1
|
Nair SG, Benny S, Jose WM, Aneesh TP. Epigenetics as a strategic intervention for early diagnosis and combatting glycolyis-induced chemoresistance in gynecologic cancers. Life Sci 2024; 358:123167. [PMID: 39447732 DOI: 10.1016/j.lfs.2024.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Prospective prediction from the Australian Institute of Health and Welfare (AIHW) showed a likely incidence of 1 in 23 women diagnosed with gynaecological malignancy, where the incidence of relapse with a drug-resistant clone poses a significant challenge in dealing with it even after initial treatment. Glucose metabolism has been exploited as a therapeutic target under anti-metabolomic study, but the non-specificity narrowed its applicability in cancer. Novel updates over epigenetics as a target in gynaecological cancer offer a rational idea of using this in the metabolic rewiring in mutated glycolytic flux-induced drug resistance. This review focuses on the application of epigenetic intervention at a diagnostic and therapeutic level to shift the current treatment paradigm of gynaecological cancers from reactive medicine to predictive, preventive, and personalised medicine. It presents the likely epigenetic targets that can be exploited potentially to prevent the therapeutic failure associated with glucose metabolism-induced chemotherapeutic drug resistance.
Collapse
Affiliation(s)
- Sachin G Nair
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, Kerala, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, Kerala, India
| | - Wesley M Jose
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, AIMS PO, Kochi 682041, Kerala, India.
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, Kerala, India.
| |
Collapse
|
2
|
Zhou W, Huang H, Teng Y, Hua R, Hu Y, Li X. KLF4 promotes cisplatin resistance by activating mTORC1 signaling in ovarian cancer. Discov Oncol 2024; 15:682. [PMID: 39565445 PMCID: PMC11579265 DOI: 10.1007/s12672-024-01576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Ovarian cancer (OC) is a highly fatal gynecological malignancy worldwide, and cisplatin (CDDP) is commonly used as an initial chemotherapy treatment for OC. Nonetheless, most patients ultimately face recurrence because of resistance to cisplatin. Therefore, it is imperative to investigate the underlying mechanisms of drug resistance in OC. By analyzing differential gene expression using TCGA, GDSC, and GEO public databases, we discovered that increased KLF4 expression is strongly linked to chemotherapy resistance and unfavorable outcomes in OC. Subsequent validation through immunohistochemistry and western blotting confirmed the upregulated KLF4 expression in cisplatin-resistance OC cells lines and tissues. To investigate the function of KLF4, functional experiments were performed both in vitro and in vivo. We observed that knocking down KLF4 impaired cisplatin-resistance of OC. Further mechanism research based on RNA-seq and gene enrichment analysis revealed that interfering KLF4 suppressed the activation of mTORC1 pathway. Finally, rescue experiment demonstrated that using mTORC1 pathway inhibitor could attenuate the cisplatin resistance induced by the overexpression of KLF4. In conclusion, our research indicates that KLF4 promotes cisplatin resistance through the activation of mTORC1 signaling, and proposes that inhibiting KLF4 might serve as a viable therapeutic approach to overcoming drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Wanzhen Zhou
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Huixian Huang
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Yincheng Teng
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Rong Hua
- Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yan Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China.
| | - Xiao Li
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
3
|
Adams KM, Wendt JR, Wood J, Olson S, Moreno R, Jin Z, Gopalan S, Lang JD. Cell-intrinsic platinum response and associated genetic and gene expression signatures in ovarian cancer cell lines and isogenic models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605381. [PMID: 39131380 PMCID: PMC11312449 DOI: 10.1101/2024.07.26.605381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ovarian cancers are still largely treated with platinum-based chemotherapy as the standard of care, yet few biomarkers of clinical response have had an impact on clinical decision making as of yet. Two particular challenges faced in mechanistically deciphering platinum responsiveness in ovarian cancer have been the suitability of cell line models for ovarian cancer subtypes and the availability of information on comparatively how sensitive ovarian cancer cell lines are to platinum. We performed one of the most comprehensive profiles to date on 36 ovarian cancer cell lines across over seven subtypes and integrated drug response and multiomic data to improve on our understanding of the best cell line models for platinum responsiveness in ovarian cancer. RNA-seq analysis of the 36 cell lines in a single batch experiment largely conforms with the currently accepted subtyping of ovarian cancers, further supporting other studies that have reclassified cell lines and demonstrate that commonly used cell lines are poor models of high-grade serous ovarian carcinoma. We performed drug dose response assays in the 32 of these cell lines for cisplatin and carboplatin, providing a quantitative database of IC50s for these drugs. Our results demonstrate that cell lines largely fall either well above or below the equivalent dose of the clinical maximally achievable dose (Cmax) of each compound, allowing designation of cell lines as sensitive or resistant. We performed differential expression analysis for high-grade serous ovarian carcinoma cell lines to identify gene expression correlating with platinum-response. Further, we generated two platinum-resistant derivatives each for OVCAR3 and OVCAR4, as well as leveraged clinically-resistant PEO1/PEO4/PEO6 and PEA1/PEA2 isogenic models to perform differential expression analysis for seven total isogenic pairs of platinum resistant cell lines. While gene expression changes overall were heterogeneous and vast, common themes were innate immunity/STAT activation, epithelial to mesenchymal transition and stemness, and platinum influx/efflux regulators. In addition to gene expression analyses, we performed copy number signature analysis and orthogonal measures of homologous recombination deficiency (HRD) scar scores and copy number burden, which is the first report to our knowledge applying field-standard copy number signatures to ovarian cancer cell lines. We also examined markers and functional readouts of stemness that revealed that cell lines are poor models for examination of stemness contributions to platinum resistance, likely pointing to the fact that this is a transient state. Overall this study serves as a resource to determine the best cell lines to utilize for ovarian cancer research on certain subtypes and platinum response studies, as well as sparks new hypotheses for future study in ovarian cancer.
Collapse
Affiliation(s)
- Kristin M. Adams
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jae-Rim Wendt
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Josie Wood
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sydney Olson
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Moreno
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Computer Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmou Jin
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Srihari Gopalan
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica D. Lang
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Nunes M, Bartosch C, Abreu MH, Richardson A, Almeida R, Ricardo S. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells 2024; 13:786. [PMID: 38727322 PMCID: PMC11083313 DOI: 10.3390/cells13090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Ovarian cancer is a highly lethal form of gynecological cancer. This disease often goes undetected until advanced stages, resulting in high morbidity and mortality rates. Unfortunately, many patients experience relapse and succumb to the disease due to the emergence of drug resistance that significantly limits the effectiveness of currently available oncological treatments. Here, we discuss the molecular mechanisms responsible for resistance to carboplatin, paclitaxel, polyadenosine diphosphate ribose polymerase inhibitors, and bevacizumab in ovarian cancer. We present a detailed analysis of the most extensively investigated resistance mechanisms, including drug inactivation, drug target alterations, enhanced drug efflux pumps, increased DNA damage repair capacity, and reduced drug absorption/accumulation. The in-depth understanding of the molecular mechanisms associated with drug resistance is crucial to unveil new biomarkers capable of predicting and monitoring the kinetics during disease progression and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto), Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Alan Richardson
- The School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, Staffordshire, UK;
| | - Raquel Almeida
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Biology Department, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
5
|
Manzoor HB, Asare-Werehene M, Pereira SD, Satyamoorthy K, Tsang BK. The regulation of plasma gelsolin by DNA methylation in ovarian cancer chemo-resistance. J Ovarian Res 2024; 17:15. [PMID: 38216951 PMCID: PMC10785480 DOI: 10.1186/s13048-023-01332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Ovarian cancer (OVCA) is the most lethal gynecologic cancer and chemoresistance remains a major hurdle to successful therapy and survival of OVCA patients. Plasma gelsolin (pGSN) is highly expressed in chemoresistant OVCA compared with their chemosensitive counterparts, although the mechanism underlying the differential expression is not known. Also, its overexpression significantly correlates with shortened survival of OVCA patients. In this study, we investigated the methylation role of Ten eleven translocation isoform-1 (TET1) in the regulation of differential pGSN expression and chemosensitivity in OVCA cells. METHODS Chemosensitive and resistant OVCA cell lines of different histological subtypes were used in this study to measure pGSN and TET1 mRNA abundance (qPCR) as well as protein contents (Western blotting). To investigate the role of DNA methylation specifically in pGSN regulation and pGSN-induced chemoresistance, DNMTs and TETs were pharmacologically inhibited in sensitive and resistant OVCA cells using specific inhibitors. DNA methylation was quantified using EpiTYPER MassARRAY system. Gain-and-loss-of-function assays were used to investigate the relationship between TET1 and pGSN in OVCA chemoresponsiveness. RESULTS We observed differential protein and mRNA expressions of pGSN and TET1 between sensitive and resistant OVCA cells and cisplatin reduced their expression in sensitive but not in resistant cells. We observed hypomethylation at pGSN promoter upstream region in resistant cells compared to sensitive cells. Pharmacological inhibition of DNMTs increased pGSN protein levels in sensitive OVCA cells and decreased their responsiveness to cisplatin, however we did not observe any difference in methylation level at pGSN promoter region. TETs inhibition resulted in hypermethylation at multiple CpG sites and decreased pGSN protein level in resistant OVCA cells which was also associated with enhanced response to cisplatin, findings that suggested the methylation role of TETs in the regulation of pGSN expression in OVCA cells. Further, we found that TET1 is inversely related to pGSN but positively related to chemoresponsiveness of OVCA cells. CONCLUSION Our findings broaden our knowledge about the epigenetic regulation of pGSN in OVCA chemoresistance and reveal a novel potential target to re-sensitize resistant OVCA cells. This may provide a future therapeutic strategy to improve the overall OVCA patient survival.
Collapse
Affiliation(s)
- Hafiza Bushra Manzoor
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Meshach Asare-Werehene
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Obstetrics & Gynecology, & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Satyajit Dey Pereira
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara University, Manjushree Block, Manjushree Nagar Sattur, Dharwad, Karnataka, 580 009, India
| | - Benjamin K Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Obstetrics & Gynecology, & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8L1, Canada.
| |
Collapse
|
6
|
Ma X, Zhang L, Liu L, Ruan D, Wang C. Hypermethylated ITGA8 Facilitate Bladder Cancer Cell Proliferation and Metastasis. Appl Biochem Biotechnol 2024; 196:245-260. [PMID: 37119505 DOI: 10.1007/s12010-023-04512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
DNA methylation plays a vital role during the development of tumorigenesis. The purpose of this study is to identify candidate DNA methylation drivers during progression of bladder cancer (BLCA). The methylation spectrum in bladder cancer tissues was detected by CHARM analysis, and methylated ITGA8 was selected for further study due to its low expression. Methylation levels in BLCA tissues and cells were detected with methylated-specific PCR (MSP), while mRNA expression and methylation of ITGA8 were detected by qRT-PCR and MSP. After treatment with 5-Aza-dC (DNA methylation inhibitor), the proliferation, migration, and invasion abilities of BLCA cells were determined by MTT, wound healing, and transwell assays, respectively. Flow cytometric analysis was performed to evaluate any variance in the cell cycle. In addition, the effect of demethylated ITGA8 on BLCA tumor growth was verified with an in vivo xenograft tumor model. Based on the methylation profiling of BLCA, ITGA8 was identified to be hypermethylated. ITGA8 methylation levels in BLCA tissues and cells were upregulated, and 5-Aza-dC significantly suppressed ITGA8 methylation levels and increased ITGA8 mRNA expression. Furthermore, after treatment with 5-Aza-dC, the propagation, migration, and invasiveness of the cancer cells were inhibited, and more cancer cells were arrested at the G0/G1 phase. In vivo assays further demonstrated that 5-Aza-dC could impede BLCA tumor growth by repressing methylation levels of ITGA8 and increasing ITGA8 mRNA expression. Hypermethylated ITGA8 facilitated BLCA progression, and 5-Aza-dC treatment inhibited BLCA cell propagation and metastasis by decreasing methylation levels of ITGA8 and inducing cell cycle arrest.
Collapse
Affiliation(s)
- Xiulong Ma
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, 710004, Shaanxi, China
| | - Liang Zhang
- Urology Surgery, Jiujiang University Clinic College/Hospital, Jiujiang, 332200, Jiangxi, China
| | - Ling Liu
- Urology Surgery, Jiujiang University Clinic College/Hospital, Deyang, 618000, Sichuan, China
| | - Dongli Ruan
- Urology Surgery, Xijing Hospital, Air Force Military Medical University, Xian, 710032, Shaanxi, China
| | - Chunyang Wang
- Urology Surgery, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
7
|
Yi J, Wu M, Zheng Z, Zhou Q, Li X, Lu Y, Liu P. Integrated analysis of DNA methylome and transcriptome reveals SFRP1 and LIPG as potential drivers of ovarian cancer metastasis. J Gynecol Oncol 2023; 34:e71. [PMID: 37417299 PMCID: PMC10627750 DOI: 10.3802/jgo.2023.34.e71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/17/2023] [Accepted: 05/13/2023] [Indexed: 07/08/2023] Open
Abstract
OBJECTIVE More than 75% of ovarian cancer patients are diagnosed at advanced stages and die of tumor cell metastasis. This study aimed to identify new epigenetic and transcriptomic alterations associated with ovarian cancer metastasis. METHODS Two cell sublines with low- and high-metastasis potentials were derived from the ovarian cancer cell line A2780. Genome-wide DNA methylome and transcriptome profiling were carried out in these two sublines by Reduced Representation Bisulfite Sequencing and RNA-seq technologies. Cell-based assays were conducted to support the clinical findings. RESULTS There are distinct DNA methylation and gene expression patterns between the two cell sublines with low- and high-metastasis potentials. Integrated analysis identified 33 methylation-induced genes potentially involved in ovarian cancer metastasis. The DNA methylation patterns of two of them (i.e., SFRP1 and LIPG) were further validated in human specimens, indicating that they were hypermethylated and downregulated in peritoneal metastatic ovarian carcinoma compared to primary ovarian carcinoma. Patients with lower SFRP1 and LIPG expression tend to have a worse prognosis. Functionally, knockdown of SFRP1 and LIPG promoted cell growth and migration, whereas their overexpression resulted in the opposite effects. In particular, knockdown of SFRP1 could phosphorylate GSK3β and increase β-catenin expression, leading to deregulated activation of the Wnt/β-catenin signaling. CONCLUSION Many systemic and important epigenetic and transcriptomic alterations occur in the progression of ovarian cancer. In particular, epigenetic silencing of SFRP1 and LIPG is a potential driver event in ovarian cancer metastasis. They can be used as prognostic biomarkers and therapeutic targets for ovarian cancer patients.
Collapse
Affiliation(s)
- Jiani Yi
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengting Wu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihong Zheng
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Zhou
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xufan Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Pengyuan Liu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Cheng H, Liu Y, Chen G. Identification of potential DNA methylation biomarkers related to diagnosis in patients with bladder cancer through integrated bioinformatic analysis. BMC Urol 2023; 23:135. [PMID: 37563710 PMCID: PMC10413619 DOI: 10.1186/s12894-023-01307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is one of the most common malignancies among tumors worldwide. There are no validated biomarkers to facilitate such treatment diagnosis. DNA methylation modification plays important roles in epigenetics. Identifying methylated differentially expressed genes is a common method for the discovery of biomarkers. METHODS Bladder cancer data were obtained from Gene Expression Omnibus (GEO), including the gene expression microarrays GSE37817( 18 patients and 3 normal ), GSE52519 (9 patients and 3 normal) and the gene methylation microarray GSE37816 (18 patients and 3 normal). Aberrantly expressed genes were obtained by GEO2R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed using the DAVID database and KOBAS. Protein-protein interactions (PPIs) and hub gene networks were constructed by STRING and Cytoscape software. The validation of the results which was confirmed through four online platforms, including Gene Expression Profiling Interactive Analysis (GEPIA), Gene Set Cancer Analysis (GSCA), cBioProtal and MEXPRESS. RESULTS In total, 253 and 298 upregulated genes and 674 and 454 downregulated genes were identified for GSE37817 and GSE52519, respectively. For the GSE37816 dataset, hypermethylated and hypomethylated genes involving 778 and 3420 genes, respectively, were observed. Seventeen hypermethylated and low expression genes were enriched in biological processes associated with different organ development and morphogenesis. For molecular function, these genes showed enrichment in extracellular matrix structural constituents. Pathway enrichment showed drug metabolic enzymes and several amino acids metabolism, PI3K-Akt, Hedgehog signaling pathway. The top 3 hub genes screened by Cytoscape software were EFEMP1, SPARCL1 and ABCA8. The research results were verified using the GEPIA, GSCA, cBioProtal and EXPRESS databases, and the hub hypermethylated low expression genes were validated. CONCLUSION This study screened possible aberrantly methylated expression hub genes in BLCA by integrated bioinformatics analysis. The results may provide possible methylation-based biomarkers for the precise diagnosis and treatment of BLCA in the future.
Collapse
Affiliation(s)
- Hongxia Cheng
- School of Biological and Pharmaceutical Engineering, Wuhan Huaxia Institute of Technology, Wuhan, 430223, Hubei, China.
| | - Yuhua Liu
- School of Biological and Pharmaceutical Engineering, Wuhan Huaxia Institute of Technology, Wuhan, 430223, Hubei, China
| | - Gang Chen
- School of Biological and Pharmaceutical Engineering, Wuhan Huaxia Institute of Technology, Wuhan, 430223, Hubei, China
| |
Collapse
|
9
|
Song K, Artibani M. The role of DNA methylation in ovarian cancer chemoresistance: A narrative review. Health Sci Rep 2023; 6:e1235. [PMID: 37123549 PMCID: PMC10140645 DOI: 10.1002/hsr2.1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Background and Aims Ovarian cancer (OC) is the most lethal gynecological cancer. In 2018, it was responsible for over 180,000 deaths worldwide. The high mortality rate is the culmination of a lack of early diagnosis and high rates of chemotherapy resistance, which is synonymous with disease recurrence. Over the last two decades, an increasingly significant role of epigenetic mechanisms, in particular DNA methylation, has emerged. This review will discuss several of the most significant genes whose hypo/hypermethylation profiles are associated with chemoresistance. Aside from functionally elucidating and evaluating these epimutations, this review will discuss recent trials of DNA methyltransferase inhibitors (DNMTi). Finally, we will propose future directions that could enhance the feasibility of utilizing these candidate epimutations as clinical biomarkers. Methods To perform this review, a comprehensive literature search based on our keywords was conducted across the online databases PubMed and Google Scholar for identifying relevant studies published up until August 2022. Results Epimutations affecting MLH1, MSH2, and Ras-association domain family 1 isoform A (DNA damage repair and apoptosis); ATP-binding cassette subfamily B member 1 and methylation-controlled J (drug export); secreted frizzled-related proteins (Wnt/β-catenin signaling), neurocalcin delta (calcium and G protein-coupled receptor signaling), and zinc finger protein 671 all have potential as biomarkers for chemoresistance. However, specific uncertainties relating to these epimutations include histotype-specific differences, intrinsic versus acquired chemoresistance, and the interplay with complete surgical debulking. DNMTi for chemoresistant OC patients has shown some promise; however, issues surrounding their efficacy and dose-limiting toxicities remain; a personalized approach is required to maximize their effectiveness. Conclusion Establishing a panel of aberrantly methylated chemoresistance-related genes to predict chemoresponsiveness and patients' suitability to DNMTi could significantly reduce OC recurrence, while improving DNMTi therapy viability. To achieve this, a large-scale prospective genome-wide DNA methylation profile study that spans different histotypes, includes paired samples (before and after chemotherapy), and integrates transcriptomic and methylomic analysis, is warranted.
Collapse
Affiliation(s)
- Kaiyang Song
- Green Templeton CollegeUniversity of OxfordOxfordUK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Nuffield Department of Women's & Reproductive HealthUniversity of OxfordOxfordUK
| |
Collapse
|
10
|
Kacsir I, Sipos A, Major E, Bajusz N, Bényei A, Buglyó P, Somsák L, Kardos G, Bai P, Bokor É. Half-Sandwich Type Platinum-Group Metal Complexes of C-Glucosaminyl Azines: Synthesis and Antineoplastic and Antimicrobial Activities. Molecules 2023; 28:molecules28073058. [PMID: 37049820 PMCID: PMC10096180 DOI: 10.3390/molecules28073058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
While platinum-based compounds such as cisplatin form the backbone of chemotherapy, the use of these compounds is limited by resistance and toxicity, driving the development of novel complexes with cytostatic properties. In this study, we synthesized a set of half-sandwich complexes of platinum-group metal ions (Ru(II), Os(II), Ir(III) and Rh(III)) with an N,N-bidentate ligand comprising a C-glucosaminyl group and a heterocycle, such as pyridine, pyridazine, pyrimidine, pyrazine or quinoline. The sugar-containing ligands themselves are unknown compounds and were obtained by nucleophilic additions of lithiated heterocycles to O-perbenzylated 2-nitro-glucal. Reduction of the adducts and, where necessary, subsequent protecting group manipulations furnished the above C-glucosaminyl heterocycles in their O-perbenzylated, O-perbenzoylated and O-unprotected forms. The derived complexes were tested on A2780 ovarian cancer cells. Pyridine, pyrazine and pyridazine-containing complexes proved to be cytostatic and cytotoxic on A2780 cells, while pyrimidine and quinoline derivatives were inactive. The best complexes contained pyridine as the heterocycle. The metal ion with polyhapto arene/arenyl moiety also impacted on the biological activity of the complexes. Ruthenium complexes with p-cymene and iridium complexes with Cp* had the best performance in ovarian cancer cells, followed by osmium complexes with p-cymene and rhodium complexes with Cp*. Finally, the chemical nature of the protective groups on the hydroxyl groups of the carbohydrate moiety were also key determinants of bioactivity; in particular, O-benzyl groups were superior to O-benzoyl groups. The IC50 values of the complexes were in the low micromolar range, and, importantly, the complexes were less active against primary, untransformed human dermal fibroblasts; however, the anticipated therapeutic window is narrow. The bioactive complexes exerted cytostasis on a set of carcinomas such as cell models of glioblastoma, as well as breast and pancreatic cancers. Furthermore, the same complexes exhibited bacteriostatic properties against multiresistant Gram-positive Staphylococcus aureus and Enterococcus clinical isolates in the low micromolar range.
Collapse
Affiliation(s)
- István Kacsir
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., H-4032 Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Hungary
- MTA-DE Cell Biology and Signaling Research Group ELKH, H-4032 Debrecen, Hungary
| | - Evelin Major
- Department of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary
| | - Nikolett Bajusz
- Department of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Bényei
- Department of Physical Chemistry, Faculty of Sciences and Technology, University of Debrecen, Egyetem Tér 1., H-4032 Debrecen, Hungary
| | - Péter Buglyó
- Department of Inorganic & Analytical Chemistry, Faculty of Sciences and Technology, University of Debrecen, Egyetem Tér 1., H-4032 Debrecen, Hungary
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., H-4032 Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Hungary
- MTA-DE Cell Biology and Signaling Research Group ELKH, H-4032 Debrecen, Hungary
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, H-4032 Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: (P.B.); (É.B.); Tel.: +36-524-123-45 (P.B.); +36-525-129-00 (ext. 22474) (É.B.)
| | - Éva Bokor
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
- Correspondence: (P.B.); (É.B.); Tel.: +36-524-123-45 (P.B.); +36-525-129-00 (ext. 22474) (É.B.)
| |
Collapse
|
11
|
Ovarian Cancer—Insights into Platinum Resistance and Overcoming It. Medicina (B Aires) 2023; 59:medicina59030544. [PMID: 36984544 PMCID: PMC10057458 DOI: 10.3390/medicina59030544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. Platinum-based chemotherapy is the backbone of treatment for ovarian cancer, and although the majority of patients initially have a platinum-sensitive disease, through multiple recurrences, they will acquire resistance. Platinum-resistant recurrent ovarian cancer has a poor prognosis and few treatment options with limited efficacy. Resistance to platinum compounds is a complex process involving multiple mechanisms pertaining not only to the tumoral cell but also to the tumoral microenvironment. In this review, we discuss the molecular mechanism involved in ovarian cancer cells’ resistance to platinum-based chemotherapy, focusing on the alteration of drug influx and efflux pathways, DNA repair, the dysregulation of epigenetic modulation, and the involvement of the tumoral microenvironment in the acquisition of the platinum-resistant phenotype. Furthermore, we review promising alternative treatment approaches that may improve these patients’ poor prognosis, discussing current strategies, novel combinations, and therapeutic agents.
Collapse
|
12
|
Silva R, Glennon K, Metoudi M, Moran B, Salta S, Slattery K, Treacy A, Martin T, Shaw J, Doran P, Lynch L, Jeronimo C, Perry AS, Brennan DJ. Unveiling the epigenomic mechanisms of acquired platinum-resistance in high-grade serous ovarian cancer. Int J Cancer 2023; 153:120-132. [PMID: 36883413 DOI: 10.1002/ijc.34496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Resistance to platinum-based chemotherapy is the major cause of death from high-grade serous ovarian cancer (HGSOC). We hypothesise that detection of specific DNA methylation changes may predict platinum resistance in HGSOC. Using a publicly available "discovery" dataset we examined epigenomic and transcriptomic alterations between primary platinum-sensitive (n = 32) and recurrent acquired drug resistant HGSOC (n = 28) and identified several genes involved in immune and chemoresistance-related pathways. Validation via high-resolution melt analysis of these findings, in cell lines and HGSOC tumours, demonstrated the most consistent changes were observed in three of the genes: APOBEC3A, NKAPL and PDCD1. Plasma samples from an independent HGSOC cohort (n = 17) were analysed using droplet digital PCR. Hypermethylation of NKAPL was detected in 46% and hypomethylation of APOBEC3A in 69% of plasma samples taken from women with relapsed HGSOC (n = 13), with no alterations identified in disease-free patients (n = 4). Following these results, and using a CRISPR-Cas9 approach, we were also able to demonstrate that in vitro NKAPL promoter demethylation increased platinum sensitivity by 15%. Overall, this study demonstrates the importance of aberrant methylation, especially of the NKAPL gene, in acquired platinum resistance in HGSOC.
Collapse
Affiliation(s)
- Romina Silva
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Kate Glennon
- UCD Gynaecological Oncology Group, UCD School of Medicine Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Metoudi
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Bruce Moran
- Department of Pathology, St Vincent's University Hospital, Dublin, Ireland
| | - Sofia Salta
- Cancer Biology & Epigenetics Group, IPO Porto Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto /Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal
| | - Karen Slattery
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Ann Treacy
- Department of Pathology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Terri Martin
- Clinical Research Centre, UCD School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Jacqui Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Peter Doran
- Clinical Research Centre, UCD School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Lydia Lynch
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Carmen Jeronimo
- Cancer Biology & Epigenetics Group, IPO Porto Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto /Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Antoinette S Perry
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Donal J Brennan
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
- UCD Gynaecological Oncology Group, UCD School of Medicine Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
13
|
Kacsir I, Sipos A, Kiss T, Major E, Bajusz N, Tóth E, Buglyó P, Somsák L, Kardos G, Bai P, Bokor É. Half sandwich-type osmium, ruthenium, iridium and rhodium complexes with bidentate glycosyl heterocyclic ligands induce cytostasis in platinum-resistant ovarian cancer cells and bacteriostasis in Gram-positive multiresistant bacteria. Front Chem 2023; 11:1086267. [PMID: 36793764 PMCID: PMC9923724 DOI: 10.3389/fchem.2023.1086267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
The toxicity of and resistance to platinum complexes as cisplatin, oxaliplatin or carboplatin calls for the replacement of these therapeutic agents in clinical settings. We have previously identified a set of half sandwich-type osmium, ruthenium and iridium complexes with bidentate glycosyl heterocyclic ligands exerting specific cytostatic activity on cancer cells but not on non-transformed primary cells. The apolar nature of the complexes, conferred by large, apolar benzoyl protective groups on the hydroxyl groups of the carbohydrate moiety, was the main molecular feature to induce cytostasis. We exchanged the benzoyl protective groups to straight chain alkanoyl groups with varying length (3 to 7 carbon units) that increased the IC50 value as compared to the benzoyl-protected complexes and rendered the complexes toxic. These results suggest a need for aromatic groups in the molecule. The pyridine moiety of the bidentate ligand was exchanged for a quinoline group to enlarge the apolar surface of the molecule. This modification decreased the IC50 value of the complexes. The complexes containing [(η6-p-cymene)Ru(II)], [(η6-p-cymene)Os(II)] or [(η5-Cp*)Ir(III)] were biologically active unlike the complex containing [(η5-Cp*)Rh(III)]. The complexes with cytostatic activity were active on ovarian cancer (A2780, ID8), pancreatic adenocarcinoma (Capan2), sarcoma (Saos) and lymphoma cell lines (L428), but not on primary dermal fibroblasts and their activity was dependent on reactive oxygen species production. Importantly, these complexes were cytostatic on cisplatin-resistant A2780 ovarian cancer cells with similar IC50 values as on cisplatin-sensitive A2780 cells. In addition, the quinoline-containing Ru and Os complexes and the short chain alkanoyl-modified complexes (C3 and C4) proved to be bacteriostatic in multiresistant Gram-positive Enterococcus and Staphylococcus aureus isolates. Hereby, we identified a set of complexes with submicromolar to low micromolar inhibitory constants against a wide range of cancer cells, including platinum resistant cells and against multiresistant Gram-positive bacteria.
Collapse
Affiliation(s)
- István Kacsir
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, Debrecen, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tímea Kiss
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Evelin Major
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - Nikolett Bajusz
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary
| | - Éva Bokor
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Kumar U, Castellanos-Uribe M, May ST, Yagüe E. Adaptive resistance is not responsible for long-term drug resistance in a cellular model of triple negative breast cancer. Gene 2023; 850:146930. [PMID: 36195266 DOI: 10.1016/j.gene.2022.146930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Resistance to cancer therapeutics represents a leading cause of mortality and is particularly important in cancers, such as triple negative breast cancer, for which no targeted therapy is available, as these are only treated with traditional chemotherapeutics. Cancer, as well as bacterial, drug resistance can be intrinsic, acquired or adaptive. Adaptive cancer drug resistance is gaining attention as a mechanism for the generation of long-term drug resistance as is the case with bacterial antibiotic resistance. We have used a cellular model of triple negative breast cancer (CAL51) and its drug resistance derivative (CALDOX) to gain insight into genome-wide expression changes associated with long-term doxorubicin (a widely used anthracycline for cancer treatment) resistance and doxorubicin-induced stress. Previous work indicates that both naïve and resistance cells have a functional p53-p21 axis controlling cell cycle at G1, although this is not a driver for drug resistance, but down-regulation of TOP2A (topoisomerase IIα). As expected, CALDOX cells have a signature characterized, in addition to down-regulation of TOP2A, by genes and pathways associated with drug resistance, metastasis and stemness. Both CAL51 and CALDOX stress signatures share 12 common genes (TRIM22, FAS, SPATA18, SULF2, CDKN1A, GDF15, MYO6, CXCL5, CROT, EPPK1, ZMAT3 and CD44), with roles in the above-mentioned pathways, indicating that these cells have similar functional responses to doxorubicin relaying on the p53 control of apoptosis. Eight genes are shared by both drug stress signatures (in CAL51 and CALDOX cells) and CALDOX resistant cells (FAS, SULF2, CDKN1A, CXCL5, CD44, SPATA18, TRIM22 and CROT), many of them targets of p53. This corroborates experimental data indicating that CALDOX cells, even in the absence of drug, have activated, at least partially, the p53-p21 axis and DNA damage response. Although this eight-gene signature might be an indicator of adaptive resistance, as this transient phenomenon due to short-term stress may not revert to its original state upon withdrawal of the stressor, previous experimental data indicates that the p53-p21 axis is not responsible for doxorubicin resistance. Importantly, TOP2A is not responsive to doxorubicin treatment and thus absent in both drug stress signatures. This indicates that during the generation of doxorubicin resistance, cells acquire genetic changes likely to be random, leading to down regulation of TOP2A, but selected during the generation of cells due to the presence of drug in the culture medium. This poses a considerable constraint for the development of strategies aimed at avoiding the emergence of drug resistance in the clinic.
Collapse
Affiliation(s)
- Uttom Kumar
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Marcos Castellanos-Uribe
- Nottingham Arabidopsis Stock Centre, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Sean T May
- Nottingham Arabidopsis Stock Centre, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Ernesto Yagüe
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom.
| |
Collapse
|
15
|
Lugones Y, Loren P, Salazar LA. Cisplatin Resistance: Genetic and Epigenetic Factors Involved. Biomolecules 2022; 12:biom12101365. [PMID: 36291573 PMCID: PMC9599500 DOI: 10.3390/biom12101365] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin (CDDP) is the drug of choice against different types of cancer. However, tumor cells can acquire resistance to the damage caused by cisplatin, generating genetic and epigenetic changes that lead to the generation of resistance and the activation of intrinsic resistance mechanisms in cancer cells. Among them, we can find mutations, alternative splicing, epigenetic-driven expression changes, and even post-translational modifications of proteins. However, the molecular mechanisms by which CDDP resistance develops are not clear but are believed to be multi-factorial. This article highlights a description of cisplatin, which includes action mechanism, resistance, and epigenetic factors involved in cisplatin resistance.
Collapse
Affiliation(s)
- Yuliannis Lugones
- Doctoral Programme in Sciences with Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: ; Tel.: +56-452-596-724
| |
Collapse
|
16
|
D’Souza AM, Gnanamony M, Thomas M, Hanley P, Kanabar D, de Alarcon P, Muth A, Timchenko N. Second Generation Small Molecule Inhibitors of Gankyrin for the Treatment of Pediatric Liver Cancer. Cancers (Basel) 2022; 14:3068. [PMID: 35804840 PMCID: PMC9265042 DOI: 10.3390/cancers14133068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Gankyrin, a member of the 26S proteasome, is an overexpressed oncoprotein in hepatoblastoma (HBL) and hepatocellular carcinoma (HCC). Cjoc42 was the first small molecule inhibitor of Gankyrin developed; however, the IC50 values of >50 μM made them unattractive for clinical use. Second-generation inhibitors demonstrate a stronger affinity toward Gankyrin and increased cytotoxicity. The aim of this study was to characterize the in vitro effects of three cjoc42 derivatives. Methods: Experiments were performed on the HepG2 (HBL) and Hep3B (pediatric HCC) cell lines. We evaluated the expression of TSPs, cell cycle markers, and stem cell markers by Western blotting and/or real-time quantitative reverse transcription PCR. We also performed apoptotic, synergy, and methylation assays. Results: The treatment with cjoc42 derivatives led to an increase in TSPs and a dose-dependent decrease in the stem cell phenotype in both cell lines. An increase in apoptosis was only seen with AFM-1 and -2 in Hep3B cells. Drug synergy was seen with doxorubicin, and antagonism was seen with cisplatin. In the presence of cjoc42 derivatives, the 20S subunit of the 26S proteasome was more available to transport doxorubicin to the nucleus, leading to synergy. Conclusion: Small-molecule inhibitors for Gankyrin are a promising therapeutic strategy, especially in combination with doxorubicin.
Collapse
Affiliation(s)
- Amber M. D’Souza
- Department of Pediatrics, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA; (M.G.); (M.T.); (P.H.); (P.d.A.)
| | - Manu Gnanamony
- Department of Pediatrics, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA; (M.G.); (M.T.); (P.H.); (P.d.A.)
| | - Maria Thomas
- Department of Pediatrics, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA; (M.G.); (M.T.); (P.H.); (P.d.A.)
| | - Peter Hanley
- Department of Pediatrics, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA; (M.G.); (M.T.); (P.H.); (P.d.A.)
| | - Dipti Kanabar
- Department of Pharmaceutical Sciences, St. John’s University, 8000 Utopia Pkwy, Jamaica, NY 11439, USA; (D.K.); (A.M.)
| | - Pedro de Alarcon
- Department of Pediatrics, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA; (M.G.); (M.T.); (P.H.); (P.d.A.)
| | - Aaron Muth
- Department of Pharmaceutical Sciences, St. John’s University, 8000 Utopia Pkwy, Jamaica, NY 11439, USA; (D.K.); (A.M.)
| | - Nikolai Timchenko
- Division of Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| |
Collapse
|
17
|
Kasyanenko N, Qiushi Z, Bakulev V, Sokolov P, Yakovlev K. DNA Conformational Changes Induced by Its Interaction with Binuclear Platinum Complexes in Solution Indicate the Molecular Mechanism of Platinum Binding. Polymers (Basel) 2022; 14:polym14102044. [PMID: 35631926 PMCID: PMC9143540 DOI: 10.3390/polym14102044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Platinum anticancer drugs inhibit the division of cancer cells through a DNA binding mechanism. The bimetallic platinum compounds have a possibility for blocking DNA replication via the cross-linking of DNA functional groups at different distances. Many compounds with metals of the platinum group have been tested for possible antitumor activity. The main target of their biological action is a DNA molecule. A combined approach to the study of the interaction of DNA with biologically active compounds of this type is proposed. The capabilities of various methods (hydrodynamic, spectral, microscopy) in obtaining information on the type of binding of coordination compounds to DNA are compared. The analysis of DNA binding with platinum binuclear compounds containing pyrazine, tetrazole, 5- methyltetrazole, 3-propanediamine as bridging ligands in a solution was carried out with the methods of circular dichroism (CD), luminescent spectroscopy (LS), low gradient viscometry (LGV), flow birefringence (FB) and atomic force microscopy (AFM). The competitive binding of different platinum compounds to DNA and the analysis of platinum attachment to DNA after protonation of its nitrogen bases simply indicates the involvement of N7 guanine in binding. Fluorescent dye DAPI was also used to recognize the location of platinum compounds in DNA grooves. DNA conformational changes recorded by variations in persistent length, polyelectrolyte swelling, DNA secondary structure, and its stability clarify the molecular mechanism of the biological activity of platinum compounds.
Collapse
Affiliation(s)
- Nina Kasyanenko
- Department of Molecular Biophysics and Polymer Physics, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (Z.Q.); (V.B.); (P.S.)
- Correspondence:
| | - Zhang Qiushi
- Department of Molecular Biophysics and Polymer Physics, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (Z.Q.); (V.B.); (P.S.)
| | - Vladimir Bakulev
- Department of Molecular Biophysics and Polymer Physics, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (Z.Q.); (V.B.); (P.S.)
| | - Petr Sokolov
- Department of Molecular Biophysics and Polymer Physics, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (Z.Q.); (V.B.); (P.S.)
| | - Konstantin Yakovlev
- Department of Analytical Chemistry, Saint Petersburg State Chemical-Pharmaceutical Academy, 14, Prof. Popov str., 197376 St. Petersburg, Russia;
| |
Collapse
|
18
|
Alghamian Y, Soukkarieh C, Abbady AQ, Murad H. Investigation of role of CpG methylation in some epithelial mesenchymal transition gene in a chemoresistant ovarian cancer cell line. Sci Rep 2022; 12:7494. [PMID: 35523936 PMCID: PMC9076839 DOI: 10.1038/s41598-022-11634-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Ovarian cancer is one of the lethal gynecologic cancers. Chemoresistance is an essential reason for treatment failure and high mortality. Emerging evidence connects epithelial-mesenchymal transition (EMT) like changes and acquisition of chemoresistance in cancers. Including EMT, DNA methylation influences cellular processes. Here, EMT-like changes were investigated in cisplatin-resistant A2780 ovarian cancer cells (A2780cis), wherein role of DNA methylation in some EMT genes regulations was studied. Cell viability assay was carried out to test the sensitivity of A2780, and A2780cis human cancer cell lines to cisplatin. Differential mRNA expression of EMT markers using qPCR was conducted to investigate EMT like changes. CpG methylation role in gene expression regulation was investigated by 5-azacytidine (5-aza) treatment. DNA methylation changes in EMT genes were identified using Methylscreen assay between A2780 and A2780cis cells. In order to evaluate if DNA methylation changes are causally underlying EMT, treatment with 5-aza followed by Cisplatin was done on A2780cis cells. Accordingly, morphological changes were studied under the microscope, whereas EMT marker's gene expression changes were investigated using qPCR. In this respect, A2780cis cell line has maintained its cisplatin tolerance ability and exhibits phenotypic changes congruent with EMT. Methylscreen assay and qPCR study have revealed DNA hypermethylation in promoters of epithelial adhesion molecules CDH1 and EPCAM in A2780cis compared to the cisplatin-sensitive parental cells. These changes were concomitant with gene expression down-regulation. DNA hypomethylation associated with transcription up-regulation of the mesenchymal marker TWIST2 was observed in the resistant cells. Azacytidine treatment confirmed DNA methylation role in regulating gene expression of CDH1, EPCAM and TWIST2 genes. A2780cis cell line undergoes EMT like changes, and EMT genes are regulated by DNA methylation. To that end, a better understanding of the molecular alterations that correlate with chemoresistance may lead to therapeutic benefits such as chemosensitivity restoration.
Collapse
Affiliation(s)
- Yaman Alghamian
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Abdul Qader Abbady
- Human Genetics Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Hossam Murad
- Human Genetics Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| |
Collapse
|
19
|
Lee AH, Mejia Peña C, Dawson MR. Comparing the Secretomes of Chemorefractory and Chemoresistant Ovarian Cancer Cell Populations. Cancers (Basel) 2022; 14:1418. [PMID: 35326569 PMCID: PMC8946241 DOI: 10.3390/cancers14061418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) constitutes the majority of all ovarian cancer cases and has staggering rates of both refractory and recurrent disease. While most patients respond to the initial treatment with paclitaxel and platinum-based drugs, up to 25% do not, and of the remaining that do, 75% experience disease recurrence within the subsequent two years. Intrinsic resistance in refractory cases is driven by environmental stressors like tumor hypoxia which alter the tumor microenvironment to promote cancer progression and resistance to anticancer drugs. Recurrent disease describes the acquisition of chemoresistance whereby cancer cells survive the initial exposure to chemotherapy and develop adaptations to enhance their chances of surviving subsequent treatments. Of the environmental stressors cancer cells endure, exposure to hypoxia has been identified as a potent trigger and priming agent for the development of chemoresistance. Both in the presence of the stress of hypoxia or the therapeutic stress of chemotherapy, cancer cells manage to cope and develop adaptations which prime populations to survive in future stress. One adaptation is the modification in the secretome. Chemoresistance is associated with translational reprogramming for increased protein synthesis, ribosome biogenesis, and vesicle trafficking. This leads to increased production of soluble proteins and extracellular vesicles (EVs) involved in autocrine and paracrine signaling processes. Numerous studies have demonstrated that these factors are largely altered between the secretomes of chemosensitive and chemoresistant patients. Such factors include cytokines, growth factors, EVs, and EV-encapsulated microRNAs (miRNAs), which serve to induce invasive molecular, biophysical, and chemoresistant phenotypes in neighboring normal and cancer cells. This review examines the modifications in the secretome of distinct chemoresistant ovarian cancer cell populations and specific secreted factors, which may serve as candidate biomarkers for aggressive and chemoresistant cancers.
Collapse
Affiliation(s)
- Amy H. Lee
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA;
| | - Carolina Mejia Peña
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA;
| | - Michelle R. Dawson
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA;
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA;
| |
Collapse
|
20
|
Reactive Oxygen Species Production Is Responsible for Antineoplastic Activity of Osmium, Ruthenium, Iridium and Rhodium Half-Sandwich Type Complexes with Bidentate Glycosyl Heterocyclic Ligands in Various Cancer Cell Models. Int J Mol Sci 2022; 23:ijms23020813. [PMID: 35054999 PMCID: PMC8776094 DOI: 10.3390/ijms23020813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023] Open
Abstract
Platinum complexes are used in chemotherapy, primarily as antineoplastic agents. In this study, we assessed the cytotoxic and cytostatic properties of a set of osmium(II), ruthenium(II), iridium(III) and rhodium(III) half-sandwich-type complexes with bidentate monosaccharide ligands. We identified 5 compounds with moderate to negligible acute cytotoxicity but with potent long-term cytostatic activity. These structure-activity relationship studies revealed that: (1) osmium(II) p-cymene complexes were active in all models, while rhodium(III) and iridium(III) Cp* complexes proved largely inactive; (2) the biological effect was influenced by the nature of the central azole ring of the ligands—1,2,3-triazole was the most effective, followed by 1,3,4-oxadiazole, while the isomeric 1,2,4-oxadiazole abolished the cytostatic activity; (3) we found a correlation between the hydrophobic character of the complexes and their cytostatic activity: compounds with O-benzoyl protective groups on the carbohydrate moiety were active, compared to O-deprotected ones. The best compound, an osmium(II) complex, had an IC50 value of 0.70 µM. Furthermore, the steepness of the inhibitory curve of the active complexes suggested cooperative binding; cooperative molecules were better inhibitors than non-cooperative ones. The cytostatic activity of the active complexes was abolished by a lipid-soluble antioxidant, vitamin E, suggesting that oxidative stress plays a major role in the biological activity of the complexes. The complexes were active on ovarian cancer, pancreatic adenocarcinoma, osteosarcoma and Hodgkin’s lymphoma cells, but were inactive on primary, non-transformed human fibroblasts, indicating their applicability as potential anticancer agents.
Collapse
|
21
|
Fiegl H, Hagenbuchner J, Kyvelidou C, Seeber B, Sopper S, Tsibulak I, Wieser V, Reiser E, Roessler J, Huhtinen K, Carpén O, Parson W, Sprung S, Marth C, Ausserlechner MJ, Zeimet AG. Dubious effects of methadone as an "anticancer" drug on ovarian cancer cell-lines and patient-derived tumor-spheroids. Gynecol Oncol 2022; 165:129-136. [PMID: 35033381 DOI: 10.1016/j.ygyno.2022.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The opioid agonist D,L-methadone exerts analgesic effects via the mu opioid receptor, encoded by OPRM1 and therefore plays a role in chronic pain management. In preclinical tumor-models D,L-methadone shows apoptotic and chemo-sensitizing effects and was therefore hyped as an off-label "anticancer" drug without substantiation from clinical trials. Its effects in ovarian cancer (OC) are completely unexplored. METHODS We analyzed OPRM1-mRNA expression in six cisplatin-sensitive, two cisplatin-resistant OC cell-lines, 170 OC tissue samples and 12 non-neoplastic control tissues. Pro-angiogenetic, cytotoxic and apoptotic effects of D,L-methadone were evaluated in OC cell-lines and four patient-derived tumor-spheroid models. RESULTS OPRM1 was transcriptionally expressed in 69% of OC-tissues and in three of eight OC cell-lines. D,L-methadone exposure significantly reduced cell-viability in five OC cell-lines irrespective of OPRM1 expression. D,L-methadone, applied alone or combined with cisplatin, showed no significant effects on apoptosis or VEGF secretion in cell-lines. Notably, in two of the four spheroid models, treatment with D,L-methadone significantly enhanced cell growth (by up to 121%), especially after long-term exposure. This is consistent with the observed attenuation of the inhibitory effects of cisplatin in three spheroid models when adding D,L-methadone. The effect of methadone treatment on VEGF secretion in tumor-spheroids was inconclusive. CONCLUSIONS Our study demonstrates that certain OC samples express OPRM1, which, however, is not a prerequisite for D,L-methadone function. As such, D,L-methadone may exert also detrimental effects by stimulating the growth of certain OC-cells and abrogating cisplatin's therapeutic effect.
Collapse
Affiliation(s)
- Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Hagenbuchner
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
| | - Christiana Kyvelidou
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Beata Seeber
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Sieghart Sopper
- Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria; Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Irina Tsibulak
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Wieser
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Reiser
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Roessler
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kaisa Huhtinen
- Cancer Research Program, Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland
| | - Olli Carpén
- Cancer Research Program, Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland; Research Programs Unit, Genome-Scale Biology and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA
| | - Susanne Sprung
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Alain G Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
22
|
Wang P, Hu Y, Qu P, Zhao Y, Liu J, Zhao J, Kong B. Protein tyrosine phosphatase receptor type Z1 inhibits the cisplatin resistance of ovarian cancer by regulating PI3K/AKT/mTOR signal pathway. Bioengineered 2022; 13:1931-1941. [PMID: 35001804 PMCID: PMC8805848 DOI: 10.1080/21655979.2021.2022268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Most patients with ovarian cancer (OC) get remission after undergoing cytoreductive surgery and platinum-based standard chemotherapy, but more than 50% of patients with advanced OC relapse within the first 5 years after treatment and develop resistance to standard chemotherapy. The production of medicinal properties is the main reason for the poor prognosis and high mortality of OC patients. Cisplatin (DDP) resistance is a major cause for poor prognosis of OC patients. PTPRZ1 can regulate the growth and apoptosis of ovarian cancer cells, while the molecular mechanism remains unknown. This study was designed to investigate the roles of PTPRZ1 in DDP-resistant OC cells and possible mechanism. PTPRZ1 expression in OC tissues and normal tissues was analyzed by GEPIA database and verified by Real-time Quantitative Reverse Transcription PCR (RT-PCR) assay. PTPRZ1 expression in normal ovarian cancer cells and DDP-resistant OC cells was also analyzed. Subsequently, RT-PCR, Western blot, MTT experiment and flow cytometry were used to assess the effects of PTPRZ1-PI3K/AKT/mTOR regulating axis on DDP resistance of OC. PTPRZ1 expression was abnormally low in OC tissues, and notably reduced in DDP-resistant OC cells. MTT experiment and flow cytometer indicated that overexpression of PTPRZ1 enhanced the DDP sensitivity of OC cells and promoted the cell apoptosis. Moreover, the results of our research showed that PTPRZ1 might exert its biological effects through blocking PI3K/AKT/mTOR pathway. PTPRZ1 overexpression inhibitied OC tumor growth and resistance to DDP in vivo. Overall, PTPRZ1 might suppress the DDP resistance of OC and induce the cytotoxicity by blocking PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Peng Wang
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Pengpeng Qu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Ying Zhao
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Liu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Jianguo Zhao
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Beihua Kong
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
23
|
Khan MA, Vikramdeo KS, Sudan SK, Singh S, Wilhite A, Dasgupta S, Rocconi RP, Singh AP. Platinum-resistant ovarian cancer: From drug resistance mechanisms to liquid biopsy-based biomarkers for disease management. Semin Cancer Biol 2021; 77:99-109. [PMID: 34418576 PMCID: PMC8665066 DOI: 10.1016/j.semcancer.2021.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Resistance to platinum-based chemotherapy is a major clinical challenge in ovarian cancer, contributing to the high mortality-to-incidence ratio. Management of the platinum-resistant disease has been difficult due to diverse underlying molecular mechanisms. Over the past several years, research has revealed several novel molecular targets that are being explored as biomarkers for treatment planning and monitoring of response. The therapeutic landscape of ovarian cancer is also rapidly evolving, and alternative therapies are becoming available for the recurrent platinum-resistant disease. This review provides a snapshot of platinum resistance mechanisms and discusses liquid-based biomarkers and their potential utility in effective management of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Sarabjeet Kour Sudan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Annelise Wilhite
- Department of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Santanu Dasgupta
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Rodney Paul Rocconi
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States.
| |
Collapse
|
24
|
Epigenetic Mechanisms and Therapeutic Targets in Chemoresistant High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13235993. [PMID: 34885103 PMCID: PMC8657426 DOI: 10.3390/cancers13235993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common ovarian cancer subtype, and the overall survival rate has not improved in the last three decades. Currently, most patients develop recurrent disease within 3 years and succumb to the disease within 5 years. This is an important area of research, as the major obstacle to the treatment of HGSOC is the development of resistance to platinum chemotherapy. The cause of chemoresistance is still largely unknown and may be due to epigenetics modifications that are driving HGSOC metastasis and treatment resistance. The identification of epigenetic changes in chemoresistant HGSOC enables the development of epigenetic modulating drugs that may be used to improve outcomes. Several epigenetic modulating drugs have displayed promise as drug targets for HGSOC, such as demethylating agents azacitidine and decitabine. Others, such as histone deacetylase inhibitors and miRNA-targeting therapies, demonstrated promising preclinical results but resulted in off-target side effects in clinical trials. This article reviews the epigenetic modifications identified in chemoresistant HGSOC and clinical trials utilizing epigenetic therapies in HGSOC.
Collapse
|
25
|
Giordano M, Decio A, Battistini C, Baronio M, Bianchi F, Villa A, Bertalot G, Freddi S, Lupia M, Jodice MG, Ubezio P, Colombo N, Giavazzi R, Cavallaro U. L1CAM promotes ovarian cancer stemness and tumor initiation via FGFR1/SRC/STAT3 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:319. [PMID: 34645505 PMCID: PMC8513260 DOI: 10.1186/s13046-021-02117-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cancer stem cells (CSC) have been implicated in tumor progression. In ovarian carcinoma (OC), CSC drive tumor formation, dissemination and recurrence, as well as drug resistance, thus contributing to the high death-to-incidence ratio of this disease. However, the molecular basis of such a pathogenic role of ovarian CSC (OCSC) has been elucidated only to a limited extent. In this context, the functional contribution of the L1 cell adhesion molecule (L1CAM) to OC stemness remains elusive. METHODS The expression of L1CAM was investigated in patient-derived OCSC. The genetic manipulation of L1CAM in OC cells provided gain and loss-of-function models that were then employed in cell biological assays as well as in vivo tumorigenesis experiments to assess the role of L1CAM in OC cell stemness and in OCSC-driven tumor initiation. We applied antibody-mediated neutralization to investigate L1CAM druggability. Biochemical approaches were then combined with functional in vitro assays to study the molecular mechanisms underlying the functional role of L1CAM in OCSC. RESULTS We report that L1CAM is upregulated in patient-derived OCSC. Functional studies showed that L1CAM promotes several stemness-related properties in OC cells, including sphere formation, tumor initiation and chemoresistance. These activities were repressed by an L1CAM-neutralizing antibody, pointing to L1CAM as a druggable target. Mechanistically, L1CAM interacted with and activated fibroblast growth factor receptor-1 (FGFR1), which in turn induced the SRC-mediated activation of STAT3. The inhibition of STAT3 prevented L1CAM-dependent OC stemness and tumor initiation. CONCLUSIONS Our study implicate L1CAM in the tumorigenic function of OCSC and point to the L1CAM/FGFR1/SRC/STAT3 signaling pathway as a novel driver of OC stemness. We also provide evidence that targeting this pathway can contribute to OC eradication.
Collapse
Affiliation(s)
- Marco Giordano
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - Alessandra Decio
- Laboratory of Tumor Metastasis Therapeutics, Mario Negri Institute for Pharmacological Research - IRCCS, Milan, Italy
| | - Chiara Battistini
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - Micol Baronio
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - Fabrizio Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Alessandra Villa
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy.,Philochem AG, Otelfingen, Switzerland
| | - Giovanni Bertalot
- Department of Experimental Oncology, European Institute of Oncology IRCSS, Milan, Italy.,Division of Anatomical Pathology, Santa Chiara Hospital, Trento, Italy
| | - Stefano Freddi
- Department of Experimental Oncology, European Institute of Oncology IRCSS, Milan, Italy
| | - Michela Lupia
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - Maria Giovanna Jodice
- Department of Experimental Oncology, European Institute of Oncology IRCSS, Milan, Italy
| | - Paolo Ubezio
- Laboratory of Tumor Metastasis Therapeutics, Mario Negri Institute for Pharmacological Research - IRCCS, Milan, Italy
| | - Nicoletta Colombo
- Division of Gynecologic Oncology, European Institute of Oncology IRCSS, Milan, Italy.,University of Milan-Bicocca, Milan, Italy
| | - Raffaella Giavazzi
- Laboratory of Tumor Metastasis Therapeutics, Mario Negri Institute for Pharmacological Research - IRCCS, Milan, Italy
| | - Ugo Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy.
| |
Collapse
|
26
|
Shang H, Zhang H, Ren Z, Zhao H, Zhang Z, Tong J. Characterization of the Potential Role of NTPCR in Epithelial Ovarian Cancer by Integrating Transcriptomic and Metabolomic Analysis. Front Genet 2021; 12:695245. [PMID: 34539736 PMCID: PMC8442909 DOI: 10.3389/fgene.2021.695245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background Epithelial ovarian carcinoma (EOC) is a malignant tumor with high motility in women. Our previous study found that dysregulated nucleoside-triphosphatase cancer-related (NTPCR) was associated with the prognosis of EOC patients, and thus, this present study attempted to explore the potential roles of NTPCR in disease progression. Methods Expressed level of NTPCR was investigated in EOC tissues by RT-qPCR and Western blot analysis. NTPCR shRNA and overexpression vector were generated and transfected into OVCAR-3 or SKOV3 cells to detect the effect of NTPCR on cell proliferation, cell cycle, cell migration, and invasion. Transcriptomic sequencing and metabolite profiling analysis were performed in shNTPCR groups to identify transcriptome or metabolite alteration that might contribute to EOC. Finally, we searched the overlapped signaling pathways correlated with differential metabolites and differentially expressed genes (DEGs) by integrating analysis. Results Comparing para-cancerous tissues, we found that NTPCR is highly expressed in cancer tissues (p < 0.05). Overexpression of NTPCR inhibited cell proliferation, migration, and invasion and reduced the proportion of S- and G2/M-phase cells, while downregulation of NTPCR showed the opposite results. RNA sequencing analysis demonstrated cohorts of DEGs were identified in shNTPCR samples. Protein–protein interaction networks were constructed for DEGs. STAT1 (degree = 43) and OAS2 (degree = 36) were identified as hub genes in the network. Several miRNAs together with target genes were predicted to be crucial genes related to disease progression, including hsa-miR-124-3p, hsa-miR-30a-5p, hsa-miR-146a-5, EP300, GATA2, and STAT3. We also screened the differential metabolites from shNTPCR samples, including 22 upregulated and 22 downregulated metabolites. By integrating transcriptomics and metabolomics analysis, eight overlapped pathways were correlated with these DEGs and differential metabolites, such as primary bile acid biosynthesis, protein digestion, and absorption, pentose, and glucuronate interconversions. Conclusion NTPCR might serve as a tumor suppressor in EOC progression. Our results demonstrated that DEGs and differential metabolites were mainly related to several signaling pathways, which might be a crucial role in the progression of NTPCR regulation of EOC.
Collapse
Affiliation(s)
- Hongkai Shang
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gynecology, Hangzhou First People's Hospital, Hangzhou, China.,Department of Gynecology, Zhejiang University School of Medicine, Hangzhou, China
| | - Huizhi Zhang
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gynecology, Hangzhou First People's Hospital, Hangzhou, China
| | - Ziyao Ren
- Department of Gynecology, Hangzhou First People's Hospital, Hangzhou, China.,Department of Gynecology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongjiang Zhao
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gynecology, Hangzhou First People's Hospital, Hangzhou, China
| | - Zhifen Zhang
- Department of Gynecology, Hangzhou Women's Hospital (Maternity and Child Health Care Hospital), Hangzhou, China
| | - Jinyi Tong
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gynecology, Hangzhou Women's Hospital (Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
27
|
Feng LY, Yan BB, Huang YZ, Li L. Abnormal methylation characteristics predict chemoresistance and poor prognosis in advanced high-grade serous ovarian cancer. Clin Epigenetics 2021; 13:141. [PMID: 34289901 PMCID: PMC8296752 DOI: 10.1186/s13148-021-01133-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/14/2021] [Indexed: 01/29/2023] Open
Abstract
Background Primary or acquired chemoresistance is a key link in the high mortality rate of ovarian cancer. There is no reliable method to predict chemoresistance in ovarian cancer. We hypothesized that specific methylation characteristics could distinguish chemoresistant and chemosensitive ovarian cancer patients. Methods In this study, we used 450 K Infinium Methylation BeadChip to detect the different methylation CpGs between ovarian cancer patients. The differential methylation genes were analyzed by GO and KEGG Pathway bioinformatics analysis. The candidate CpGs were confirmed by pyrosequencing. The expression of abnormal methylation gene was identified by QRT-PCR and IHC. ROC analysis confirmed the ability to predict chemotherapy outcomes. Prognosis was evaluated using Kaplan–Meier. Results In advanced high-grade serous ovarian cancer, 8 CpGs (ITGB6:cg21105318, cg07896068, cg18437633; NCALD: cg27637873, cg26782361, cg16265707; LAMA3: cg20937934, cg13270625) remained hypermethylated in chemoresistant patients. The sensitivity, specificity and AUC of 8 CpGs (ITGB6:cg21105318, cg07896068, cg18437633; NCALD: cg27637873, cg26782361, cg16265707; LAMA3: cg20937934, cg13270625) methylation to predict chemotherapy sensitivity were 63.60–97.00%, 46.40–89.30% and 0.774–0.846. PFS of 6 candidate genes (ITGB6:cg21105318, cg07896068; NCALD: cg27637873, cg26782361, cg16265707; LAMA3: cg20937934) hypermethylation patients was significantly shorter. The expression of NCALD and LAMA3 in chemoresistant patients was lower than that of chemosensitive patients. Spearman analysis showed that NCALD and LAMA3 methylations were negatively correlated with their expression. Conclusions As a new biomarker of chemotherapy sensitivity, hypermethylation of NCALD and LAMA3 is associated with poor PFS in advanced high-grade serous ovarian cancer. In the future, further research on NCALD and LAMA3 will be needed to provide guidance for clinical stratification of demethylation therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01133-2.
Collapse
Affiliation(s)
- Li-Yuan Feng
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital and Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, 71 Hedi Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Bing-Bing Yan
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital and Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, 71 Hedi Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yong-Zhi Huang
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital and Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, 71 Hedi Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Li Li
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital and Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, 71 Hedi Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
28
|
Bacolod MD. The Epigenetic Factors that Drive Cancer Drug Resistance. Curr Cancer Drug Targets 2021; 21:269-273. [PMID: 34112067 DOI: 10.2174/156800962104210527150438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| |
Collapse
|
29
|
To KKW, Cho WCS. Flavonoids Overcome Drug Resistance to Cancer Chemotherapy by Epigenetically Modulating Multiple Mechanisms. Curr Cancer Drug Targets 2021; 21:289-305. [PMID: 33535954 DOI: 10.2174/1568009621666210203111220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Drug resistance is the major reason accounting for the treatment failure in cancer chemotherapy. Dysregulation of the epigenetic machineries is known to induce chemoresistance. It was reported that numerous genes encoding the key mediators in cancer proliferation, apoptosis, DNA repair, and drug efflux are dysregulated in resistant cancer cells by aberrant DNA methylation. The imbalance of various enzymes catalyzing histone post-translational modifications is also known to alter chromatin configuration and regulate multiple drug resistance genes. Alteration in miRNA signature in cancer cells also gives rise to chemoresistance. Flavonoids are a large group of naturally occurring polyphenolic compounds ubiquitously found in plants, fruits, vegetables and traditional herbs. There has been increasing research interest in the health-promoting effects of flavonoids. Flavonoids were shown to directly kill or re-sensitize resistant cancer cells to conventional anticancer drugs by epigenetic mechanisms. In this review, we summarize the current findings of the circumvention of drug resistance by flavonoids through correcting the aberrant epigenetic regulation of multiple resistance mechanisms. More investigations including the evaluation of synergistic anticancer activity, dosing sequence effect, toxicity in normal cells, and animal studies, are warranted to establish the full potential of the combination of flavonoids with conventional chemotherapeutic drugs in the treatment of cancer with drug resistance.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
30
|
LAMA3 DNA methylation and transcriptome changes associated with chemotherapy resistance in ovarian cancer. J Ovarian Res 2021; 14:67. [PMID: 33992120 PMCID: PMC8126133 DOI: 10.1186/s13048-021-00807-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/13/2021] [Indexed: 12/22/2022] Open
Abstract
Objective LAMA3 is a widely studied methylated gene in multiple tumors, but the relationship between chemotherapy resistance in ovarian cancer is unclear. In this study, LAMA3 methylation was predicted by bioinformatics, and the ability of LAMA3 methylation to predict the chemotherapy resistance and prognosis of ovarian cancer was confirmed in experiments. Methods Multiple databases have performed the bioinformatics analysis of methylation and transcription factor binding site (TFBS) on the promoter region of LAMA3 gene. Pyrosequencing detected the methylation of LAMA3. QRT-PCR and immunohistochemistry detected the expression of LAMA3. Real Time Cell Analyzer (RTCA) detects changes in cell proliferation, migration and invasion ability. Flow cytometry was used to detect apoptosis. Results CPG islands of 176 bp, 134 bp, 125 bp and 531 bp were predicted in the promoter region of LAMA3 gene. The 4 prediction results are basically overlapped. 7 transcription factor binding sites were predicted, and the one with the highest score was on the predicted CpG island located in the proximal promoter region. LAMA3 hypermethylation and low expression are both associated with chemotherapy resistance and poor prognosis in ovarian cancer. LAMA3 methylation was negatively correlated with expression. After upregulation of LAMA3, the proliferation ability of chemoresistant ovarian cancer cell decreased, while the ability of apoptosis, invasion and migration increased. Conclusion LAMA3 hypermethylation is associated with chemotherapy resistance and poor prognosis. As a typical CpG island gene, LAMA3(cg20937934) and LAMA3(cg13270625) hypermethylation is negatively correlated with low expression. LAMA3 promotes the invasion, migration and apoptosis of SKOV3DDP. In the future, the mechanism of LAMA3 methylation in ovarian cancer will need to be further studied. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00807-y.
Collapse
|
31
|
Shu J, Xiao L, Yan S, Fan B, Zou X, Yang J. Mechanism of MicroRNA-375 Promoter Methylation in Promoting Ovarian Cancer Cell Malignancy. Technol Cancer Res Treat 2021; 20:1533033820980115. [PMID: 33928819 PMCID: PMC8113360 DOI: 10.1177/1533033820980115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Ovarian cancer (OC) ranks one of the most prevalent fatal tumors of female genital organs. Aberrant promoter methylation triggers changes of microRNA (miR)-375 in OC. Our study aimed to evaluate the mechanism of methylated miR-375 promoter region in OC cell malignancy and to seek the possible treatment for OC. Methods: miR-375 promoter methylation level in OC tissues and cells was detected. miR-375 expression in OC tissues and cell lines was compared with that in demethylated cells. Role of miR-375 in OC progression was measured. Dual-luciferase reporter gene assay was utilized to verify the targeting relationship between miR-375 and Yes-associated protein 1 (YAP1). Then, Wnt/β-catenin pathway-related protein expression was tested. Moreover, xenograft transplantation was applied to confirm the in vitro experiments. Results: Highly methylated miR-375 was seen in OC tissues and cell lines, while its expression was decreased as the promoter methylation increased. Demethylation in OC cells brought miR-375 back to normal level, with obviously declined cell invasion, migration and viability and improved apoptosis. Additionally, miR-375 targeted YAP1 to regulate the Wnt/β-catenin pathway protein expression. Overexpressed YAP1 reversed the protein expression, promoted cell invasion, migration and viability while reduced cell apoptosis. Overexpressed miR-375 in vivo inhibited OC progression. Conclusion: Our study demonstrated that demethylated miR-375 inhibited OC growth by targeting YAP1 and downregulating the Wnt/β-catenin pathway. This investigation may offer novel insight for OC treatment.
Collapse
Affiliation(s)
- Junjun Shu
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ling Xiao
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Sanhua Yan
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Boqun Fan
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xia Zou
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jun Yang
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
32
|
Bioinformatics identification of CCL8/21 as potential prognostic biomarkers in breast cancer microenvironment. Biosci Rep 2021; 40:226899. [PMID: 33146700 PMCID: PMC7687043 DOI: 10.1042/bsr20202042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy among females worldwide. The tumor microenvironment usually prevents effective lymphocyte activation and infiltration, and suppresses infiltrating effector cells, leading to a failure of the host to reject the tumor. CC chemokines play a significant role in inflammation and infection. METHODS In our study, we analyzed the expression and survival data of CC chemokines in patients with BC using several bioinformatics analyses tools. RESULTS The mRNA expression of CCL2/3/4/5/7/8/11/17/19/20/22 was remarkably increased while CCL14/21/23/28 was significantly down-regulated in BC tissues compared with normal tissues. Methylation could down-regulate expression of CCL2/5/15/17/19/20/22/23/24/25/26/27 in BC. Low expression of CCL3/4/23 was found to be associated with drug resistance in BC. Results from Kaplan-Meier plotter and BC Gene-Expression Miner v4.2 (bcGenExMiner) v4.2 demonstrated that BC patients with high CCL8 and low CCL19/21/22 expression were more likely to have a worse prognosis. CCL8 expression was significantly up-regulated in BC tissues compared with normal tissues. High CCL8 expression was significantly correlated with negative PR, negative ER, positive nodal status, triple-negative BC subtype, basal-like BC subtype, triple-negative and basal-like BC subtype and high grades. CCL21 was down-regulated in BC, while high levels of CCL21 was associated with negative PR, triple-negative subtype, basal-like subtype and low tumor grade. Functional analysis demonstrated that CCL8 and CCL21 were involved in carcinogenesis, tumor immune escape and chemoresistance in BC. CONCLUSION Integrative bioinformatics analysis demonstrated CCL8/21 as potential prognostic biomarkers in BC microenvironment.
Collapse
|
33
|
Sarno F, Benincasa G, List M, Barabasi AL, Baumbach J, Ciardiello F, Filetti S, Glass K, Loscalzo J, Marchese C, Maron BA, Paci P, Parini P, Petrillo E, Silverman EK, Verrienti A, Altucci L, Napoli C. Clinical epigenetics settings for cancer and cardiovascular diseases: real-life applications of network medicine at the bedside. Clin Epigenetics 2021; 13:66. [PMID: 33785068 PMCID: PMC8010949 DOI: 10.1186/s13148-021-01047-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Despite impressive efforts invested in epigenetic research in the last 50 years, clinical applications are still lacking. Only a few university hospital centers currently use epigenetic biomarkers at the bedside. Moreover, the overall concept of precision medicine is not widely recognized in routine medical practice and the reductionist approach remains predominant in treating patients affected by major diseases such as cancer and cardiovascular diseases. By its' very nature, epigenetics is integrative of genetic networks. The study of epigenetic biomarkers has led to the identification of numerous drugs with an increasingly significant role in clinical therapy especially of cancer patients. Here, we provide an overview of clinical epigenetics within the context of network analysis. We illustrate achievements to date and discuss how we can move from traditional medicine into the era of network medicine (NM), where pathway-informed molecular diagnostics will allow treatment selection following the paradigm of precision medicine.
Collapse
Affiliation(s)
- Federica Sarno
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Albert-Lazlo Barabasi
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, Notkestrasse 9, Hamburg, Germany
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | | | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Bradley A Maron
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paola Paci
- Department of Computer, Control, and Management Engineering, Sapienza University, Rome, Italy
| | - Paolo Parini
- Department of Laboratory Medicine and Department of Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Enrico Petrillo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
- Clinical Department of Internal Medicine and Specialistic Units, AOU, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
34
|
Gao F, Wang Q, Zhang C, Zhang C, Qu T, Zhang J, Wei J, Guo R. RNA methyltransferase METTL3 induces intrinsic resistance to gefitinib by combining with MET to regulate PI3K/AKT pathway in lung adenocarcinoma. J Cell Mol Med 2021; 25:2418-2425. [PMID: 33491264 PMCID: PMC7933928 DOI: 10.1111/jcmm.16114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Clinical research data show that gefitinib greatly improves the progression‐free survival of patients, so it is used in advanced non‐small cell lung cancer patients with EGFR mutation. However, some patients with EGFR sensitive mutations do not have good effects on initial gefitinib treatment, and this mechanism is rarely studied. METTL3, a part of N6‐adenosine‐methyltransferase, has been reported to play an important role in a variety of tumours. In this study, we found that METTL3 is up‐regulated in gefitinib‐resistant tissues compared to gefitinib‐sensitive tissues. Cell function experiments have proved that under the treatment of gefitinib, METTL3 knockdown promotes apoptosis and inhibits proliferation of lung cancer cells. Mechanistic studies have shown that METTL3 combines with MET and causes the PI3K/AKT signalling pathway to be manipulated, which affects the sensitivity of lung cancer cells to gefitinib. Therefore, our research shows that METTL3 can be used as a molecular marker to predict the efficacy of EGFR‐TKI therapy in patients, and METTL3 may be a potential therapeutic target.
Collapse
Affiliation(s)
- Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Chen Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianyu Qu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingya Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jifu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Renhua Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Identification of Novel lncRNAs in Ovarian Cancer and Their Impact on Overall Survival. Int J Mol Sci 2021; 22:ijms22031079. [PMID: 33499129 PMCID: PMC7865736 DOI: 10.3390/ijms22031079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/21/2022] Open
Abstract
Long non-coding RNA’s (lncRNA) are RNA sequences that do not encode proteins and are greater than 200 nucleotides in length. They regulate complex cellular mechanisms and have been associated with prognosis in various types of cancer. We aimed to identify lncRNA sequences that are associated with high grade serous ovarian cancer (HGSC) and assess their impact on overall survival. RNA was extracted from 112 HGSC patients and 12 normal fallopian tube samples from our Biobank tissue repository. RNA was sequenced and the Ultrafast and Comprehensive lncRNA detection and quantification pipeline (UClncR) was used for the identification of lncRNA sequences. Univariate logistic and multivariate lasso regression analyses identified lncRNA that was associated with HGSC. Univariate and multivariate Cox proportional hazard ratios were used to evaluate independent predictors of survival. 1943 of 16,325 investigated lncRNA’s were differentially expressed in HGSC as compared to controls (p < 0.001). Nine of these demonstrated association with cancer after multivariate lasso regression. Our multivariate analysis of survival identified four lncRNA’s associated with survival in HGSC. Three out of these four were found to be independently significant after accounting for all clinical covariates. Lastly, seven lncRNAs were independently associated with initial response to chemotherapy; four portended a worse response, while three were associated with improved response. More research is needed, but there is potential for these lncRNAs to be used as biomarkers of HGSC or predictors of treatment outcome in the future.
Collapse
|
36
|
Hua T, Kang S, Li XF, Tian YJ, Li Y. DNA methylome profiling identifies novel methylated genes in epithelial ovarian cancer patients with platinum resistance. J Obstet Gynaecol Res 2021; 47:1031-1039. [PMID: 33403724 DOI: 10.1111/jog.14634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
Abstract
AIM Platinum-based chemotherapy is widely used for epithelial ovarian cancer (EOC). As high as 20-25% of EOC patients will not respond to the initial chemotherapy. Accumulated evidences have implied that DNA methylation may serve as a potential bio-marker for chemotherapy-resistant phenotypic screening; however, the pattern underlying primary platinum resistance remains unclear. METHODS Reduced representation bisulfite sequencing (RRBS) analysis was performed to identify differences in methylation status between primary platinum-resistant patients Progression free survival (PFS) (PFS < 6 months, n = 8) and extreme sensitive patients (PFS ≥ 24 months, n = 8). The Qubit 3.0 Fluorometer was used for the quantification of RRBS library. The RRBS library was sequenced on Illumina HiSeq2500 sequencer as 50 bp paired-end reads. RESULTS After screening, 94 valid hyper-/hypo-methylated regions were identified to be located within 94 gene promoter and exon regions (adjusted q ≤ 0.5), which were primarily associated with cell-cell adhesion, B cell activation and lymphocyte activation according to GO analysis. The 19 differentially methylated regions (DMR) located in the promoter region including TRC-GCA11-1, LOC105370912, ANO7P1, DHX4,MSH2, CDCP2, CCNL1, ARHGAP42P2, PRDM13, LOC101928344, USP29, ZIC5,IL1RAPL1, EVX2, ABR, MGRN1, UBALD1, LINC00261, and ISL2 were identified according to the order of P-values from low to high, of which MSH2, LINC00261, MGRN1, ZIC5, EVX2, CCNL1, and DHX40 were presented to play a variety of roles in cancers process based on the previous studies. CONCLUSION DNA methylome profiling based on RRBS assay is an effective method for screening aberrantly methylated genes in primary platinum-resistant patients, which may serve as a potential epigenetic bio-marker for the prediction of primary platinum resistance.
Collapse
Affiliation(s)
- Tian Hua
- Department of Gynaecology, Affiliated Xing Tai People Hospital of Hebei Medial University, Xingtai, China
| | - Shan Kang
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Xiao-Fei Li
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Yun-Jie Tian
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Yan Li
- Department of Molecular Biology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| |
Collapse
|
37
|
Zheng J, Zhang T, Guo W, Zhou C, Cui X, Gao L, Cai C, Xu Y. Integrative Analysis of Multi-Omics Identified the Prognostic Biomarkers in Acute Myelogenous Leukemia. Front Oncol 2020; 10:591937. [PMID: 33363022 PMCID: PMC7758482 DOI: 10.3389/fonc.2020.591937] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background Acute myelogenous leukemia (AML) is a common pediatric malignancy in children younger than 15 years old. Although the overall survival (OS) has been improved in recent years, the mechanisms of AML remain largely unknown. Hence, the purpose of this study is to explore the differentially methylated genes and to investigate the underlying mechanism in AML initiation and progression based on the bioinformatic analysis. Methods Methylation array data and gene expression data were obtained from TARGET Data Matrix. The consensus clustering analysis was performed using ConsensusClusterPlus R package. The global DNA methylation was analyzed using methylationArrayAnalysis R package and differentially methylated genes (DMGs), and differentially expressed genes (DEGs) were identified using Limma R package. Besides, the biological function was analyzed using clusterProfiler R package. The correlation between DMGs and DEGs was determined using psych R package. Moreover, the correlation between DMGs and AML was assessed using varElect online tool. And the overall survival and progression-free survival were analyzed using survival R package. Results All AML samples in this study were divided into three clusters at k = 3. Based on consensus clustering, we identified 1,146 CpGs, including 40 hypermethylated and 1,106 hypomethylated CpGs in AML. Besides, a total 529 DEGs were identified, including 270 upregulated and 259 downregulated DEGs in AML. The function analysis showed that DEGs significantly enriched in AML related biological process. Moreover, the correlation between DMGs and DEGs indicated that seven DMGs directly interacted with AML. CD34, HOXA7, and CD96 showed the strongest correlation with AML. Further, we explored three CpG sites cg03583857, cg26511321, cg04039397 of CD34, HOXA7, and CD96 which acted as the clinical prognostic biomarkers. Conclusion Our study identified three novel methylated genes in AML and also explored the mechanism of methylated genes in AML. Our finding may provide novel potential prognostic markers for AML.
Collapse
Affiliation(s)
- Jiafeng Zheng
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Tongqiang Zhang
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Wei Guo
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Caili Zhou
- Department of Science and Education, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Xiaojian Cui
- Department of Clinical Lab, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Long Gao
- Department of Pediatric Endocrinology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Chunquan Cai
- Tianjin Institute of Pediatrics (Tianjin Key Laboratory of Birth Defects for Prevention and Treatment), Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Yongsheng Xu
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| |
Collapse
|
38
|
Guo C, Song C, Zhang J, Gao Y, Qi Y, Zhao Z, Yuan C. Revisiting chemoresistance in ovarian cancer: Mechanism, biomarkers, and precision medicine. Genes Dis 2020; 9:668-681. [PMID: 35782973 PMCID: PMC9243319 DOI: 10.1016/j.gendis.2020.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Among the gynecological cancers, ovarian cancer is the most lethal. Its therapeutic options include a combination of chemotherapy with platinum-based compounds and cytoreductive surgery. Most ovarian cancer patients exhibit an initial response to platinum-based therapy, however, platinum resistance has led to up to 80% of this responsive cohort becoming refractory. Ovarian cancer recurrence and drug resistance to current chemotherapeutic options is a global challenge. Chemo-resistance is a complex phenomenon that involves multiple genes and signal transduction pathways. Therefore, it is important to elucidate on the underlying molecular mechanisms involved in chemo-resistance. This inform decisions regarding therapeutic management and help in the identification of novel and effective drug targets. Studies have documented the individual biomarkers of platinum-resistance in ovarian cancer that are potential therapeutic targets. This review summarizes the molecular mechanisms of platinum resistance in ovarian cancer, novel drug targets, and clinical outcomes.
Collapse
Affiliation(s)
- Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chaoying Song
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Jiali Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yuying Qi
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Zongyao Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, PR China
- Corresponding author. College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
39
|
Zhang H, Wang Y, Liu X, Li Y. Progress of long noncoding RNAs in anti-tumor resistance. Pathol Res Pract 2020; 216:153215. [PMID: 32979688 DOI: 10.1016/j.prp.2020.153215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
The resistance of cancer cells to anti-cancer drugs is an important reason for the failure of treatment. Overcoming drug resistance can achieve long-lasting and efficient cancer treatment. Long non-coding RNA (lncRNA) is a class of RNA molecules that does not encode protein and has more than 200 nucleotides. LncRNA not only has a regulatory role in the occurrence and development of malignant tumors, but also has been found to have a potential impact on anti-tumor resistance. Abnormal expression of lncRNA can cause tumor cells to develop resistance to anti-tumor drugs. This article reviews the recent research progress of lncRNA in various tumor resistances and the mechanism of lncRNA acting on tumor drug resistance.
Collapse
Affiliation(s)
- Hui Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuanyuan Wang
- Department of Respiratory and Critical Care Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xiaomin Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
40
|
Novel role of lncRNA CHRF in cisplatin resistance of ovarian cancer is mediated by miR-10b induced EMT and STAT3 signaling. Sci Rep 2020; 10:14768. [PMID: 32901049 PMCID: PMC7478977 DOI: 10.1038/s41598-020-71153-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian Cancer (OC) is a highly lethal gynecological cancer which often progresses through acquired resistance against the administered therapy. Cisplatin is a common therapeutic for the treatment of OC patients and therefore it is critical to understand the mechanisms of resistance against this drug. We studied a paired cell line consisting of parental and cisplatin resistant (CR) derivative ES2 OC cells, and found a number of dysregulated lncRNAs, with CHRF being the most significantly upregulated lncRNA in CR ES2 cells. The findings corroborated in human patient samples and CHRF was significantly elevated in OC patients with resistant disease. CHRF was also found to be elevated in patients with liver metastasis. miR-10b was found to be mechanistically involved in CHRF mediated cisplatin resistance. It induced resistance in not only ES2 but also OVCAR and SKOV3 OC cells. Induction of epithelial-to-mesenchymal-transition (EMT) and activation of STAT3 signaling were determined to be the mechanisms underlying the CHRF-miR-10b axis-mediated cisplatin resistance. Down-regulation of CHRF reversed EMT, STAT3 activation and the resulting cisplatin resistance, which could be attenuated by miR-10b. The results were also validated in an in vivo cisplatin resistance model wherein CR cells were associated with increased tumor burden, CHRF downregulation associated with decreased tumor burden and miR-10b again attenuated the CHRF downregulation effects. Our results support a novel role of lncRNA CHRF in cisplatin resistance of OC and establish CHRF-miR-10b signaling as a putative therapeutic target for sensitizing resistant OC cells.
Collapse
|
41
|
CRISPR-mediated promoter de/methylation technologies for gene regulation. Arch Pharm Res 2020; 43:705-713. [PMID: 32725389 DOI: 10.1007/s12272-020-01257-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/24/2020] [Indexed: 01/10/2023]
Abstract
DNA methylation on cytosines of CpG dinucleotides is well established as a basis of epigenetic regulation in mammalian cells. Since aberrant regulation of DNA methylation in promoters of tumor suppressor genes or proto-oncogenes may contribute to the initiation and progression of various types of human cancer, sequence-specific methylation and demethylation technologies could have great clinical benefit. The CRISPR-Cas9 protein with a guide RNA can target DNA sequences regardless of the methylation status of the target site, making this system superb for precise methylation editing and gene regulation. Targeted methylation-editing technologies employing the dCas9 fusion proteins have been shown to be highly effective in gene regulation without altering the DNA sequence. In this review, we discuss epigenetic alterations in tumorigenesis as well as various dCas9 fusion technologies and their usages in site-specific methylation editing and gene regulation.
Collapse
|
42
|
Abstract
Cancer can be identified as an uncontrolled growth and reproduction of cell. Accumulation of genetic aberrations (mutations of oncogenes and tumor-suppressor genes and epigenetic modifications) is one of the characteristics of cancer cell. Increasing number of studies highlighted importance of the epigenetic alterations in cancer treatment and prognosis. Now, cancer epigenetics have a huge importance for developing novel biomarkers and therapeutic target for cancer. In this review, we will provide a summary of the major epigenetic changes involved in cancer and preclinical results of epigenetic therapeutics.
Collapse
Affiliation(s)
- Cansu Aydin
- Department of Molecular Biology and Genetics, Faculty of Medicine, Trakya University, Merkez/Edirne, Turkey
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Turkish Republic of Northern Cyprus
| |
Collapse
|
43
|
Hernandez Puente CV, Hsu PC, Rogers LJ, Jousheghany F, Siegel E, Kadlubar SA, Beck JT, Makhoul I, Hutchins LF, Kieber-Emmons T, Monzavi-Karbassi B. Association of DNA-Methylation Profiles With Immune Responses Elicited in Breast Cancer Patients Immunized With a Carbohydrate-Mimicking Peptide: A Pilot Study. Front Oncol 2020; 10:879. [PMID: 32582547 PMCID: PMC7290046 DOI: 10.3389/fonc.2020.00879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/04/2020] [Indexed: 02/04/2023] Open
Abstract
Immune response to a given antigen, particularly in cancer patients, is complex and is controlled by various genetic and environmental factors. Identifying biomarkers that can predict robust response to immunization is an urgent need in clinical cancer vaccine development. Given the involvement of DNA methylation in the development of lymphocytes, tumorigenicity and tumor progression, we aimed to analyze pre-vaccination DNA methylation profiles of peripheral blood mononuclear cells (PBMCs) from breast cancer subjects vaccinated with a novel peptide-based vaccine referred to as P10s-PADRE. This pilot study was performed to evaluate whether signatures of differentially methylated (DM) loci can be developed as potential predictive biomarkers for prescreening subjects with cancer who will most likely generate an immune response to the vaccine. Genomic DNA was isolated from PBMCs of eight vaccinated subjects, and their DNA methylation profiles were determined using Infinium® MethylationEPIC BeadChip array from Illumina. A linear regression model was applied to identify loci that were differentially methylated with respect to anti-peptide antibody titers and with IFN-γ production. The data were summarized using unsupervised-learning methods: hierarchical clustering and principal-component analysis. Pathways and networks involved were predicted by Ingenuity Pathway Analysis. We observed that the profile of DM loci separated subjects in regards to the levels of immune responses. Canonical pathways and networks related to metabolic and immunological functions were found to be involved. The data suggest that it is feasible to correlate methylation signatures in pre-treatment PBMCs with immune responses post-treatment in cancer patients going through standard-of-care chemotherapy. Larger and prospective studies that focus on DM loci in PBMCs is warranted to develop pre-screening biomarkers before BC vaccination. Clinical Trial Registration:www.ClinicalTrials.gov, Identifier: NCT02229084.
Collapse
Affiliation(s)
- Cinthia Violeta Hernandez Puente
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,UnivLyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Ping-Ching Hsu
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lora J Rogers
- Division of Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Fariba Jousheghany
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Eric Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Susan A Kadlubar
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Division of Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Issam Makhoul
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Division of Hematology Oncology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Laura F Hutchins
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Division of Hematology Oncology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Thomas Kieber-Emmons
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Behjatolah Monzavi-Karbassi
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
44
|
Yi BS, Ma BQ, Li BZ, Tian F. MiR-10b induces cisplatin resistance in gastric cancer cells by inhibiting KLF4 expression. Shijie Huaren Xiaohua Zazhi 2020; 28:362-370. [DOI: 10.11569/wcjd.v28.i10.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) chemotherapy is prone to acquired chemotherapy resistance. MiR-10b has been found to be involved in regulating cisplatin (DDP) resistance of esophageal and nasopharyngeal carcinoma cells, but its relationship with DDP chemotherapy sensitivity in GC is unclear.
AIM To investigate whether miR-10b is related to DDP chemoresistance in GC cells and the underlying molecular mechanism.
METHODS SGC-7901/DDP and MGC-803/DDP cell lines were established by repeated stimulation of SGC-7901 and MGC-803 cells with increasing concentrations of DDP. The expression levels of miR-10b and KLF4 in SGC-7901/DDP and MGC-803/DDP cells were detected. After SGC-7901 and MGC-803 cells were infected with a lentiviral vector overexpressing miR-10b, cell proliferation was detected by MTT assay, apoptosis was detected by Annexin V-FITC/PI staining, and KLF4 mRNA and protein expression was detected by RT- qPCR and Western blot, respectively. In addition, these cells were further used to construct a xenograft tumor model, and after DDP chemotherapy, tumor morphology was observed macroscopically and tumor weight was measured. After co-transfection of SGC-7901 and MGC-803 cells with miR-10b and KLF4, the sensitivity of cells to DDP was detected by MTT assay.
RESULTS Compared with SGC-7901 and MGC-803 cells, miR-10b expression levels in SGC-7901/DDP and MGC-803/DDP cells were significantly increased (P < 0.01), and KLF4 mRNA and protein levels were significantly decreased (P < 0.01). In vitro experiments showed that overexpression of miR-10b promoted DDP resistance in GC cells and inhibited KLF4 expression (P < 0.01). In vivo, after DDP treatment, tumor weight in the miR-10b group was significantly higher than that of the control group (P < 0.01). Overexpression of KLF4 could partially reverse DDP resistance of GC cells induced by overexpression of miR-10b.
CONCLUSION MiR-10b promotes DDP resistance in GC cells by inhibiting the expression of KLF4, however, the DDP resistance induced by miR-10b overexpression can be reversed by up-regulation of KLF4.
Collapse
Affiliation(s)
- Bi-Shun Yi
- Department of Trauma, Acute Abdomen and Hernia Surgery, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Bai-Qiang Ma
- Department of Trauma, Acute Abdomen and Hernia Surgery, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Bing-Zhen Li
- Department of Trauma, Acute Abdomen and Hernia Surgery, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Feng Tian
- Department of Trauma, Acute Abdomen and Hernia Surgery, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
45
|
Hsu PC, Kadlubar SA, Siegel ER, Rogers LJ, Todorova VK, Su LJ, Makhoul I. Genome-wide DNA methylation signatures to predict pathologic complete response from combined neoadjuvant chemotherapy with bevacizumab in breast cancer. PLoS One 2020; 15:e0230248. [PMID: 32298288 PMCID: PMC7162481 DOI: 10.1371/journal.pone.0230248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00203502.
Collapse
Affiliation(s)
- Ping-Ching Hsu
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Susan A. Kadlubar
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Eric R. Siegel
- Department of Biostatistics, Colleges of Medicine and of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lora J. Rogers
- Department of Epidemiology, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Valentina K. Todorova
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - L. Joseph Su
- Department of Epidemiology, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Issam Makhoul
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
46
|
Huang Z, Zhang Y, Li H, Zhou Y, Zhang Q, Chen R, Jin T, Hu K, Li S, Wang Y, Chen W, Huang Z. Vitamin D promotes the cisplatin sensitivity of oral squamous cell carcinoma by inhibiting LCN2-modulated NF-κB pathway activation through RPS3. Cell Death Dis 2019; 10:936. [PMID: 31819048 PMCID: PMC6901542 DOI: 10.1038/s41419-019-2177-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
Chemoresistance is a major cause of cancer progression and the mortality of cancer patients. Developing a safe strategy for enhancing chemosensitivity is a challenge for biomedical science. Recent studies have suggested that vitamin D supplementation may decrease the risk of many cancers. However, the role of vitamin D in chemotherapy remains unknown. We found that vitamin D sensitised oral cancer cells to cisplatin and partially reversed cisplatin resistance. Using RNA-seq, we discovered that lipocalin 2 (LCN2) is an important mediator. Cisplatin enhanced the expression of LCN2 by decreasing methylation at the promoter, whereas vitamin D enhanced methylation and thereby inhibited the expression of LCN2. Overexpression of LCN2 increased cell survival and cisplatin resistance both in vitro and in vivo. High LCN2 expression was positively associated with differentiation, lymph node metastasis, and T staging and predicted a poor prognosis in oral squamous cell carcinoma (OSCC) patients. LCN2 was also associated with post-chemotherapy recurrence. Moreover, we found that LCN2 promoted the activation of NF-κB by binding to ribosomal protein S3 (RPS3) and enhanced the interaction between RPS3 and p65. Our study reveals that vitamin D can enhance cisplatin chemotherapy and suggests that vitamin D should be supplied during chemotherapy; however, more follow-up clinical studies are needed.
Collapse
Affiliation(s)
- Zixian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haigang Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yufeng Zhou
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qianyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shihao Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiliang Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
47
|
Singh A, Gupta S, Sachan M. Epigenetic Biomarkers in the Management of Ovarian Cancer: Current Prospectives. Front Cell Dev Biol 2019; 7:182. [PMID: 31608277 PMCID: PMC6761254 DOI: 10.3389/fcell.2019.00182] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) causes significant morbidity and mortality as neither detection nor screening of OC is currently feasible at an early stage. Difficulty to promptly diagnose OC in its early stage remains challenging due to non-specific symptoms in the early-stage of the disease, their presentation at an advanced stage and poor survival. Therefore, improved detection methods are urgently needed. In this article, we summarize the potential clinical utility of epigenetic signatures like DNA methylation, histone modifications, and microRNA dysregulation, which play important role in ovarian carcinogenesis and discuss its application in development of diagnostic, prognostic, and predictive biomarkers. Molecular characterization of epigenetic modification (methylation) in circulating cell free tumor DNA in body fluids offers novel, non-invasive approach for identification of potential promising cancer biomarkers, which can be performed at multiple time points and probably better reflects the prevailing molecular profile of cancer. Current status of epigenetic research in diagnosis of early OC and its management are discussed here with main focus on potential diagnostic biomarkers in tissue and body fluids. Rapid and point of care diagnostic applications of DNA methylation in liquid biopsy has been precluded as a result of cumbersome sample preparation with complicated conventional methods of isolation. New technologies which allow rapid identification of methylation signatures directly from blood will facilitate sample-to answer solutions thereby enabling next-generation point of care molecular diagnostics. To date, not a single epigenetic biomarker which could accurately detect ovarian cancer at an early stage in either tissue or body fluid has been reported. Taken together, the methodological drawbacks, heterogeneity associated with ovarian cancer and non-validation of the clinical utility of reported potential biomarkers in larger ovarian cancer populations has impeded the transition of epigenetic biomarkers from lab to clinical settings. Until addressed, clinical implementation as a diagnostic measure is a far way to go.
Collapse
Affiliation(s)
- Alka Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
48
|
Dvorská D, Braný D, Nagy B, Grendár M, Poka R, Soltész B, Jagelková M, Zelinová K, Lasabová Z, Zubor P, Danková Z. Aberrant Methylation Status of Tumour Suppressor Genes in Ovarian Cancer Tissue and Paired Plasma Samples. Int J Mol Sci 2019; 20:ijms20174119. [PMID: 31450846 PMCID: PMC6747242 DOI: 10.3390/ijms20174119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is a highly heterogeneous disease and its formation is affected by many epidemiological factors. It has typical lack of early signs and symptoms, and almost 70% of ovarian cancers are diagnosed in advanced stages. Robust, early and non-invasive ovarian cancer diagnosis will certainly be beneficial. Herein we analysed the regulatory sequence methylation profiles of the RASSF1, PTEN, CDH1 and PAX1 tumour suppressor genes by pyrosequencing in healthy, benign and malignant ovarian tissues, and corresponding plasma samples. We recorded statistically significant higher methylation levels (p < 0.05) in the CDH1 and PAX1 genes in malignant tissues than in controls (39.06 ± 18.78 versus 24.22 ± 6.93; 13.55 ± 10.65 versus 5.73 ± 2.19). Higher values in the CDH1 gene were also found in plasma samples (22.25 ± 14.13 versus 46.42 ± 20.91). A similar methylation pattern with positive correlation between plasma and benign lesions was noted in the CDH1 gene (r = 0.886, p = 0.019) and malignant lesions in the PAX1 gene (r = 0.771, p < 0.001). The random forest algorithm combining methylation indices of all four genes and age determined 0.932 AUC (area under the receiver operating characteristic (ROC) curve) prediction power in the model classifying malignant lesions and controls. Our study results indicate the effects of methylation changes in ovarian cancer development and suggest that the CDH1 gene is a potential candidate for non-invasive diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marián Grendár
- Bioinformatic Unit, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Robert Poka
- Institute of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marianna Jagelková
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Katarína Zelinová
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zora Lasabová
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Pavol Zubor
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Danková
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
49
|
Yadav SS, Kumar M, Varshney A, Yadava PK. KLF4 sensitizes the colon cancer cell HCT-15 to cisplatin by altering the expression of HMGB1 and hTERT. Life Sci 2019; 220:169-176. [PMID: 30716337 DOI: 10.1016/j.lfs.2019.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/19/2019] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
Abstract
AIMS Insensitivity of cancer cells to therapeutic drugs is the most daunting challenge in cancer treatment. The mechanism of developing chemo-resistance is only partly understood to date. In continuation of some earlier reports, we hypothesize that KLF4, a key transcription factors that also has a crucial role in maintaining the stemness in cancer cells, may offer a basis for chemo-resistance. MAIN METHODS Sensitivity of cells to cisplatin was analyzed by cell proliferation, colony formation, and cell growth assay. Cell cycle analysis and immunophenotyping were used to measure cell cycle arrest and level of reactive oxygen species respectively. Immunoblotting was used to analyze the change in expression hTERT and HMGB1 involved in KLF4 mediated cisplatin resistance. KEY FINDINGS We found that KLF4 expression sensitizes cancer cell to cisplatin cytotoxicity. Further, KLF4 promotes the cisplatin-mediated G2/M cell cycle arrest while KLF4 knocked down induces cisplatin-mediated S-phase arrest compared to control. Decreased level of reactive oxygen species (ROS) in cisplatin-treated and KLF4 knocked down HCT-15 cells compared to vector control, accounting for increased cell survival. Immuno-blotting showed that KLF4 positively regulates expression of the survival proteins hTERT and HMGB1 while in presence of cisplatin, expression of HMGB1 and hTERT is negatively regulated by KLF4. SIGNIFICANCE This study suggests the involvement of KLF4-HMGB1/hTERT signaling in offering the basis for chemo-resistance in colon cancer cells and KLF4 overexpression as a probable strategy for sensitizing drug-resistant cancer cells to chemotherapy. The present study opens up new avenues for cancer research and therapeutics.
Collapse
Affiliation(s)
| | - Manoj Kumar
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akhil Varshney
- Centre for Advanced Vision Science, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
50
|
Hentze JL, Høgdall CK, Høgdall EV. Methylation and ovarian cancer: Can DNA methylation be of diagnostic use? Mol Clin Oncol 2019; 10:323-330. [PMID: 30847169 DOI: 10.3892/mco.2019.1800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is a silent killer and, due to late diagnosis and frequent chemo resistance in patients, the primary cause of fatality amongst the various types of gynecological cancer. The discovery of a specific and sensitive biomarker for ovarian cancer could improve early diagnosis, thereby saving lives. Biomarkers could also improve treatment, by predicting which patients will benefit from specific treatment strategies. DNA methylation is an epigenetic mechanism, and 'methylation imbalance' is characteristic of cancer. Previous research suggests that changes in DNA methylation can be used diagnostically, and that they may predict resistance to treatment. This paper gives an up-to-date overview of research investigating the potential of DNA methylation-based markers for diagnostics, prognostics, screening and prediction of drug resistance for ovarian cancer patients. DNA methylation cancer-biomarkers may be useful for cancer treatment, particularly since they are chemically stable and since cancer-associated changes in methylation typically precedes tumor growth. DNA methylation markers could improve diagnosis and treatment and might even be used for screening in the future. Furthermore, DNA methylation biomarkers could facilitate the development of precision medicine. However, at this point no biomarkers for ovarian cancer have a sufficient combination of sensitivity and specificity in a clinical setting. A reason for this is that most studies have focused on a single or a few methylation sites. More large screenings and genome-wide studies must be performed to increase the chance of identifying a DNA methylation marker which can identify ovarian cancer.
Collapse
Affiliation(s)
- Julie L Hentze
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Claus K Høgdall
- Department of Gynecology, The Juliane Marie Centre, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Estrid V Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|