|
29
|
Togo M, Yokobori T, Shimizu K, Handa T, Kaira K, Sano T, Tsukagoshi M, Higuchi T, Yokoo S, Shirabe K, Oyama T. Diagnostic value of 18F-FDG-PET to predict the tumour immune status defined by tumoural PD-L1 and CD8 +tumour-infiltrating lymphocytes in oral squamous cell carcinoma. Br J Cancer 2020; 122:1686-1694. [PMID: 32238919 PMCID: PMC7250916 DOI: 10.1038/s41416-020-0820-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/24/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lately, immune checkpoint proteins, such as programmed death 1 (PD-1) and its ligand-1 (PD-L1), have garnered attention as a new target in oral squamous cell carcinoma (OSCC). Reportedly, fluoro-D-glucose (FDG)-uptake alteration by anti-PD-1 antibody treatment depicts the response in patients with lung cancer. This study aims to elucidate the correlations between tumour immune status, clinicopathological factors, 18F-FDG-uptake and cold tumour phenotypes as low PD-L1 expression/low CD8+tumour-infiltrating lymphocytes (TILs) in OSCC. METHODS We performed immunohistochemical analysis of PD-L1, hypoxia-inducible factor 1 A (HIF-1A), glucose transporter type 1 (GLUT1), CD8, E-cadherin and Ki-67 on 59 operable OSCC samples. We assessed the correlations between these factors and preoperative 18F-FDG-uptake, clinicopathological characteristics and prognosis. RESULTS Low expression of PD-L1 in OSCC correlated with cancer aggressiveness, poor prognosis, high 18F-FDG-uptake with HIF-1A/GLUT1 and low E-cadherin expression and low CD8. Cold tumour phenotypes as low PD-L1 tumour cells and low stromal CD8 correlated with the poor prognosis, high 18F-FDG-uptake and E-cadherin suppression. Furthermore, the high level of preoperative 18F-FDG-uptake in OSCC was an independent predictor of the cold tumour immune status. CONCLUSIONS 18F-FDG-uptake is an independent predictor of cold tumour in OSCC. 18F-FDG-PET imaging could be a promising diagnostic tool to estimate tumour immune status.
Collapse
Affiliation(s)
- Maria Togo
- 0000 0000 9269 4097grid.256642.1Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| | - Takehiko Yokobori
- 0000 0000 9269 4097grid.256642.1Department of Innovative Cancer Immunotherapy, Gunma University, Maebashi, Gunma Japan
| | - Kimihiro Shimizu
- 0000 0000 9269 4097grid.256642.1Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma Japan
| | - Tadashi Handa
- 0000 0000 9269 4097grid.256642.1Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| | - Kyoichi Kaira
- 0000 0001 2216 2631grid.410802.fDepartment of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama Medical University, Hidaka, Saitama Japan
| | - Takaaki Sano
- 0000 0000 9269 4097grid.256642.1Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| | - Mariko Tsukagoshi
- 0000 0000 9269 4097grid.256642.1Department of Innovative Cancer Immunotherapy, Gunma University, Maebashi, Gunma Japan
| | - Tetsuya Higuchi
- 0000 0000 9269 4097grid.256642.1Department of Diagnostic Radiology and Nuclear Medicine, Gunma University, Maebashi, Gunma Japan
| | - Satoshi Yokoo
- 0000 0000 9269 4097grid.256642.1Department of Oral and Maxillofacial Surgery and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| | - Ken Shirabe
- 0000 0000 9269 4097grid.256642.1Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma Japan
| | - Tetsunari Oyama
- 0000 0000 9269 4097grid.256642.1Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| |
Collapse
|
30
|
Kuriyama K, Higuchi T, Yokobori T, Saito H, Yoshida T, Hara K, Suzuki S, Sakai M, Sohda M, Higuchi T, Tsushima Y, Asao T, Kaira K, Kuwano H, Shirabe K, Saeki H. Uptake of positron emission tomography tracers reflects the tumor immune status in esophageal squamous cell carcinoma. Cancer Sci 2020; 111:1969-1978. [PMID: 32302443 PMCID: PMC7293073 DOI: 10.1111/cas.14421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
The relationship between the local immune status and cancer metabolism regarding 18F‐FDG and 18F‐FAMT uptake in esophageal squamous cell carcinoma (ESCC) remains unknown. The present study examined the correlations between tumor immune status, clinicopathological factors, and positron emission tomography (PET) tracer uptake in ESCC. Forty‐one ESCC patients who underwent 18F‐FDG PET and 18F‐FAMT PET before surgery were enrolled in the study. Immunohistochemistry was conducted for programmed death 1 (PD‐1), CD8, Ki‐67, CD34, GLUT1 (18F‐FDG transporter) and LAT1 (18F‐FAMT transporter). ESCC specimens with high tumoral PD‐L1 and high CD8‐positive lymphocytes were considered to have “hot tumor immune status.” High PD‐L1 expression (53.7%) was significantly associated with tumor/lymphatic/venous invasion (P = 0.028, 0.032 and 0.018), stage (P = 0.041), CD8‐positive lymphocytes (P < 0.001), GLUT1 (P < 0.001), LAT1 expression (P = 0.006), Ki‐67 labelling index (P = 0.009) and CD34‐positive vessel counts (P < 0.001). SUVmax of 18F‐FDG was significantly higher in high PD‐L1 cases than in low PD‐L1 cases (P = 0.009). SUVmax of 18F‐FAMT was significantly higher in high PD‐L1 (P < 0.001), high CD8 (P = 0.012) and hot tumor groups (P = 0.028) than in other groups. High SUVmax of 18F‐FAMT (≥4.15) was identified as the only predictor of hot tumor immune status. High PET tracer uptake was significantly associated with cancer aggressiveness and hot tumor immune status in ESCC. PET imaging may be an effective tool to predict tumor immune status in ESCC with respect to immune checkpoint inhibitor sensitivity.
Collapse
Affiliation(s)
- Kengo Kuriyama
- Division of Gastroenterological Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tamami Higuchi
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| | - Hideyuki Saito
- Division of Gastroenterological Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomonori Yoshida
- Division of Gastroenterological Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Keigo Hara
- Division of Gastroenterological Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shigemasa Suzuki
- Division of Gastroenterological Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Makoto Sakai
- Division of Gastroenterological Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Makoto Sohda
- Division of Gastroenterological Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takayuki Asao
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kyoichi Kaira
- Department of Respiration Medicine, Saitama Medical University, International Medical Center, Hidaka, Japan
| | - Hiroyuki Kuwano
- Division of Gastroenterological Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroshi Saeki
- Division of Gastroenterological Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
31
|
Liu X, Wang Y, Zhang R, Jin T, Qu L, Jin Q, Zheng J, Sun J, Wu Z, Wang L, Liu T, Zhang Y, Meng X, Wang Y, Wei N. HDAC10 Is Positively Associated With PD-L1 Expression and Poor Prognosis in Patients With NSCLC. Front Oncol 2020; 10:485. [PMID: 32373519 PMCID: PMC7186423 DOI: 10.3389/fonc.2020.00485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/18/2020] [Indexed: 01/17/2023] Open
Abstract
Currently, non-small cell lung carcinoma (NSCLC) is a major worldwide health problem. Meanwhile accumulating evidence indicates that histone deacetylase (HDAC) activation could induce PD-L1 expression in various types of cancer, especially in myeloma and B-cell lymphomas. Therefore, we hypothesized that high-level expression of HDAC10 is associated with PD-L1 induction and poor prognosis in patients with NSCLC. In total 180 NSCLC patients receiving complete pulmonary resection and systematic lymph node dissection were enrolled from April 2004 to August 2009. The patients with integrated clinicopathological records were followed up. The expression level of HDAC10 and PD-L1 in tissue samples was determined by immunohistochemistry. We observed that HDAC10 expression in lung cancer tissue is significantly higher than that in corresponding para-cancer tissue. Moreover, HDAC10 expression positively correlated with the expression level of PD-L1 (r = 0.213, P < 0.05) in NSCLC patients. Subgroup, multivariate analysis showed that the expression level of HDAC10 can be an independent prognostic factor and high-level expression of HDAC10 indicated poor overall survival for pulmonary carcinoma (r = 0.540, P < 0.001). Our findings suggest that the expression level of HDAC10 is positively associated with PD-L1 expression and may predict the outcome of patients with NSCLC.
Collapse
Affiliation(s)
- Xiaomei Liu
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yuxi Wang
- Department of Medicine, Jinzhou Medical University, Jinzhou, China
| | - Rong Zhang
- Pharmacy Department, Dalian Hospital of Traditional Chinese Medicine, Daliang, China
| | - Ting Jin
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liangliang Qu
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qianwen Jin
- Department of Medicine, Jinzhou Medical University, Jinzhou, China
| | - Jiasu Zheng
- Department of Medicine, Jinzhou Medical University, Jinzhou, China
| | - Jiaqi Sun
- Department of Medicine, Jinzhou Medical University, Jinzhou, China
| | - Ziqing Wu
- Department of Medicine, Jinzhou Medical University, Jinzhou, China
| | - Linxi Wang
- Department of Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tianxu Liu
- Department of Medicine, Jinzhou Medical University, Jinzhou, China
| | - Yinxu Zhang
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiao Meng
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ying Wang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ning Wei
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Lou Y, Marin-Acevedo JA, Vishnu P, Manochakian R, Dholaria B, Soyano A, Luo Y, Zhang Y, Knutson KL. Hypereosinophilia in a patient with metastatic non-small-cell lung cancer treated with antiprogrammed cell death 1 (anti-PD-1) therapy. Immunotherapy 2020; 11:577-584. [PMID: 30943864 DOI: 10.2217/imt-2018-0128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Immune checkpoint inhibitors have changed the treatment paradigm for patients with cancer. Though a majority of patients tolerate treatment, some develop hematologic toxicities, including eosinophilia. Eosinophilia has been associated with better responses in some patients with melanoma, but this has not been investigated in non-small-cell lung cancer. We present a case of a woman with metastatic lung adenocarcinoma who developed asymptomatic hypereosinophilia after initiation of nivolumab. Her eosinophil count temporarily decreased after transiently stopping the medication, but increased again after re-initiation. She had a favorable tumor response to therapy. This exemplifies the potential role of eosinophilia as a peripheral, readily available biomarker of favorable response to immunotherapy in patients with lung cancer. Awareness of this manifestation is important.
Collapse
Affiliation(s)
- Yanyan Lou
- Division of Hematology & Medical Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Prakash Vishnu
- Division of Hematology & Medical Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rami Manochakian
- Division of Hematology & Medical Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bhagirathbhai Dholaria
- Division of Hematology & Medical Oncology, Mayo Clinic, Jacksonville, FL 32224, USA.,Division of Hematology & Oncology, Vanderbilt University Medical Center, Nashville, TN 32224 , USA
| | - Aixa Soyano
- Division of Hematology & Medical Oncology, Mayo Clinic, Jacksonville, FL 32224, USA.,Division of Hematology & Oncology, Moffitt Cancer Center, Tampa, FL 32224, USA
| | - Yan Luo
- Department of Immunology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yan Zhang
- Department of Immunology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
33
|
Abstract
Immunotherapy has changed the treatment landscape for many cancers; however, not all patients treated have a favorable response and others can develop immune-related adverse events. A method to predict the treatment response to immunotherapeutic agents could allow for improved selection of patients more likely to benefit from treatment while sparing those who would suffer serious complications. While this has been an active area of research and has resulted in significant insights, current proposed mechanisms do not fully explain responses to therapy. One problem is that our understanding relies mostly on tumor biopsy samples that do not account for the complex spatiotemporal heterogeneity of cancers and their microenvironment. Radiolabeled probes targeting immune biomarkers and imaged using positron emission tomography with computed tomography could provide in vivo, real-time and non-invasive imaging of these biomarkers. Here we review the current field of functional nuclear imaging agents in immuno-oncology including antibodies and small molecule tracers to image PD-1, PD-L1, CTLA-4, T-cell markers and other targets being studied for potential therapies. Treatment response of cancers to immunotherapy is difficult to predict. Positron emission tomography (PET) imaging may help predict treatment response. PET to evaluate immunotherapeutic targets or markers of immune activation shows promise. Antibodies and small molecules used for PET have different imaging characteristics. More studies are needed to better interpret and validate PET scans for this purpose.
Collapse
|
34
|
Gerber HP, Sibener LV, Lee LJ, Gee MH. Identification of Antigenic Targets. Trends Cancer 2020; 6:299-318. [PMID: 32209445 DOI: 10.1016/j.trecan.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022]
Abstract
The ideal cancer target antigen (Ag) is expressed at high copy numbers on neoplastic cells, absent on normal tissues, and contributes to the survival of cancer cells. Despite significant investments in the identification of cell surface Ags, there is a paucity of targets that meet such ideal cancer target criteria. Recent clinical trials in patients with cancer treated with immune checkpoint inhibitors (ICIs) indicate that cluster of differentiation (CD)8+ T cells, by means of their T cell receptors (TCRs) recognizing intracellular targets presented as peptides in the context of human leukocyte antigen (peptide-human leukocyte antigen complex; pHLA) molecules on tumor cells, can mediate deep and long-lasting antitumor responses in patients with solid tumors. Therefore, pHLA-target Ags may represent the long sought-after, ideal targets for solid tumor targeting by high-potency oncology compounds.
Collapse
Affiliation(s)
| | - Leah V Sibener
- 3T Biosciences, 1455 Adams Drive, Menlo Park, CA 94025, USA
| | - Luke J Lee
- 3T Biosciences, 1455 Adams Drive, Menlo Park, CA 94025, USA
| | - Marvin H Gee
- 3T Biosciences, 1455 Adams Drive, Menlo Park, CA 94025, USA
| |
Collapse
|
35
|
Hoffmann F, Niebel D, Aymans P, Ferring-Schmitt S, Dietrich D, Landsberg J. H3K27me3 and EZH2 expression in melanoma: relevance for melanoma progression and response to immune checkpoint blockade. Clin Epigenetics 2020; 12:24. [PMID: 32041674 PMCID: PMC7011516 DOI: 10.1186/s13148-020-0818-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/27/2020] [Indexed: 01/02/2023] Open
Abstract
Background Upregulation of the histone methyltransferase enzyme EZH2 and its histone modification H3K27me3 has been linked to melanoma progression, metastasis, and resistance to immune checkpoint blockade (ICB). In clinical trials, EZH2 inhibitors are currently tested to overcome resistance to ICB. The aim of this study is to evaluate expression patterns and the predictive value of H3K27me3 and EZH2 in metastatic melanoma samples prior to ICB. As H3K27me3 expression has been associated with a dedifferentiated, invasive melanoma phenotype, we also investigated the prognostic value of H3K27me3 expression in primary melanomas. Results H3K27me3 and EZH2 expression were evaluated in a cohort of 44 metastatic melanoma samples before ICB using immunohistochemistry (IHC). 29/44 (66%) of melanomas showed H3K27me3 expression, and 6/44 (14%) showed EZH2 expression. No predictive value for therapeutic response to anti-PD-1 therapy could be found for H3K27me3 or EZH2 expression on melanoma cells. To investigate the prognostic significance of H3K27me3, we analyzed H3K27me3 expression in a representative cohort of 136 primary melanomas with known sentinel lymph node status. H3K27me3 expression is associated with increased tumor thickness and nodal involvement. Melanoma metastases showed a higher expression of H3K27me3 in comparison to primary melanomas. In human melanoma cell lines, TNFα and INFγ could not induce H3K27me3 expression. Conclusion Our study shows that H3K27me3 expression is more frequent than EZH2 and is associated with a more invasive and metastatic melanoma cell phenotype. We suggest that H3K27me3 expression by IHC might be a suitable method to evaluate the activity of EZH2 inhibitors in clinical trials.
Collapse
Affiliation(s)
- Friederike Hoffmann
- Department of Dermatology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany. .,Department of Dermato-Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Dennis Niebel
- Department of Dermatology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.,Department of Dermato-Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Pia Aymans
- Department of Dermatology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sandra Ferring-Schmitt
- Department of Dermatology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Jennifer Landsberg
- Department of Dermatology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.,Department of Dermato-Oncology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
36
|
Basak SK, Bera A, Yoon AJ, Morselli M, Jeong C, Tosevska A, Dong TS, Eklund M, Russ E, Nasser H, Lagishetty V, Guo R, Sajed D, Mudgal S, Mehta P, Avila L, Srivastava M, Faull K, Jacobs J, Pellegrini M, Shin DS, Srivatsan ES, Wang MB. A randomized, phase 1, placebo-controlled trial of APG-157 in oral cancer demonstrates systemic absorption and an inhibitory effect on cytokines and tumor-associated microbes. Cancer 2020; 126:1668-1682. [PMID: 32022261 DOI: 10.1002/cncr.32644] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although curcumin's effect on head and neck cancer has been studied in vitro and in vivo, to the authors' knowledge its efficacy is limited by poor systemic absorption from oral administration. APG-157 is a botanical drug containing multiple polyphenols, including curcumin, developed under the US Food and Drug Administration's Botanical Drug Development, that delivers the active components to oromucosal tissues near the tumor target. METHODS A double-blind, randomized, placebo-controlled, phase 1 clinical trial was conducted with APG-157 in 13 normal subjects and 12 patients with oral cancer. Two doses, 100 mg or 200 mg, were delivered transorally every hour for 3 hours. Blood and saliva were collected before and 1 hour, 2 hours, 3 hours, and 24 hours after treatment. Electrocardiograms and blood tests did not demonstrate any toxicity. RESULTS Treatment with APG-157 resulted in circulating concentrations of curcumin and analogs peaking at 3 hours with reduced IL-1β, IL-6, and IL-8 concentrations in the salivary supernatant fluid of patients with cancer. Salivary microbial flora analysis showed a reduction in Bacteroidetes species in cancer subjects. RNA and immunofluorescence analyses of tumor tissues of a subject demonstrated increased expression of genes associated with differentiation and T-cell recruitment to the tumor microenvironment. CONCLUSIONS The results of the current study suggested that APG-157 could serve as a therapeutic drug in combination with immunotherapy. LAY SUMMARY Curcumin has been shown to suppress tumor cells because of its antioxidant and anti-inflammatory properties. However, its effectiveness has been limited by poor absorption when delivered orally. Subjects with oral cancer were given oral APG-157, a botanical drug containing multiple polyphenols, including curcumin. Curcumin was found in the blood and in tumor tissues. Inflammatory markers and Bacteroides species were found to be decreased in the saliva, and immune T cells were increased in the tumor tissue. APG-157 is absorbed well, reduces inflammation, and attracts T cells to the tumor, suggesting its potential use in combination with immunotherapy drugs.
Collapse
Affiliation(s)
- Saroj K Basak
- Department of Surgery, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Alakesh Bera
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Alexander J Yoon
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - Chan Jeong
- Department of Surgery, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Anela Tosevska
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California
| | - Tien S Dong
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Michael Eklund
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Eric Russ
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Hassan Nasser
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Venu Lagishetty
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Rong Guo
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Dipti Sajed
- Department of Pathology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | | | | | - Luis Avila
- Aveta Biomics Inc, Bedford, Massachusetts
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Kym Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Jonathan Jacobs
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California.,Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| | - Daniel Sanghoon Shin
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California.,Division of Hematology-Oncology, Department of Medicine, VA Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Eri S Srivatsan
- Department of Surgery, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California.,Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| | - Marilene B Wang
- Department of Surgery, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.,Department of Head and Neck Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
37
|
Genetic and Epigenetic Biomarkers of Immune Checkpoint Blockade Response. J Clin Med 2020; 9:jcm9010286. [PMID: 31968651 PMCID: PMC7019273 DOI: 10.3390/jcm9010286] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 02/06/2023] Open
Abstract
Checkpoint inhibitor therapy constitutes a promising cancer treatment strategy that targets the immune checkpoints to re-activate silenced T cell cytotoxicity. In recent pivotal trials, immune checkpoint blockade (ICB) demonstrated durable responses and acceptable toxicity, resulting in the regulatory approval of 8 checkpoint inhibitors to date for 15 cancer indications. However, up to ~85% of patients present with innate or acquired resistance to ICB, limiting its clinical utility. Current response biomarker candidates, including DNA mutation and neoantigen load, immune profiles, as well as programmed death-ligand 1 (PD-L1) expression, are only weak predictors of ICB response. Thus, identification of novel, more predictive biomarkers that could identify patients who would benefit from ICB constitutes one of the most important areas of immunotherapy research. Aberrant DNA methylation (5mC) and hydroxymethylation (5hmC) were discovered in multiple cancers, and dynamic changes of the epigenomic landscape have been identified during T cell differentiation and activation. While their role in cancer immunosuppression remains to be elucidated, recent evidence suggests that 5mC and 5hmC may serve as prognostic and predictive biomarkers of ICB-sensitive cancers. In this review, we describe the role of epigenetic phenomena in tumor immunoediting and other immune evasion related processes, provide a comprehensive update of the current status of ICB-response biomarkers, and highlight promising epigenomic biomarker candidates.
Collapse
|
38
|
Abstract
Recent advances in immunotherapy have revolutionized the treatment of certain cancers. Some patients show a durable response to these immunotherapies, while others show little benefit or develop resistance. Identification of biomarkers to predict responsiveness will be helpful for informing treatment strategies; and would furthermore lead to the identification of molecular pathways dysregulated in nonresponding patients that could be targeted for therapeutic development. Pathways of epigenetic modification, such as histone posttranslational modifications (PTMs), have been shown to be dysregulated in certain cancer and immune cells. Histones are abundant cellular proteins readily assayed with high-throughput technologies, making them attractive targets as biomarkers. We explore promising advancements for using histone PTMs as immunotherapy responsiveness biomarkers in both cancer and immune cells, and provide a methodological workflow for assaying histone PTMs in relevant samples.
Collapse
Affiliation(s)
- Erin M Taylor
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lauren E Davis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
39
|
HLA Class I Antigen Processing Machinery Defects in Cancer Cells-Frequency, Functional Significance, and Clinical Relevance with Special Emphasis on Their Role in T Cell-Based Immunotherapy of Malignant Disease. Methods Mol Biol 2020; 2055:325-350. [PMID: 31502159 DOI: 10.1007/978-1-4939-9773-2_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MHC class I antigen abnormalities have been shown to be one of the major immune escape mechanisms murine and human cancer cells utilize to avoid recognition and destruction by host immune system. This mechanism has clinical relevance, since it is associated with poor prognosis and/or reduced patients' survival in many types of malignant diseases. The recent impressive clinical responses to T cell-based immunotherapies triggered by checkpoint inhibitors have rekindled tumor immunologists and clinical oncologists' interest in the analysis of the human leukocyte antigen (HLA) class I antigen processing machinery (APM) expression and function in malignant cells. Abnormalities in the expression, regulation and/or function of components of this machinery have been associated with the development of resistances to T cell-based immunotherapies. In this review, following the description of the human leukocyte antigen (HLA) class I APM organization and function, the information related to the frequency of defects in HLA class I APM component expression in various types of cancer and the underlying molecular mechanisms is summarized. Then the impact of these defects on clinical response to T cell-based immunotherapies and strategies to revert this immune escape process are discussed.
Collapse
|
40
|
Thompson JC, Hwang WT, Davis C, Deshpande C, Jeffries S, Rajpurohit Y, Krishna V, Smirnov D, Verona R, Lorenzi MV, Langer CJ, Albelda SM. Gene signatures of tumor inflammation and epithelial-to-mesenchymal transition (EMT) predict responses to immune checkpoint blockade in lung cancer with high accuracy. Lung Cancer 2019; 139:1-8. [PMID: 31683225 DOI: 10.1016/j.lungcan.2019.10.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Treatment of non-small cell lung cancer (NSCLC) with immune checkpoint blockade (ICB) has resulted in striking clinical responses, but only in a subset of patients. The goal of this study was to evaluate transcriptional signatures previously reported in the literature in an independent cohort of NSCLC patients receiving ICB. MATERIALS AND METHODS This retrospective study analyzed transcriptional profiles from pre-treatment tumor samples of 52 chemotherapy-refractory advanced NSCLC patients treated with anti-PD1/PD-L1 therapy. Gene signatures based on published reports were created and examined for their association with response to therapy and progression-free and overall survival (PFS, OS). RESULTS Two signatures predicting response and outcomes were identified. One reflected the degree of immune infiltration and upregulation of interferon-gamma-induced genes. A second reflected the EMT status. Compared to those not responding to therapy, patients whose tumors responded to ICB had higher scores in an inflammatory gene signature (6.0 ± 2.9 vs -5.5 ± 3.4, p = 0.014) or a more epithelial phenotype (-1.7 ± 1.0 vs 2.1 ± 1.2, p = 0.016). Both signatures demonstrated a satisfactory predictive accuracy for response: AUC of 0.69 (95% CI: 0.54, 0.84) for the inflammatory and 0.70 (95% CI: 0.55, 0.85) for EMT signatures, respectively. A weighted score combining EMT and inflammatory signatures showed increased predictive value with AUC of 0.92 (95% CI: 0.85, 0.99). Kaplan-Meier curves for patients above and below the median combined score showed a significant separation for PFS and OS (all p < 0.01, log rank test). CONCLUSIONS The EMT/Inflammation signature score may be useful in directing checkpoint inhibitor therapy in lung cancer and suggests that reversal of EMT might augment efficacy of ICB.
Collapse
Affiliation(s)
- Jeffrey C Thompson
- Division of Pulmonary, Allergy and Critical Care Medicine, Thoracic Oncology Group, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, United States; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Christiana Davis
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Charuhas Deshpande
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Seth Jeffries
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Vinod Krishna
- Janssen Research and Development, Spring House, PA, United States
| | - Denis Smirnov
- Janssen Research and Development, Spring House, PA, United States
| | - Raluca Verona
- Janssen Research and Development, Spring House, PA, United States
| | | | - Corey J Langer
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Steven M Albelda
- Division of Pulmonary, Allergy and Critical Care Medicine, Thoracic Oncology Group, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
41
|
Ren Z, Ahn JH, Liu H, Tsai YH, Bhanu NV, Koss B, Allison DF, Ma A, Storey AJ, Wang P, Mackintosh SG, Edmondson RD, Groen RWJ, Martens AC, Garcia BA, Tackett AJ, Jin J, Cai L, Zheng D, Wang GG. PHF19 promotes multiple myeloma tumorigenicity through PRC2 activation and broad H3K27me3 domain formation. Blood 2019; 134:1176-1189. [PMID: 31383640 PMCID: PMC6776795 DOI: 10.1182/blood.2019000578] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/24/2019] [Indexed: 12/31/2022] Open
Abstract
Dysregulation of polycomb repressive complex 2 (PRC2) promotes oncogenesis partly through its enzymatic function for inducing trimethylation of histone H3 lysine 27 (H3K27me3). However, it remains to be determined how PRC2 activity is regulated in normal and diseased settings. We here report a PRC2-associated cofactor, PHD finger protein 19 (PHF19; also known as polycomb-like 3), as a crucial mediator of tumorigenicity in multiple myeloma (MM). Overexpression and/or genomic amplification of PHF19 is found associated with malignant progression of MM and plasma cell leukemia, correlating to worse treatment outcomes. Using various MM models, we demonstrated a critical requirement of PHF19 for tumor growth in vitro and in vivo. Mechanistically, PHF19-mediated oncogenic effect relies on its PRC2-interacting and chromatin-binding functions. Chromatin immunoprecipitation followed by sequencing profiling showed a critical role for PHF19 in maintaining the H3K27me3 landscape. PHF19 depletion led to loss of broad H3K27me3 domains, possibly due to impaired H3K27me3 spreading from cytosine guanine dinucleotide islands, which is reminiscent to the reported effect of an "onco"-histone mutation, H3K27 to methionine (H3K27M). RNA-sequencing-based transcriptome profiling in MM lines also demonstrated a requirement of PHF19 for optimal silencing of PRC2 targets, which include cell cycle inhibitors and interferon-JAK-STAT signaling genes critically involved in tumor suppression. Correlation studies using patient sample data sets further support a clinical relevance of the PHF19-regulated pathways. Lastly, we show that MM cells are generally sensitive to PRC2 inhibitors. Collectively, this study demonstrates that PHF19 promotes MM tumorigenesis through enhancing H3K27me3 deposition and PRC2's gene-regulatory functions, lending support for PRC2 blockade as a means for MM therapeutics.
Collapse
Affiliation(s)
- Zhihong Ren
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Hequn Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | | | - Natarajan V Bhanu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - David F Allison
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Anqi Ma
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Richard W J Groen
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton C Martens
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
- Arkansas Children's Research Institute and UAMS Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jian Jin
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ling Cai
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Department of Neuroscience and
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY; and
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|
42
|
Abstract
It has been known for decades that the immune system can be spontaneously activated against melanoma. The presence of tumor infiltrating lymphocytes in tumor deposits is a positive prognostic factor. Cancer vaccination includes approaches to generate, amplify, or skew antitumor immunity. To accomplish this goal, tested approaches involve administration of tumor antigens, antigen presenting cells or other immune modulators, or direct modulation of the tumor. Because the success of checkpoint blockade can depend in part on an existing antitumor response, cancer vaccination may play an important role in future combination therapies. In this review, we discuss a variety of melanoma vaccine approaches and methods to determine the biological impact of vaccination.
Collapse
|
43
|
Tibbs TN, Lopez LR, Arthur JC. The influence of the microbiota on immune development, chronic inflammation, and cancer in the context of aging. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:324-334. [PMID: 31403049 PMCID: PMC6685047 DOI: 10.15698/mic2019.08.685] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
From birth, the microbiota plays an essential role in human development by educating host immune responses. Proper maturation of the immune system perturbs chronic inflammation and the pathogenesis of disease by preventing inappropriate immune responses. While many have detailed the roles of specific microbial groups in immune development and human disease, it remains to be elucidated how the microbiota influences the immune system during aging. Furthermore, it is not yet understood how age-related changes to the microbiota and immune system influence the development of age-related diseases. In this review, we outline the role of the microbiota in immune system development as well as functional changes that occur to immune cell populations during immunosenescence. In addition, we highlight how commensal microbes influence the pathogenesis of cancer, a prominent disease of aging. The information provided herein suggests that age-related changes to the microbiota and immune system should be considered in disease treatment and prevention strategies.
Collapse
Affiliation(s)
- Taylor N. Tibbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lacey R. Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
44
|
Beck TN, Kudinov AE, Dulaimi E, Boumber Y. Case report: reinitiating pembrolizumab treatment after small bowel perforation. BMC Cancer 2019; 19:379. [PMID: 31018834 PMCID: PMC6482547 DOI: 10.1186/s12885-019-5577-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have emerged as paradigm shifting treatment options for a number of cancers. Six antibodies targeting the immune checkpoint proteins programmed cell death 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1) or cytotoxic T-lymphocyte associated protein 4 (CTLA4) have been approved. In some cases, response rates have been impressive, but not uniformly so and not consistently; similarly, toxicity to this class of therapeutic is often unpredictable and can be life threatening. Predicting treatment response and toxicity are two main obstacles to truly individualize treatment with ICIs. One of the most severe and life-threatening adverse events is colitis induced colonic perforation, estimated to occur in 1.0 to 1.5% of patients treated with ICIs. An important question to address is, under what circumstances is it appropriate to reinitiate ICI treatment post-bowel perforation? CASE PRESENTATION The patient is a 62-year-old woman, who presented with stage IV lung cancer. Immunohistochemical staining indicated that 80% of the patient's tumor cells expressed PD-L1. The patient was started on a three-week cycle of pembrolizumab. Subsequent reducing in tumor burden was observed within ten weeks. Initially, pembrolizumab was tolerated fairly well, with the exception of immunotherapy related hypothyroidism. However, the patient experienced a second, more serious immune-related adverse event (irAE), in the form of enteritis, which led to small bowel perforation and necessitated exploratory laparotomy. The concerning part of the small bowel was resected, and a primary anastomosis was created. Based on the pathological and surgical findings, the patient was diagnosed with pembrolizumab-associated small bowel perforation. The patient recovered well from surgery and, considering the patient's remarkable response to treatment, a collective decision was made to reinitiate pembrolizumab on post-operative day twenty-eight. The patient is continuing her immunotherapy with ongoing partial response and is able to continue her full-time job. CONCLUSIONS This case report highlights the challenges of identifying patients likely to respond to ICIs and those that are likely to experience irAEs and it discusses the impressive work that has been done to start to address these challenges. Lastly, the topic of reinitiating pembrolizumab treatment even after colonic perforation is discussed.
Collapse
Affiliation(s)
- Tim N Beck
- Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA, 19129, USA. .,Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA. .,Department of General Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Alexander E Kudinov
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Essel Dulaimi
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yanis Boumber
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA. .,Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA. .,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
45
|
Pallocca M, Angeli D, Palombo F, Sperati F, Milella M, Goeman F, De Nicola F, Fanciulli M, Nisticò P, Quintarelli C, Ciliberto G. Combinations of immuno-checkpoint inhibitors predictive biomarkers only marginally improve their individual accuracy. J Transl Med 2019; 17:131. [PMID: 31014354 PMCID: PMC6480695 DOI: 10.1186/s12967-019-1865-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/28/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There are no accepted universal biomarkers capable to accurately predict response to immuno-checkpoint inhibitors (ICI). Although recent literature has been flooded with studies on ICI predictive biomarkers, available data show that currently approved companion diagnostics either leave out many possible responders, as in the case of PD-L1 testing for first-line metastatic lung cancer, or apply to a small subset of patients, such as the recently approved treatment for microsatellite instability-high or mismatch repair deficiency tumors. In this study, we conducted a survey of the available data on ICI trials with matched genomic or transcriptomic datasets in order to cross-validate the proposed biomarkers, to assess whether their prediction power was confirmed and, mainly, to investigate if their combination was able to generate a better predictive tool. METHODS We extracted clinical information and sequencing data details from publicly available datasets, along with a list of possible biomarkers obtained from the recent literature. After an operation of data harmonization, we validated the performance of all the biomarkers taken individually. Furthermore, we tested two strategies to combine the best performing biomarkers in order to improve their predictive value. RESULTS When considered individually, some of the biomarkers, such as the ImmunoPhenoScore, and the IFN-γ signature, did not confirm their originally proposed predictive power. The best absolute scoring biomarkers are TIDE, one of the ICB resistance signatures and CTLA4 with a mean AUC > 0.66. Among the combinations tested, generalized linear models showed the best performance with an AUC of 0.78. CONCLUSIONS We confirmed that the available biomarkers, taken individually, fail to provide a satisfactory predictive value. Unfortunately, also combination of some of them only provides marginal improvements. Hence, in order to generate a more robust way to predict ICI efficacy it is necessary to analyze and combine additional biomarkers and interrogate a wider set of clinical data.
Collapse
Affiliation(s)
- Matteo Pallocca
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Francesca Sperati
- UOS Biostatistics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Milella
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Frauke Goeman
- UOSD Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Paola Nisticò
- UOSD Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Concetta Quintarelli
- Department of Paediatric Haematology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | |
Collapse
|
46
|
Integrative genomic analysis of peritoneal malignant mesothelioma: understanding a case with extraordinary chemotherapy response. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003566. [PMID: 30862609 PMCID: PMC6549577 DOI: 10.1101/mcs.a003566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/17/2019] [Indexed: 12/31/2022] Open
Abstract
Peritoneal malignant mesothelioma is a rare disease with a generally poor prognosis and poor response to chemotherapy. To improve survival there is a need for increased molecular understanding of the disease, including chemotherapy sensitivity and resistance. We here present an unusual case concerning a young woman with extensive peritoneal mesothelioma who had a remarkable response to palliative chemotherapy (platinum/pemetrexed). Tumor samples collected at surgery before and after treatment were analyzed on the genomic and transcriptional levels (exome sequencing, RNA-seq, and smallRNA-seq). Integrative analysis of single nucleotide and copy-number variants, mutational signatures, and gene expression was performed to provide a comprehensive picture of the disease. LATS1/2 were identified as the main mutational drivers together with homozygous loss of BAP1 and PBRM1, which also may have contributed to the extraordinary chemotherapy response. The presence of the S3 mutational signature is consistent with homologous recombination DNA repair defects due to BAP1 loss. Up-regulation of the PI3K/AKT/mTOR pathway after treatment, supported by deactivated PTEN through miRNA regulation, is associated with cancer progression and could explain chemotherapy resistance. The molecular profile suggests potential benefit from experimental targeting of PARP, EZH2, the PI3K/AKT/mTOR pathway and possibly also from immune checkpoint inhibition. In addition to providing the molecular background for this unusual case of peritoneal mesothelioma, the results show the potential value of integrative genomic analysis in precision medicine.
Collapse
|
47
|
Shields BD, Koss B, Taylor EM, Storey AJ, West KL, Byrum SD, Mackintosh SG, Edmondson R, Mahmoud F, Shalin SC, Tackett AJ. Loss of E-Cadherin Inhibits CD103 Antitumor Activity and Reduces Checkpoint Blockade Responsiveness in Melanoma. Cancer Res 2019; 79:1113-1123. [PMID: 30674537 PMCID: PMC6420873 DOI: 10.1158/0008-5472.can-18-1722] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/04/2018] [Accepted: 01/18/2019] [Indexed: 11/16/2022]
Abstract
Identifying controlling features of responsiveness to checkpoint blockade therapies is an urgent goal in oncology research. Our group and others have previously shown melanoma tumors resistant to checkpoint blockade display features of mesenchymal transition, including E-cadherin loss. Here, we present the first in vivo evidence that E-cadherin from tumor cells facilitate immune attack, using a B16F10 melanoma mouse model in which E-cadherin is exogenously expressed (B16.Ecad). We find, compared with vector control, B16.Ecad exhibits delayed tumor growth, reduced metastatic potential, and increased overall survival in vivo. Transplantation of B16.Ecad into Rag1-/- and CD103-/- mice abrogated the tumor growth delay. This indicates the anti-melanoma response against B16.Ecad is both immune and CD103+ mediated. Moreover, B16.Ecad showed increased responsiveness to combination immune checkpoint blockade (ICB) compared with vector control. This work establishes a rationale for ICB responses observed in high E-cadherin-expressing tumors and suggests therapeutic advancement through amplifying CD103+ immune cell subsets.Significance: These findings identify the mechanism behind checkpoint blockade resistance observed in melanoma that has undergone mesenchymal transition and suggest activation of CD103+ immune cells as a therapeutic strategy against other E-cadherin-expressing malignancies.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/6/1113/F1.large.jpg.
Collapse
Affiliation(s)
- Bradley D Shields
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Erin M Taylor
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kirk L West
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Rick Edmondson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Fade Mahmoud
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sara C Shalin
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
- Arkansas Children's Research Institute, Little Rock, Arkansas
| |
Collapse
|
48
|
Yam AO, Chtanova T. The Ins and Outs of Chemokine-Mediated Immune Cell Trafficking in Skin Cancer. Front Immunol 2019; 10:386. [PMID: 30899263 PMCID: PMC6416210 DOI: 10.3389/fimmu.2019.00386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Recent studies of the patterns of chemokine-mediated immune cell recruitment into solid tumors have enhanced our understanding of the role played by various immune cell subsets both in amplifying and inhibiting tumor cell growth and spread. Here we discuss how the chemokine/chemokine receptor networks bring together immune cells within the microenvironment of skin tumors, particularly melanomas, including their effect on disease progression, prognosis and therapeutic options.
Collapse
Affiliation(s)
- Andrew O. Yam
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
49
|
Yaghoubi N, Soltani A, Ghazvini K, Hassanian SM, Hashemy SI. PD-1/ PD-L1 blockade as a novel treatment for colorectal cancer. Biomed Pharmacother 2019; 110:312-318. [DOI: 10.1016/j.biopha.2018.11.105] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/10/2018] [Accepted: 11/25/2018] [Indexed: 12/14/2022] Open
|
50
|
Loo Yau H, Ettayebi I, De Carvalho DD. The Cancer Epigenome: Exploiting Its Vulnerabilities for Immunotherapy. Trends Cell Biol 2019; 29:31-43. [DOI: 10.1016/j.tcb.2018.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
|