1
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
2
|
Morena F, Cencini C, Calzoni E, Martino S, Emiliani C. A Novel Workflow for In Silico Prediction of Bioactive Peptides: An Exploration of Solanum lycopersicum By-Products. Biomolecules 2024; 14:930. [PMID: 39199318 PMCID: PMC11352670 DOI: 10.3390/biom14080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Resource-intensive processes currently hamper the discovery of bioactive peptides (BAPs) from food by-products. To streamline this process, in silico approaches present a promising alternative. This study presents a novel computational workflow to predict peptide release, bioactivity, and bioavailability, significantly accelerating BAP discovery. The computational flowchart has been designed to identify and optimize critical enzymes involved in protein hydrolysis but also incorporates multi-enzyme screening. This feature is crucial for identifying the most effective enzyme combinations that yield the highest abundance of BAPs across different bioactive classes (anticancer, antidiabetic, antihypertensive, anti-inflammatory, and antimicrobial). Our process can be modulated to extract diverse BAP types efficiently from the same source. Here, we show the potentiality of our method for the identification of diverse types of BAPs from by-products generated from Solanum lycopersicum, the widely cultivated tomato plant, whose industrial processing generates a huge amount of waste, especially tomato peel. In particular, we optimized tomato by-products for bioactive peptide production by selecting cultivars like Line27859 and integrating large-scale gene expression. By integrating these advanced methods, we can maximize the value of by-products, contributing to a more circular and eco-friendly production process while advancing the development of valuable bioactive compounds.
Collapse
Affiliation(s)
- Francesco Morena
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
| | - Chiara Cencini
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
| | - Eleonora Calzoni
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
| | - Sabata Martino
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
- Centro di Eccellenza su Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
- Centro di Eccellenza su Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
3
|
Pascual Alonso I, Rivera Méndez L, Almeida García F, Valdés-Tresanco ME, Alonso Bosch R, Perera WH, Arrebola Sánchez Y, Bergado G, Sánchez Ramírez B, Charli JL. Bufadienolides preferentially inhibit aminopeptidase N among mammalian metallo-aminopeptidases; relationship with effects on human melanoma MeWo cells. Int J Biol Macromol 2023; 229:825-837. [PMID: 36592847 DOI: 10.1016/j.ijbiomac.2022.12.280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/07/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Bufadienolides are steroids that inhibit Na+/K+-ATPase; recent evidence shows that bufalin inhibits the activity of porcine aminopeptidase N (pAPN). We evaluated the selectivity of some bufadienolides on metallo-aminopeptidases. Among the enzymes of the M1 and M17 families, pAPN and porcine aminopeptidase A (pAPA) were the only targets of some bufadienolides. ѱ-bufarenogin, telocinobufagin, marinobufagin, bufalin, cinobufagin, and bufogenin inhibited the activity of pAPN in a dose-dependent manner in the range of 10-7-10-6 M. The inhibition mechanism was classical reversible noncompetitive for telocinobufagin, bufalin and cinobufagin. Bufogenin had the lowest Ki value and a non-competitive behavior. pAPA activity was inhibited by ѱ-bufarenogin, cinobufagin, and bufogenin, with a classical competitive type of inhibition. The models of enzyme-inhibitor complexes agreed with the non-competitive type of inhibition of pAPN by telocinobufagin, bufalin, cinobufagin, and bufogenin. Since APN is a target in cancer therapy, we tested the effect of bufadienolides on the MeWo APN+ human melanoma cell line; they induced cell death, but we obtained scant evidence that inhibition of APN contributed to their effect. Thus, APN is a selective target of some bufadienolides, and we suggest that inhibition of APN activity by bufadienolides is not a major contributor to their antiproliferative properties in MeWo cells.
Collapse
Affiliation(s)
| | | | | | - Mario Ernesto Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba; Department of Biological Sciences, University of Calgary, Canada
| | - Roberto Alonso Bosch
- Museo de Historia Natural Felipe Poey, Faculty of Biology, University of Havana, Cuba
| | - Wilmer H Perera
- CAMAG Scientific, Inc., 515 Cornelius Harnett Dr, Wilmington, NC 28401d, United States of America
| | | | | | | | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
4
|
Sun R, Zhang Y, Lin X, Piao Y, Xie T, He Y, Xiang J, Shao S, Zhou Q, Zhou Z, Tang J, Shen Y. Aminopeptidase N-Responsive Conjugates with Tunable Charge-Reversal Properties for Highly Efficient Tumor Accumulation and Penetration. Angew Chem Int Ed Engl 2023; 62:e202217408. [PMID: 36594796 DOI: 10.1002/anie.202217408] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Tumor enzyme-responsive charge-reversal carriers can induce efficient transcytosis and lead to efficient tumor infiltration and potent anticancer efficacy. However, the correlations of molecular structure with charge-reversal property, tumor penetration, and drug delivery efficiency are unknown. Herein, aminopeptidase N (APN)-responsive conjugates were synthesized to investigate these correlations. We found that the monomeric unit structure and the polymer chain structure determined the enzymatic hydrolysis and charge-reversal rates, and accordingly, the transcytosis and tumor accumulation and penetration of the APN-responsive conjugates. The conjugate with moderate APN responsiveness balanced the in vitro transcytosis and in vivo overall drug delivery process and achieved the best tumor delivery efficiency, giving potent antitumor efficacy. This work provides new insight into the design of tumor enzyme-responsive charge-reversal nanomedicines for efficient cancer drug delivery.
Collapse
Affiliation(s)
- Rui Sun
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,Biomaterials and Drug Delivery Laboratory, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yifan Zhang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaowei Lin
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Xie
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi He
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Rohweder PJ, Jiang Z, Hurysz BM, O'Donoghue AJ, Craik CS. Multiplex substrate profiling by mass spectrometry for proteases. Methods Enzymol 2022; 682:375-411. [PMID: 36948708 PMCID: PMC10201391 DOI: 10.1016/bs.mie.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteolysis is a central regulator of many biological pathways and the study of proteases has had a significant impact on our understanding of both native biology and disease. Proteases are key regulators of infectious disease and misregulated proteolysis in humans contributes to a variety of maladies, including cardiovascular disease, neurodegeneration, inflammatory diseases, and cancer. Central to understanding a protease's biological role, is characterizing its substrate specificity. This chapter will facilitate the characterization of individual proteases and complex, heterogeneous proteolytic mixtures and provide examples of the breadth of applications that leverage the characterization of misregulated proteolysis. Here we present the protocol of Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS), a functional assay that quantitatively characterizes proteolysis using a synthetic library of physiochemically diverse, model peptide substrates, and mass spectrometry. We present a detailed protocol as well as examples of the use of MSP-MS for the study of disease states, for the development of diagnostic and prognostic tests, for the generation of tool compounds, and for the development of protease-targeted drugs.
Collapse
Affiliation(s)
- Peter J Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States.
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
6
|
Aminopeptidase N Inhibitors as Pointers for Overcoming Antitumor Treatment Resistance. Int J Mol Sci 2022; 23:ijms23179813. [PMID: 36077208 PMCID: PMC9456425 DOI: 10.3390/ijms23179813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 12/05/2022] Open
Abstract
Aminopeptidase N (APN), also known as CD13 antigen or membrane alanyl aminopeptidase, belongs to the M1 family of the MA clan of zinc metallopeptidases. In cancer cells, the inhibition of aminopeptidases including APN causes the phenomenon termed the amino acid deprivation response (AADR), a stress response characterized by the upregulation of amino acid transporters and synthetic enzymes and activation of stress-related pathways such as nuclear factor kB (NFkB) and other pro-apoptotic regulators, which leads to cancer cell death by apoptosis. Recently, APN inhibition has been shown to augment DR4-induced tumor cell death and thus overcome resistance to cancer treatment with DR4-ligand TRAIL, which is available as a recombinant soluble form dulanermin. This implies that APN inhibitors could serve as potential weapons for overcoming cancer treatment resistance. In this study, a series of basically substituted acetamidophenones and the semicarbazones and thiosemicarbazones derived from them were prepared, for which APN inhibitory activity was determined. In addition, a selective anti-proliferative activity against cancer cells expressing APN was demonstrated. Our semicarbazones and thiosemicarbazones are the first compounds of these structural types of Schiff bases that were reported to inhibit not only a zinc-dependent aminopeptidase of the M1 family but also a metalloenzyme.
Collapse
|
7
|
Park S, Park K, Cho H, Kwon J, Kim KS, Yang H. Wash-Free Amperometric Escherichia coli Detection via Rapid and Specific Proteolytic Cleavage by Its Outer Membrane OmpT. Anal Chem 2022; 94:4756-4762. [PMID: 35143182 DOI: 10.1021/acs.analchem.1c05299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various methods have been developed for the detection of Escherichia coli (E. coli); however, they are complex and time-consuming. OmpT─a cell membrane endopeptidase of E. coli─strongly embedded in the outer membrane of only E. coli, exposed to external solutions, with high proteolytic activity, could be a suitable target molecule for the rapid and straightforward detection of E. coli. Herein, a wash-free, sensitive, and selective amperometric method for E. coli detection, based on rapid and specific proteolytic cleavage by OmpT, has been reported. The method involved (i) rapid proteolytic cleavage of consecutive amino acids, after cleavage by OmpT, linked to an electrochemical species (4-aminophenol, AP), by leucine aminopeptidase (LAP, an exopeptidase), (ii) affinity binding of E. coli on an electrode, and (iii) electrochemical-enzymatic (EN) redox cycling. OmpT cleaved the intermediate peptide bond of a peptide substrate containing alanine-arginine-arginine-leucine-AP (-A-R-R-L-AP), forming R-L-AP, followed by the cleavage of two peptide bonds of R-L-AP sequentially by LAP, to liberate an electroactive AP. Affinity binding and EN redox cycling, in addition to rapid proteolytic cleavage by OmpT and LAP, enabled high electrochemical signal amplification. Two-sequential-cleavage was employed for the first time in protease-based detection. The calculated detection limit for E. coli cells in tap water (approximately 103 CFU/mL after 1 h incubation) was lower than those obtained without affinity binding and EN redox cycling. The detection method was highly selective to E. coli as OmpT is present in only E. coli. High sensitivity, selectivity, and the absence of wash steps make the developed detection method practically promising.
Collapse
Affiliation(s)
- Seonhwa Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Kiryeon Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Jungwook Kwon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
8
|
Role of structural properties of bioactive peptides in their stability during simulated gastrointestinal digestion: A systematic review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim Biophys Acta Rev Cancer 2021; 1876:188641. [PMID: 34695533 DOI: 10.1016/j.bbcan.2021.188641] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Aminopeptidase N (APN/CD13) is a multifunctional glycoprotein that acts as a peptidase, receptor, and signalling molecule in a tissue-dependent manner. The activities of APN have been implicated in the progression of many cancers, pointing toward significant therapeutic potential for cancer treatment. However, despite the tumour-specific functions of this protein that have been uncovered, the ubiquitous nature of its expression in normal tissues as generally reported remains a limitation to the potential utility of APN as a target for cancer therapeutics and drug discovery. With this in mind, we have extensively explored the literature, and present a comprehensive review that for the first-time provides evidence to support the suggestion that tumour-expressed APN may in fact be unique in structure, function, substrate specificity and activity, contrary to its nature in normal tissues. The review also focuses on the biology of APN, and its "moonlighting" functional roles in both normal physiology and cancer development. Several APN-targeting approaches that have been explored over recent decades as therapeutic strategies in cancer treatment, including APN-targeting agents reported both in preclinical and clinical studies, are also extensively discussed. This review concludes by posing critical questions about APN that remain unanswered and unexplored, hence providing opportunities for further research.
Collapse
|
10
|
Sui L, Guo HC. ERAP1 binds peptide C-termini of different sequences and/or lengths by a common recognition mechanism. Immunobiology 2021; 226:152112. [PMID: 34247019 DOI: 10.1016/j.imbio.2021.152112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 01/25/2023]
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) plays a key role in controlling the immunopeptidomes available for presentation by MHC (major histocompatibility complex) molecules, thus influences immunodominance and cell-mediated immunity. It carries out this critical function by a unique molecular ruler mechanism that trims antigenic precursors in a peptide-length and sequence dependent manner. Acting as a molecular ruler, ERAP1 is capable of concurrently binding antigen peptide N- and C-termini by its N-terminal catalytic and C-terminal regulatory domains, respectively. As such ERAP1 can not only monitor substrate's lengths, but also exhibit a degree of sequence specificity at substrates' N- and C-termini. On the other hand, it also allows certain sequence and length flexibility in the middle part of peptide substrates that is critical for shaping MHC restricted immunopeptidomes. Here we report structural and biochemical studies to understand the molecular details on how ERAP1 can accommodate side chains of different anchoring residues at the substrate's C-terminus. We also examine how ERAP1 can accommodate antigen peptide precursors with length flexibility. Based on two newly determined complex structures, we find that ERAP1 binds the C-termini of peptides similarly even with different substrate sequences and/or lengths, by utilizing the same hydrophobic specificity pocket to accommodate peptides with either a Phe or Leu as the C-terminal anchor residue. In addition, SPR (surface plasmon resonance) binding analyses in solution further confirm the biological significance of these peptide-ERAP1 interactions. Similar to the binding mode of MHC-I molecules, ERAP1 accommodates for antigenic peptide length difference by allowing the peptide middle part to kink or bulge at the middle of its substrate binding cleft. This explains how SNP coded variants located at the middle of ERAP1 substrate binding cleft would influence the antigen pool and an individual's susceptibility to diseases.
Collapse
Affiliation(s)
- Lufei Sui
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
11
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Entwicklung molekularer Sonden für die hyperpolarisierte NMR‐Bildgebung im biologischen Bereich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201915718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
- National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
12
|
Wilding B, Pasqua AE, E A Chessum N, Pierrat OA, Hahner T, Tomlin K, Shehu E, Burke R, Richards GM, Whitton B, Arwert EN, Thapaliya A, Salimraj R, van Montfort R, Skawinska A, Hayes A, Raynaud F, Chopra R, Jones K, Newton G, Cheeseman MD. Investigating the phosphinic acid tripeptide mimetic DG013A as a tool compound inhibitor of the M1-aminopeptidase ERAP1. Bioorg Med Chem Lett 2021; 42:128050. [PMID: 33887439 PMCID: PMC8188423 DOI: 10.1016/j.bmcl.2021.128050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 11/15/2022]
Abstract
ERAP1 is a zinc-dependent M1-aminopeptidase that trims lipophilic amino acids from the N-terminus of peptides. Owing to its importance in the processing of antigens and regulation of the adaptive immune response, dysregulation of the highly polymorphic ERAP1 has been implicated in autoimmune disease and cancer. To test this hypothesis and establish the role of ERAP1 in these disease areas, high affinity, cell permeable and selective chemical probes are essential. DG013A 1, is a phosphinic acid tripeptide mimetic inhibitor with reported low nanomolar affinity for ERAP1. However, this chemotype is a privileged structure for binding to various metal-dependent peptidases and contains a highly charged phosphinic acid moiety, so it was unclear whether it would display the high selectivity and passive permeability required for a chemical probe. Therefore, we designed a new stereoselective route to synthesize a library of DG013A 1 analogues to determine the suitability of this compound as a cellular chemical probe to validate ERAP1 as a drug discovery target.
Collapse
Affiliation(s)
- Birgit Wilding
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - A Elisa Pasqua
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Nicola E A Chessum
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Olivier A Pierrat
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Tamas Hahner
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Kathy Tomlin
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Erald Shehu
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - G Meirion Richards
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Bradleigh Whitton
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Esther N Arwert
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Arjun Thapaliya
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK; Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ramya Salimraj
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK; Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Rob van Montfort
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK; Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Agi Skawinska
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Angela Hayes
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Rajesh Chopra
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Keith Jones
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Gary Newton
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Matthew D Cheeseman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK.
| |
Collapse
|
13
|
In Vivo Molecular Imaging of the Efficacy of Aminopeptidase N (APN/CD13) Receptor Inhibitor Treatment on Experimental Tumors Using 68Ga-NODAGA-c(NGR) Peptide. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6642973. [PMID: 33778075 PMCID: PMC7972841 DOI: 10.1155/2021/6642973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
Introduction The aminopeptidase N (APN/CD13) receptor plays an important role in the neoangiogenic process and metastatic tumor cell invasion. Clinical and preclinical studies reported that bestatin and actinonin are cytotoxic to APN/CD13-positive tumors and metastases due to their APN/CD13-specific inhibitor properties. Our previous studies have already shown that 68Ga-labeled NGR peptides bind specifically to APN/CD13 expressing tumor cells. The APN/CD13 specificity of 68Ga-NGR radiopharmaceuticals enables the following of the efficacy of antiangiogenic therapy with APN/CD13-specific inhibitors using positron emission tomography (PET). The aim of this in vivo study was to assess the antitumor effect of bestatin and actinonin treatment in subcutaneous transplanted HT1080 and B16-F10 tumor-bearing animal models using 68Ga-NODAGA-c(NGR). Materials and Methods Three days after the inoculation of HT1080 and B16-F10 cells, mice were treated with intraperitoneal injection of bestatin (15 mg/kg) or actinonin (5 mg/kg) for 7 days. On the 5th and 10th day, in vivo PET scans and ex vivo biodistribution studies were performed 90 min after intravenous injection of 5.5 ± 0.2 MBq68Ga-NODAGA-c(NGR). Results Control-untreated HT1080 and B16-F10 tumors were clearly visualized by the APN/CD13-specific 68Ga-NODAGA-c(NGR) radiopharmaceutical. The western blot analysis also confirmed the strong APN/CD13 positivity in the investigated tumors. We found significantly (p ≤ 0.05) lower radiopharmaceutical uptake after bestatin treatment and higher radiotracer accumulation in the actinonin-treated HT1080 tumors. In contrast, significantly lower (p ≤ 0.01) 68Ga-NODAGA-c(NGR) accumulation was observed in both bestatin- and actinonin-treated B16-F10 melanoma tumors compared to the untreated-control tumors. Bestatin inhibited tumor growth and 68Ga-NODAGA-c(NGR) uptake in both tumor models. Conclusion The bestatin treatment is suitable for suppressing the neoangiogenic process and APN/CD13 expression of experimental HT1080 and B16-F10 tumors; furthermore, 68Ga-NODAGA-c(NGR) is an applicable radiotracer for the in vivo monitoring of the efficacy of the APN/CD13 inhibition-based anticancer therapies.
Collapse
|
14
|
Gromova LV, Ermolenko EI, Sepp AL, Dmitrieva YV, Alekseeva AS, Lavrenova NS, Kotyleva MP, Kramskaya TA, Karaseva AB, Suvorov AN, Gruzdkov AA. Gut Digestive Function and Microbiome after Correction of Experimental Dysbiosis in Rats by Indigenous Bifidobacteria. Microorganisms 2021; 9:microorganisms9030522. [PMID: 33806341 PMCID: PMC8001560 DOI: 10.3390/microorganisms9030522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, great interest has arisen in the use of autoprobiotics (indigenous bacteria isolated from the organism and introduced into the same organism after growing). This study aimed to evaluate the effects of indigenous bifidobacteria on intestinal microbiota and digestive enzymes in a rat model of antibiotic-associated dysbiosis. Our results showed that indigenous bifidobacteria (the Bf group) accelerate the disappearance of dyspeptic symptoms in rats and prevent an increase in chyme mass in the upper intestine compared to the group without autoprobiotics (the C1 group), but significantly increase the mass of chyme in the colon compared to the C1 group and the control group (healthy animals). In the Bf group in the gut microbiota, the content of opportunistic bacteria (Proteus spp., enteropathogenic Escherichia coli) decreased, and the content of some beneficial bacteria (Bifidobacterium spp., Dorea spp., Blautia spp., the genus Ruminococcus, Prevotella, Oscillospira) changed compared to the control group. Unlike the C1 group, in the Bf group there was no decrease in the specific activities of maltase and alkaline phosphatase in the mucosa of the upper intestine, but the specific activity of maltase was decreased in the colon chyme compared to the control and C1 groups. In the Bf group, the specific activity of aminopeptidase N was reduced in the duodenum mucosa and the colon chyme compared to the control group. We concluded that indigenous bifidobacteria can protect the microbiota and intestinal digestive enzymes in the intestine from disorders caused by dysbiosis; however, there may be impaired motor function of the colon.
Collapse
Affiliation(s)
- Lyudmila V. Gromova
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (A.L.S.); (Y.V.D.); (A.S.A.); (A.A.G.)
- Correspondence:
| | - Elena I. Ermolenko
- Department of Molecular Microbiology, Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia; (E.I.E.); (N.S.L.); (M.P.K.); (T.A.K.); (A.B.K.); (A.N.S.)
- Department of Medical Microbiology, North-Western State Medical University Named after I.I. Mechnikov, Ministry of Health of the Russian Federation, 195067 Saint-Petersburg, Russia
| | - Anastasiya L. Sepp
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (A.L.S.); (Y.V.D.); (A.S.A.); (A.A.G.)
| | - Yulia V. Dmitrieva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (A.L.S.); (Y.V.D.); (A.S.A.); (A.A.G.)
| | - Anna S. Alekseeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (A.L.S.); (Y.V.D.); (A.S.A.); (A.A.G.)
| | - Nadezhda S. Lavrenova
- Department of Molecular Microbiology, Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia; (E.I.E.); (N.S.L.); (M.P.K.); (T.A.K.); (A.B.K.); (A.N.S.)
| | - Mariya P. Kotyleva
- Department of Molecular Microbiology, Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia; (E.I.E.); (N.S.L.); (M.P.K.); (T.A.K.); (A.B.K.); (A.N.S.)
| | - Tatyana A. Kramskaya
- Department of Molecular Microbiology, Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia; (E.I.E.); (N.S.L.); (M.P.K.); (T.A.K.); (A.B.K.); (A.N.S.)
| | - Alena B. Karaseva
- Department of Molecular Microbiology, Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia; (E.I.E.); (N.S.L.); (M.P.K.); (T.A.K.); (A.B.K.); (A.N.S.)
| | - Alexandr N. Suvorov
- Department of Molecular Microbiology, Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia; (E.I.E.); (N.S.L.); (M.P.K.); (T.A.K.); (A.B.K.); (A.N.S.)
- Department of Fundamental Problems of Medicine and Medical Technologies, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Andrey A. Gruzdkov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (A.L.S.); (Y.V.D.); (A.S.A.); (A.A.G.)
| |
Collapse
|
15
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Design of Nuclear Magnetic Resonance Molecular Probes for Hyperpolarized Bioimaging. Angew Chem Int Ed Engl 2021; 60:14779-14799. [PMID: 32372551 DOI: 10.1002/anie.201915718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Nuclear hyperpolarization has emerged as a method to dramatically enhance the sensitivity of NMR spectroscopy. By application of this powerful tool, small molecules with stable isotopes have been used for highly sensitive biomedical molecular imaging. The recent development of molecular probes for hyperpolarized in vivo analysis has demonstrated the ability of this technique to provide unique metabolic and physiological information. This review presents a brief introduction of hyperpolarization technology, approaches to the rational design of molecular probes for hyperpolarized analysis, and examples of molecules that have met with success in vitro or in vivo.
Collapse
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan.,National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
16
|
Tharayil A, Rajakumari R, Kumar A, Choudhary MD, Palit P, Thomas S. New insights into application of nanoparticles in the diagnosis and screening of novel coronavirus (SARS-CoV-2). EMERGENT MATERIALS 2021; 4:101-117. [PMID: 33817553 PMCID: PMC8010296 DOI: 10.1007/s42247-021-00182-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 05/15/2023]
Abstract
Novel coronavirus disease 2019 (COVID-19) is by far the worst pandemic disease in the current millennium. The first human-to-human transmission was observed in December 2019 in China and is caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has infected millions of people within months across the globe. SARS-CoV-2 is a spike protein enveloped virus with particle-like characteristics and a diameter of 60-140 nm. Real-time PCR, reverse transcriptase PCR, isothermal PCR, immunological-based detection technique and nano-based diagnostic system have been explained for the identification and differentiation of different types of virus including SARS-COV-2. Synthetic nanoparticles can closely mimic the virus and interact strongly with its virulent proteins due to their morphological similarities. Some of the antiviral nanomaterials are also discussed, for example zinc oxide nanoparticle is an antiviral agent with a tetrapod morphology that mimics the cell surface by interacting with the viral capsid. It suppressed the viral proteins upon UV radiation due to reaction caused by photocatalysis. Hence, nanoparticle-based strategies for tackling viruses have immense potential. The second part of the review points to the latest in vitro and in vivo procedures for screening viral particles and the usage of nanoparticles in diagnostic and therapeutics. This would be beneficial for early detection and assists for the safe and effective therapeutic management of COVID-19.
Collapse
Affiliation(s)
- Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kerala, 686560 India
| | - R. Rajakumari
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, 686560 India
| | - Amresh Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
| | | | - Parth Palit
- Department of Pharmaceutical Sciences, Assam University, Silchar, India
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kerala, 686560 India
- School of Chemical Sciences, Mahatma Gandhi University, Kerala, 686560 India
| |
Collapse
|
17
|
Phosphinic Dehydrodipeptides: Diversification of the P1′ Residue with the Morita–Baylis–Hillman Acetates and Inhibition of Alanyl Aminopeptidases. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Barlow N, Thompson PE. IRAP Inhibitors: M1-Aminopeptidase Family Inspiration. Front Pharmacol 2020; 11:585930. [PMID: 33101040 PMCID: PMC7546331 DOI: 10.3389/fphar.2020.585930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
The insulin regulated aminopeptidase (IRAP) has been proposed as an important therapeutic target for indications including Alzheimer’s disease and immune disorders. To date, a number of IRAP inhibitor designs have been investigated but the total number of molecules investigated remains quite small. As a member the M1 aminopeptidase family, IRAP shares numerous structural features with the other M1 aminopeptidases. The study of those enzymes and the development of inhibitors provide key learnings and new approaches and are potential sources of inspiration for future IRAP inhibitors.
Collapse
Affiliation(s)
- Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
19
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
20
|
Adhikari S, Leissa JA, Karlsson AJ. Beyond function: Engineering improved peptides for therapeutic applications. AIChE J 2019. [DOI: 10.1002/aic.16776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sayanee Adhikari
- Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland
| | - Jesse A. Leissa
- Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland
| | - Amy J. Karlsson
- Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland
- Fischell Department of Bioengineering University of Maryland College Park Maryland
| |
Collapse
|
21
|
Lapek JD, Jiang Z, Wozniak JM, Arutyunova E, Wang SC, Lemieux MJ, Gonzalez DJ, O'Donoghue AJ. Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry. Mol Cell Proteomics 2019; 18:968-981. [PMID: 30705125 DOI: 10.1074/mcp.tir118.001099] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/31/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolysis is an integral component of life and has been implicated in many disease processes. To improve our understanding of peptidase function, it is imperative to develop tools to uncover substrate specificity and cleavage efficiency. Here, we combine the quantitative power of tandem mass tags (TMTs) with an established peptide cleavage assay to yield quantitative Multiplex Substrate Profiling by Mass Spectrometry (qMSP-MS). This assay was validated with papain, a well-characterized cysteine peptidase, to generate cleavage efficiency values for hydrolysis of 275 unique peptide bonds in parallel. To demonstrate the breath of this assay, we show that qMSP-MS can uncover the substrate specificity of minimally characterized intramembrane rhomboid peptidases, as well as define hundreds of proteolytic activities in complex biological samples, including secretions from lung cancer cell lines. Importantly, our qMSP-MS library uses synthetic peptides whose termini are unmodified, allowing us to characterize not only endo- but also exo-peptidase activity. Each cleaved peptide sequence can be ranked by turnover rate, and the amino acid sequence of the best substrates can be used for designing fluorescent reporter substrates. Discovery of peptide substrates that are selectively cleaved by peptidases which are active at the site of disease highlights the potential for qMSP-MS to guide the development of peptidase-activating drugs for cancer and infectious disease.
Collapse
Affiliation(s)
- John D Lapek
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Zhenze Jiang
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; ¶Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Jacob M Wozniak
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Elena Arutyunova
- ‖Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Steven C Wang
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; **Division of Biological Sciences, University of California, San Diego, 9500, Gilman Drive, La Jolla, California 92093
| | - M Joanne Lemieux
- ‖Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - David J Gonzalez
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;.
| | - Anthony J O'Donoghue
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;.
| |
Collapse
|
22
|
Peptides as Therapeutic Agents for Inflammatory-Related Diseases. Int J Mol Sci 2018; 19:ijms19092714. [PMID: 30208640 PMCID: PMC6163503 DOI: 10.3390/ijms19092714] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 01/08/2023] Open
Abstract
Inflammation is a physiological mechanism used by organisms to defend themselves against infection, restoring homeostasis in damaged tissues. It represents the starting point of several chronic diseases such as asthma, skin disorders, cancer, cardiovascular syndrome, arthritis, and neurological diseases. An increasing number of studies highlight the over-expression of inflammatory molecules such as oxidants, cytokines, chemokines, matrix metalloproteinases, and transcription factors into damaged tissues. The treatment of inflammatory disorders is usually linked to the use of unspecific small molecule drugs that can cause undesired side effects. Recently, many efforts are directed to develop alternative and more selective anti-inflammatory therapies, several of them imply the use of peptides. Indeed, peptides demonstrated as elected lead compounds toward several targets for their high specificity as well as recent and innovative synthetic strategies. Several endogenous peptides identified during inflammatory responses showed anti-inflammatory activities by inhibiting, reducing, and/or modulating the expression and activity of mediators. This review aims to discuss the potentialities and therapeutic use of peptides as anti-inflammatory agents in the treatment of different inflammation-related diseases and to explore the importance of peptide-based therapies.
Collapse
|
23
|
Lanza V, Bellia F, Rizzarelli E. An inorganic overview of natural Aβ fragments: Copper(II) and zinc(II)-mediated pathways. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Węglarz-Tomczak E, Talma M, Giurg M, Westerhoff HV, Janowski R, Mucha A. Neutral metalloaminopeptidases APN and MetAP2 as newly discovered anticancer molecular targets of actinomycin D and its simple analogs. Oncotarget 2018; 9:29365-29378. [PMID: 30034623 PMCID: PMC6047675 DOI: 10.18632/oncotarget.25532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/14/2018] [Indexed: 01/07/2023] Open
Abstract
The potent transcription inhibitor Actinomycin D is used with several cancers. Here, we report the discovery that this naturally occurring antibiotic inhibits two human neutral aminopeptidases, the cell-surface alanine aminopeptidase and intracellular methionine aminopeptidase type 2. These metallo-containing exopeptidases participate in tumor cell expansion and motility and are targets for anticancer therapies. We show that the peptide portions of Actinomycin D and Actinomycin X2 are not required for effective inhibition, but the loss of these regions changes the mechanism of interaction. Two structurally less complex Actinomycin D analogs containing the phenoxazone chromophores, Questiomycin A and Actinocin, appear to be competitive inhibitors of both aminopeptidases, with potencies similar to the non-competitive macrocyclic parent compound (Ki in the micromolar range). The mode of action for all four compounds and both enzymes was demonstrated by molecular modeling and docking in the corresponding active sites. This knowledge gives new perspectives to Actinomycin D's action on tumors and suggests new avenues and molecules for medical applications.
Collapse
Affiliation(s)
- Ewelina Węglarz-Tomczak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Mirosław Giurg
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Hans V Westerhoff
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
25
|
Molecular Imaging of Aminopeptidase N in Cancer and Angiogenesis. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:5315172. [PMID: 30046296 PMCID: PMC6036854 DOI: 10.1155/2018/5315172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
This review focuses on recent advances in the molecular imaging of aminopeptidase N (APN, also known as CD13), a zinc metalloenzyme that cleaves N-terminal neutral amino acids. It is overexpressed in multiple cancer types and also on the surface of vasculature undergoing angiogenesis, making it a promising target for molecular imaging and targeted therapy. Molecular imaging probes for APN are divided into two large subgroups: reactive and nonreactive. The structures of the reactive probes (substrates) contain a reporter group that is cleaved and released by the APN enzyme. The nonreactive probes are not cleaved by the enzyme and contain an antibody, peptide, or nonpeptide for targeting the enzyme exterior or active site. Multivalent homotopic probes utilize multiple copies of the same targeting unit, whereas multivalent heterotopic molecular probes are equipped with different targeting units for different receptors. Several recent preclinical cancer imaging studies have shown that multivalent APN probes exhibit enhanced tumor specificity and accumulation compared to monovalent analogues. The few studies that have evaluated APN-specific probes for imaging angiogenesis have focused on cardiac regeneration. These promising results suggest that APN imaging can be expanded to detect and monitor other diseases that are associated with angiogenesis.
Collapse
|
26
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
27
|
Current state of in vivo panning technologies: Designing specificity and affinity into the future of drug targeting. Adv Drug Deliv Rev 2018; 130:39-49. [PMID: 29964079 DOI: 10.1016/j.addr.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022]
Abstract
Targeting ligands are used in drug delivery to improve drug distribution to desired cells or tissues and to facilitate cellular entry. In vivo biopanning, whereby billions of potential ligand sequences are screened in biologically-relevant and complex conditions, is a powerful method for identification of novel target ligands. This tool has impacted drug delivery technologies and expanded our arsenal of therapeutics and diagnostics. Within this review we will discuss current in vivo panning technologies and ways that these technologies can be improved to advance next-generation drug delivery strategies.
Collapse
|
28
|
Amin SA, Adhikari N, Jha T. Design of Aminopeptidase N Inhibitors as Anti-cancer Agents. J Med Chem 2018; 61:6468-6490. [DOI: 10.1021/acs.jmedchem.7b00782] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sk. Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| |
Collapse
|
29
|
Distinct Epitopes on CD13 Mediate Opposite Consequences for Cell Adhesion. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4093435. [PMID: 29789790 PMCID: PMC5896358 DOI: 10.1155/2018/4093435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/03/2018] [Accepted: 02/08/2018] [Indexed: 12/25/2022]
Abstract
CD13 is a membrane glycoprotein with aminopeptidase activity, expressed on several cell types, including myeloid cells (dendritic cells, monocytes, macrophages, neutrophils, etc.). CD13 participates in several functions such as proteolytic regulation of bioactive peptides, viral receptor, angiogenesis, and tumor metastasis. CD13 has also been proposed to participate in cell adhesion, as crosslinking of CD13 by certain CD13-specific antibodies induces homotypic aggregation of monocytes and heterotypic adhesion of monocytes to endothelial cells. We generated two monoclonal antibodies (mAbs C and E) that block homotypic aggregation of U-937 monocytic cells induced by CD13-specific mAb 452. Moreover, the mAbs cause detachment of cells whose aggregation was induced by CD13 crosslinking. Both mAbs also inhibit heterotypic adhesion of U-937 monocytes to endothelial cells. mAbs C and E recognize membrane CD13 but bind to epitopes different from that recognized by mAb 452. Crosslinking of CD13 by mAb C or E is required to inhibit adhesion, as monovalent Fab fragments are not sufficient. Thus, C and E antibodies recognize a distinct epitope on CD13, and binding to this epitope interferes with both CD13-mediated cell adhesion and enzymatic activity. These antibodies may represent important tools to study cell-cell interactions mediated by CD13 in physiological and pathological conditions.
Collapse
|
30
|
Ivry SL, Meyer NO, Winter MB, Bohn MF, Knudsen GM, O'Donoghue AJ, Craik CS. Global substrate specificity profiling of post-translational modifying enzymes. Protein Sci 2018; 27:584-594. [PMID: 29168252 PMCID: PMC5818756 DOI: 10.1002/pro.3352] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Abstract
Enzymes that modify the proteome, referred to as post-translational modifying (PTM) enzymes, are central regulators of cellular signaling. Determining the substrate specificity of PTM enzymes is a critical step in unraveling their biological functions both in normal physiological processes and in disease states. Advances in peptide chemistry over the last century have enabled the rapid generation of peptide libraries for querying substrate recognition by PTM enzymes. In this article, we highlight various peptide-based approaches for analysis of PTM enzyme substrate specificity. We focus on the application of these technologies to proteases and also discuss specific examples in which they have been used to uncover the substrate specificity of other types of PTM enzymes, such as kinases. In particular, we highlight our multiplex substrate profiling by mass spectrometry (MSP-MS) assay, which uses a rationally designed, physicochemically diverse library of tetradecapeptides. We show how this method has been applied to PTM enzymes to uncover biological function, and guide substrate and inhibitor design. We also briefly discuss how this technique can be combined with other methods to gain a systems-level understanding of PTM enzyme regulation and function.
Collapse
Affiliation(s)
- Sam L. Ivry
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
- Pharmaceutical Sciences and Pharmacogenomics Graduate ProgramUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Nicole O. Meyer
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Michael B. Winter
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Markus F. Bohn
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Giselle M. Knudsen
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San DiegoLa JollaCalifornia
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoCalifornia
| |
Collapse
|
31
|
Liu HY, Grant H, Hsu HL, Sorkin R, Bošković F, Wuite G, Daniel S. Supported Planar Mammalian Membranes as Models of in Vivo Cell Surface Architectures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35526-35538. [PMID: 28930438 DOI: 10.1021/acsami.7b07500] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Emerging technologies use cell plasma membrane vesicles or "blebs" as an intermediate to form molecularly complete, planar cell surface mimetics that are compatible with a variety of characterization tools and microscopy methods. This approach enables direct incorporation of membrane proteins into supported lipid bilayers without using detergents and reconstitution and preserves native lipids and membrane species. Such a system can be advantageous as in vitro models of in vivo cell surfaces for study of the roles of membrane proteins as drug targets in drug delivery, host-pathogen interactions, tissue engineering, and many other bioanalytical and sensing applications. However, the impact of methods used to induce cell blebbing (vesiculation) on protein and membrane properties is still unknown. This study focuses on characterization of cell blebs created under various bleb-inducing conditions and the result on protein properties (orientation, mobility, activity, etc.) and lipid scrambling in this platform. The orientation of proteins in the cell blebs and planar bilayers is revealed using a protease cleavage assay. Lipid scrambling in both cell blebs and planar bilayers is indicated through an annexin V binding assay. To quantify protein confinement, immobility, etc., incorporation of GPI-linked yellow fluorescent protein (GPI-YFP) was used in conjunction with single-molecule tracking (SMT) microscopy. Finally, to investigate the impact of the bleb induction method on protein activity and expression level, cell blebs expressing human aminopeptidase N (hAPN) were analyzed by an enzyme activity assay and immunoblotting. This work enriches our understanding of cell plasma membrane bleb bilayers as a biomimetic platform, reveals conditions under which specific properties are met, and represents one of the few ways to make molecularly complete supported bilayers directly from cell plasma membranes.
Collapse
Affiliation(s)
- Han-Yuan Liu
- School of Chemical and Biomolecular Engineering, Cornell University , Ithaca, New York 14853, United States
| | - Hannah Grant
- School of Chemical and Biomolecular Engineering, Cornell University , Ithaca, New York 14853, United States
| | - Hung-Lun Hsu
- School of Chemical and Biomolecular Engineering, Cornell University , Ithaca, New York 14853, United States
| | - Raya Sorkin
- Department of Physics and Astronomy and Laser Lab, Vrije Universiteit Amsterdam , Amsterdam 1081 HV, The Netherlands
| | - Filip Bošković
- Department of Physics and Astronomy and Laser Lab, Vrije Universiteit Amsterdam , Amsterdam 1081 HV, The Netherlands
| | - Gijs Wuite
- Department of Physics and Astronomy and Laser Lab, Vrije Universiteit Amsterdam , Amsterdam 1081 HV, The Netherlands
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|