1
|
Xu F, Bao J, Liu Q, He X, Zhou Y, Wang H, Xing J, Zhou L, Yuan J. Simultaneous natural attenuation of Cr(VI) and nitrate in the hyporheic zone sediments from an upstream tributary of the Jinsha River in the Sichuan Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174145. [PMID: 38909795 DOI: 10.1016/j.scitotenv.2024.174145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The coexistence of hexavalent chromium (Cr(VI)) and nitrate (NO3-) in groundwater and surface water presents a considerable challenge for the natural attenuation of these two contaminants because their interactions in nature remain contentious. This study investigated the interplay between Cr(VI) and NO3- in hyporheic zone (HZ) sediments by integrating Cr(VI) reduction kinetics, NO3- transformation, microbial community structure, and a three-rate model. The concurrent natural attenuation of Cr(VI) and NO3- in the sediments was significantly influenced by their initial concentrations and redox conditions. The reduction of low concentrations of Cr(VI) (37.1 and 96.2 μM) was slightly enhanced by NO3-, while inhibitory effects were observed at high concentrations of Cr(VI) (200.0 μM). However, except for an initial low concentration of Cr(VI) (37.1 μM) and NO3- (450 μM), the reduction of NO3- was adversely affected by Cr(VI). The reduction rates and efficiencies of Cr(VI) and NO3- were noticeably lower under aerobic conditions than under anaerobic conditions. This phenomenon can be attributed to the presence of O2, which decreased the selectivity of sediments-associated Fe(II) towards Cr(VI) and NO3- and induced alterations in the microbial community structure, leading to subsequent changes in NO3- transformation. Furthermore, the three-rate model represents a robust approach for elucidating the reduction of Cr(VI) in the presence of co-contaminants, such as NO3- contamination under diverse redox conditions. This study provides further insights into the interaction mechanism between Cr(VI) and NO3- within the HZ, necessitating the consideration of the microbial toxicity of Cr(VI) and electron competition among Cr(VI), NO3-, and O2.
Collapse
Affiliation(s)
- Fen Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Junqin Bao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Qiang Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Xiaoxia He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yaqian Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Hong Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Jiamin Xing
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Lun Zhou
- Zhongshan Public Water Investment Co., Ltd, Zhongshan 528403, People's Republic of China
| | - Jianfei Yuan
- Chengdu Center, China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu 610218, People's Republic of China.
| |
Collapse
|
2
|
Arisah FM, Ramli N, Ariffin H, Maeda T, Farid MAA, Yusoff MZM. Novel Insights into Cr(VI)-Induced Rhamnolipid Production and Gene Expression in Pseudomonas aeruginosa RW9 for Potential Bioremediation. J Microbiol Biotechnol 2024; 34:1877-1889. [PMID: 39343606 PMCID: PMC11473487 DOI: 10.4014/jmb.2406.06034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 10/01/2024]
Abstract
Rhamnolipid (RL) is renowned for its efficacy in bioremediating several types of organic and metal contaminants. Nevertheless, there has been a scarcity of studies specifically examining the relationship between this substance and metals, especially in terms of their impact on RL formation and the underlying interaction processes. This study addresses this gap by investigating the RL mechanism in Cr (VI) remediation and evaluating its effect on RL production in Pseudomonas aeruginosa RW9. In this study, P. aeruginosa RW9 was grown in the presence of 10 mg l-1 Cr (VI). We monitored RL yield, congeners distribution, and their ratios, as well as the transcriptional expression of the RL-encoded genes: rhlA, rhlB, and rhlC. Our results revealed that RL effectively reduced Cr (VI) to Cr (III), with RL yield increasing threefold, although with a slight delay in synthesis compared to control cells. Furthermore, Cr (VI) exposure induced the transcriptional expression of the targeted genes, leading to a significant increase in di-RL production. The findings confirm that Cr (VI) significantly impacts RL production, altering its structural compositions and enhancing the transcriptional expression of RL-encoded genes in P. aeruginosa RW9. This study represents a novel exploration of Cr (VI)'s influence on RL production, providing valuable insights into the biochemical pathways involved and supporting the potential of RL in Cr (VI) bioremediation.
Collapse
Affiliation(s)
- Fatini Mat Arisah
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hidayah Ariffin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Mohammed Abdillah Ahmad Farid
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Mohd Zulkhairi Mohd Yusoff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Zhang Z, Huang Z, Li H, Wang D, Yao Y, Dong K. Impact of Nitrate on the Removal of Pollutants from Water in Reducing Gas-Based Membrane Biofilm Reactors: A Review. MEMBRANES 2024; 14:109. [PMID: 38786943 PMCID: PMC11123063 DOI: 10.3390/membranes14050109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The membrane biofilm reactor (MBfR) is a novel wastewater treatment technology, garnering attention due to its high gas utilization rate and effective pollutant removal capability. This paper outlines the working mechanism, advantages, and disadvantages of MBfR, and the denitrification pathways, assessing the efficacy of MBfR in removing oxidized pollutants (sulfate (SO4-), perchlorate (ClO4-)), heavy metal ions (chromates (Cr(VI)), selenates (Se(VI))), and organic pollutants (tetracycline (TC), p-chloronitrobenzene (p-CNB)), and delves into the role of related microorganisms. Specifically, through the addition of nitrates (NO3-), this paper analyzes its impact on the removal efficiency of other pollutants and explores the changes in microbial communities. The results of the study show that NO3- inhibits the removal of other pollutants (oxidizing pollutants, heavy metal ions and organic pollutants), etc., in the simultaneous removal of multiple pollutants by MBfR.
Collapse
Affiliation(s)
- Zhiheng Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Zhian Huang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Yi Yao
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
4
|
Zhang Y, Sang P, Wang K, Gao J, Liu Q, Wang J, Qian F, Shu Y, Hong P. Enhanced chromium and nitrogen removal by constructing a biofilm reaction system based on denitrifying bacteria preferential colonization theory. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116156. [PMID: 38412631 DOI: 10.1016/j.ecoenv.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Understanding the developmental characteristics of microbial communities in biofilms is crucial for designing targeted functional microbial enhancements for the remediation of complex contamination scenarios. The strong prioritization effect of microorganisms confers the ability to colonize strains that arrive first dominantly. In this study, the auto-aggregating denitrifying bacterial Pseudomonas stutzeri strain YC-34, which has both nitrogen and chromium removal characteristics, was used as a biological material to form a stable biofilm system based on the principle of dominant colonization and biofortification. The effect of the biofilm system on nitrogen and chromium removal was characterized by measuring the changes in the quality of influent and effluent water. The pattern of biofilm changes was analyzed by measuring biofilm content and thickness and characterizing extracellular polymer substances (EPS). Further analysis of the biofilm microbiota characteristics and potential functions revealed the mechanism of strain YC-34 biofortified biofilm. The results revealed that the biofilm system formed could achieve 90.56% nitrate-nitrogen removal with an average initial nitrate-nitrogen concentration of 51.9 mg/L and 40% chromium removal with an average initial hexavalent chromium Cr(VI) concentration of 7.12 mg/L. The biofilm properties of the system were comparatively analyzed during the biofilm formation period, the fluctuation period of Cr(VI)-stressed water quality, and the stabilization period of Cr(VI)-stressed water quality. The biofilm system may be able to increase the structure of hydrogen bonds, the type of protein secondary structure, and the abundance of amino acid-like components in the EPS, which may confer biofilm tolerance to Cr(VI) stress and allow the system to maintain a stable biofilm structure. Furthermore, microbial characterization indicated an increase in microbial diversity in the face of chromium stress, with an increase in the abundance of nitrogen removal-associated functional microbiota and an increasing trend in the abundance of nitrogen transfer pathways. These results demonstrate that the biofilm system is stable in nitrogen and chromium removal. This bioaugmentation method may provide a new way for the remediation of heavy metal-polluted water bodies and also provides theoretical and application parameters for the popularization and application of biofilm systems.
Collapse
Affiliation(s)
- Yancheng Zhang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Pengcheng Sang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Kuan Wang
- Wuhu Three Gorges Water Co., Ltd., Wuhu 241000, China
| | - Jingyi Gao
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Qiang Liu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Jihong Wang
- Wuhu Three Gorges Water Co., Ltd., Wuhu 241000, China
| | - Fangping Qian
- China National Chemical Communication Construction Group Co., Ltd., Jinan 250102, China
| | - Yilin Shu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Pei Hong
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
5
|
Wang Q, Zhao Y, Chen Z, Zhang C, Jia X, Zhao M, Tong Y, Liu Y. Nitrate Bioreduction under Cr(VI) Stress: Crossroads of Denitrification and Dissimilatory Nitrate Reduction to Ammonium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449976 DOI: 10.1021/acs.est.2c09624] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
This study explored the response of NO3--N bioreduction to Cr(VI) stress, including reduction efficiency and the pathways involved (denitrification and dissimilatory nitrate reduction to ammonium (DNRA)). Different response patterns of NO3--N conversion were proposed under Cr(VI) suppress (0, 0.5, 5, 15, 30, 50, and 80 mg/L) by evaluating Cr(VI) dose dependence, toxicity accumulation, bioelectron behavior, and microbial community structure. Cr(VI) concentrations of >30 mg/L rapidly inhibited NO3--N removal and immediately induced DNRA. However, denitrification completely dominated the NO3--N reduction pathway at Cr(VI) concentrations of <15 mg/L. Therefore, 30 and 80 mg/L Cr(VI) (R4 and R6) were selected to explore the selection of the different NO3--N removal pathways. The pathway of NO3--N reduction at 30 mg/L Cr(VI) exhibited continuous adaptation, wherein the coexistence of denitrification (51.7%) and DNRA (13.6%) was achieved by regulating the distribution of denitrifiers (37.6%) and DNRA bacteria (32.8%). Comparatively, DNRA gradually replaced denitrification at 80 mg/L Cr(VI). The intracellular Cr(III) accumulation in R6 was 6.60-fold greater than in R4, causing more severe oxidant injury and cell death. The activated NO3--N reduction pathway depended on the value of nitrite reductase activity/nitrate reductase activity, with 0.84-1.08 associated with DNRA activation and 1.48-1.57 with DNRA predominance. Although Cr(VI) increased microbial community richness and improved community structure stability, the inhibition or death of nitrogen-reducing microorganisms caused by Cr(VI) decreased NO3--N reduction efficiency.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhihui Chen
- China Water Resources Bei Fang Investigation, Design & Research CO.LTD, Tianjin 300222, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xulong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
6
|
Zhao Y, Gao J, Zhou X, Li Z, Zhao C, Jia X, Ji M. Bio-immobilization and recovery of chromium using a denitrifying biofilm system: Identification of reaction zone, binding forms and end products. J Environ Sci (China) 2023; 126:70-80. [PMID: 36503795 DOI: 10.1016/j.jes.2022.03.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 06/17/2023]
Abstract
Chromium is an important resource in strategic metals. Different from most studies focusing on the bio-reduction of hexavalent chromium [Cr(VI)], this study aims to achieve the immobilization and recovery of chromium using a sequencing batch biofilm reactor. Results showed that Cr(VI) removal efficiency remained more than 99%, and 97% of reduced Cr(III) was immobilized in the biofilm. Immobilization zone, chromium forms and extracellular polymeric substances composition changes were combined to reveal the mechanism of Cr(VI) reduction and immobilization. The chromium distribution in biofilm demonstrated that intercellular layer was the main active zone with an immobilization amount of 891.70±126.32 mg/g-VSS. The reduced products analysis confirmed that trivalent chromium [Cr(III)] chelated with carboxyl, amino and other functional groups and immobilized in the form of organic Cr(III). The digestion method realized a chromium recovery efficiency of 74.59%. This study provides an alternative method for the bioremediation and resources recovery in chromium polluted wastewater.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Junzhi Gao
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xu Zhou
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhouran Li
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Cailian Zhao
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xulong Jia
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
7
|
Wang Y, Zhang X, Lin Y, Lin H. The electron transport mechanism of downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell when used to treat Cr(VI) and p-chlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37929-37945. [PMID: 36576625 DOI: 10.1007/s11356-022-24872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Constructed wetland-microbial fuel cells are used to treat heavy metal and/or refractory organic wastewater. However, the electron transport mechanism of downflow Leersia hexandra constructed wetland-microbial fuel cells (DLCW-MFCs) is poorly understood when used to treat composite-polluted wastewater containing Cr(VI) and p-chlorophenol (4-CP) (C&P). In this study, metagenomics and in situ electrochemical techniques were used to investigate the electrochemical properties and the electricigens and their dominant gene functions. The DLCW-MFC was used to treat C&P and single-pollutant wastewater containing Cr(VI) (SC) and 4-CP (SP). The results showed that C&P had a higher current response and charge transfer capability and lower solution resistance plus charge transfer resistance. The anode bacteria solution of C&P contained more electron carriers (RF, FMN, FAD, CoQ10, and Cyt c). Metagenomic sequencing indicated that the total relative abundance of the microorganisms associated with electricity production (Desulfovibrio, Pseudomonas, Azospirillum, Nocardia, Microbacterium, Delftia, Geobacter, Acinetobacter, Bacillus, and Clostridium) was the highest in C&P (4.24%). However, Microbacterium was abundant in SP (0.12%), which exerted antagonistic effects on other electricigens. Among the 10 electricigens based on gene annotation, C&P had a higher overall relative abundance of the Unigene gene annotated to the KO pathway and CAZy level B compared with SC and SP, which were 1.31% and 0.582% respectively. Unigene153954 (ccmC), Unigene357497 (coxB), and Unigene1033667 (ubiG) were related to the electron carrier Cyt c, electron transfer, and CoQ biosynthesis, respectively. These were annotated to Desulfovibrio, Delftia, and Pseudomonas, respectively. Unigene161312 (AA1) used phenols and other substrates as electron donors and was annotated to Pseudomonas. Other functional carbohydrate enzyme genes (e.g., GT2, GT4, and GH31) used carbohydrates as donors and were annotated to other electricigens. This study provides a theoretical basis for electron transfer to promote the development of CW-MFCs.
Collapse
Affiliation(s)
- Yian Wang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, 541000, Guilin, China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, 541000, Guilin, China
| | - Yi Lin
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, 541000, Guilin, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China.
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, 541000, Guilin, China.
| |
Collapse
|
8
|
Wang Y, Zhang X, Xiao L, Lin H. The in-depth revelation of the mechanism by which a downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell synchronously removes Cr(VI) and p-chlorophenol and generates electricity. ENVIRONMENTAL RESEARCH 2023; 216:114451. [PMID: 36183789 DOI: 10.1016/j.envres.2022.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The composite pollution by Cr(VI) and p-chlorophenol (4-CP) has high toxicity and harms water safety. However, research on the effective removal of Cr(VI) and 4-CP composite-polluted wastewater (C&P) and efficient synchronous electricity generation with reclaimed resources is limited. In this study, a downflow Leersia hexandra constructed wetland-microbial fuel cell (DLCW-MFC) was builded to treat C&P, as well as wastewater singularly polluted by Cr(VI) (SC) and 4-CP (SP), respectively, to reveal the mechanism by which DLCW-MFC treats C&P and synchronously generates electricity. The results demonstrate that the cathode layer had a stronger removal effect on pollutants than the middle layer and anode zone layer. Moreover, SC and SP had stronger pollutant removal effects than C&P. Cr(VI) had more competitive with electrons than 4-CP, and they had a synergistic effect on efficient electricity generation. The L.hexandra in SC and SP had a better growth state and lower Cr enrichment concentration than that in C&P. Cr existed in the DLCW-MFC mainly in the form of Cr(III). Gas chromatography-mass spectrometry was used to investigate the degradation pathway of 4-CP in C&P, and indicated that Phenol, 2,4-bis(1,1-dimethylethyl)- and benzoic acid compounds were the main intermediates formed at the cathode, and further mineralized to form medium-long-chain organic compounds to form CO2. The microbial community distribution results revealed that Simplicispira, Cloacibacterium, and Rhizobium are associated with Cr(VI) removal and 4-CP degradation, and were found to be rich in the cathode of C&P. The anode of C&P was found to have more Acinetobacter (1.34%) and Spirochaeta (4.83%) than SC and SP, and the total relative abundance of electricigens at the anode of C&P (7.46%) was higher than that at the anodes of SC and SP. This study can provide a theoretical foundation for the DLCW-MFC to treat heavy metal and chlorophenol composite-polluted wastewater and synchronously generate electricity.
Collapse
Affiliation(s)
- Yian Wang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China.
| | - Ling Xiao
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China.
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China.
| |
Collapse
|
9
|
Zhu G, Wang Y, Tan X, Xu X, Li P, Tian D, Jiang Y, Xie J, Xiao H, Huang X, Chen Y, Su Z, Qi J, Jia S, Zhang S. Synthesis of cellulose II-based spherical nanoparticle microcluster adsorbent for removal of toxic hexavalent chromium. Int J Biol Macromol 2022; 221:224-237. [PMID: 36084868 DOI: 10.1016/j.ijbiomac.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Since natural cellulose is mostly cellulose I and has a fibrous form, most cellulose-based adsorbents are fibrous/rod-shaped and exhibit the cellulose I crystal structure. This study reports a cellulose II-based spherical nanoparticle microcluster adsorbent (SNMA), synthesized from biomass by a bottom-up approach, for removing toxic hexavalent chromium (Cr(VI)). The basic structure of SNMA was investigated. Notably, the prepared adsorbent was a microcluster composed of spherical nanoparticles, while exhibiting cellulose II crystal structure, resulting in higher thermal stability and significantly enhanced adsorption performance. The adsorption process and mechanism of SNMA on Cr(VI) were studied in detail. The SNMA achieved a high adsorption capacity (225.94 mg/g) and receptor site density. The SNMA is expected to be used as a bio-based spherical nanoparticle microcluster adsorbent platform for the adsorption of different toxic substances by changing the surface functional groups of its components, spherical nanoparticles.
Collapse
Affiliation(s)
- Gaolu Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xi Tan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueju Xu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Pan Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongze Jiang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiulong Xie
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Xiao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyan Huang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuzhu Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiping Su
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinqiu Qi
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Shanshan Jia
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaobo Zhang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Zhou X, Zhai S, Zhao Y, Liu D, Wang Q, Ji M. Rapid recovery of inhibited denitrification with cascade Cr(VI) exposure by bio-accelerant: Characterization of chromium distributions, EPS compositions and denitrifying communities. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125087. [PMID: 33476908 DOI: 10.1016/j.jhazmat.2021.125087] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium (Cr(VI)) may inhibit denitrification in biological wastewater treatment systems, and the inhibited denitrification process is difficult to recover in a short time. This study explored Cr(VI) cascade impact (20-125 mg L-1) on denitrification and developed one nontoxic biological accelerant (combination of L-cysteine, flavin adenine dinucleotide, biotin and cytokinin) for denitrification recovery. The results showed that NO3--N removal efficiency decreased from 75.7% to 21.5% when Cr(VI) concentration increased from 80 to 125 mg L-1. Addition of accelerant could effectively promote the removal of NO3--N, and observably reduce the recovery time (42 T) compared with natural recovery (63 T). Furthermore, the main site of Cr(VI) reduction and Cr(III) immobilization was located in the intercellular compartment of the biofilm. Microbes produced more tightly bound extracellular polymeric substances (TB-EPS) to protect them from toxicity under the low Cr(VI) concentrations, while low EPS was secreted when Cr(VI) concentration was higher than 60 mg L-1. Compared to natural recovery system, bio-accelerant addition was beneficial to the recovery of denitrifiers activities, especially for the bacteria containing nirS gene. The results facilitated an understanding of Cr(VI) impact on denitrification, and the proposed bio-accelerant can be potentially applied to heavy metal shock-loading emergency situations.
Collapse
Affiliation(s)
- Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Siyuan Zhai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Duo Liu
- The Ninth Waterworks of Beijing Waterworks Group Co., Ltd, Beijing 100012, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
11
|
External Carbon Source Facilitates Indirect Cr (VI) Bioreduction Process by Anaerobic Sludge Produced from Kitchen Waste. SUSTAINABILITY 2021. [DOI: 10.3390/su13094806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presented the investigation on indirect Cr (VI) bioreduction process by anaerobic sludge produced from kitchen waste (ASKW) using an external source of glucose and sulfate to favor the reducing environment. These compounds were added at the beginning of the experiment along with 500 mg·L−1 Cr (VI). The system containing 1 g of glucose and 2 g of sulfate attained a higher reduction, which was 10% higher than that of the control experiment. This study indicated that a neutral environment (pH ~7), along with a high release of polysaccharides (PS), improved the removal efficiency by Cr (VI) bioreduction process. Desulfovibrio and Sulfurospirillum (genus level), which accounted for 3% and 1% of the whole microorganism, respectively, were responsible for the sulfidogenic reaction. Additionally, Thermovirga (genus level) reduced from 14% to 11% and 10%. These microorganisms contributed to dominating the indirect Cr (VI) bioreduction process. SEM and FTIR analysis of the sludges obtaining from the indirect Cr (VI) bioreduction systems indicated that the external glucose could facilitate the formation of looser porous structures and richer functional groups of sludges, thus adsorbing more Cr (III) to reduce its toxicity. Meanwhile, the intensity of the hydroxyl bond, which possesses strong reducibility, was much higher after adding external glucose. Chromate reductase gene (chrR) and sulfite reductase gene (dsrA) contributed to the indirect Cr (VI) bioreduction process. These might be the main mechanisms of the external glucose acting on indirect Cr (VI) bioreduction by ASKW.
Collapse
|
12
|
Wang Q, Zhang C, Jung H, Liu P, Patel D, Pavlostathis SG, Tang Y. Transformation and Mobility of Cu, Zn, and Cr in Sewage Sludge during Anaerobic Digestion with Pre- or Interstage Hydrothermal Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1615-1625. [PMID: 33461291 DOI: 10.1021/acs.est.0c05164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) combined with hydrothermal treatment (HT) is an attractive technology for sewage sludge treatment and resource recovery. The fate and distribution of heavy metals in the sludge during combined HT/AD significantly affect the sludge final disposal/utilization options, yet such information is still lacking. This study systematically characterizes the transformation of important heavy metals Cu, Zn, and Cr in sewage sludge during AD with pre- or interstage HT (i.e., HT-AD or AD-HT-AD, respectively). Complementary sequential chemical extraction and X-ray absorption spectroscopy were used to characterize the speciation and mobility of metals. For the HT-AD system, both Cu and Zn predominantly occur as sulfides in HT hydrochars. Subsequent AD favors the formation of Cu2S and partial transformation of nano-ZnS to adsorbed and organo-complexed Zn species. HT favors the formation of Cr-bearing silicates in hydrochars, whereas Fe(III)-Cr(III)-hydroxide and Cr(III)-humic complex are the predominant Cr species in AD solids. Similar reaction pathways occur in the AD-HT-AD system with some minor differences in metal species and contents, as the first-stage AD changed the sludge matrix. These findings have important implications for understanding the fate and mobility of heavy metals in sludge-derived hydrochars and AD solids.
Collapse
Affiliation(s)
- Qian Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Chiqian Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0512, United States
| | - Haesung Jung
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Pan Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Dhara Patel
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0512, United States
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0512, United States
| |
Collapse
|
13
|
Brito EMS, Rodríguez-Galván M, Hernández-Espino LG, Caretta CA, Goñi-Urriza M, Malm O, Torres JPM, Guyoneaud R. Prospecting bacterial consortia from a geothermal site for metals biotransformation. Biodegradation 2020; 31:235-247. [PMID: 32676947 DOI: 10.1007/s10532-020-09906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/01/2020] [Indexed: 11/30/2022]
Abstract
Biomats that flourished in a fumarole located on the geothermal site Los Azufres (Mexico) were used as inocula to select aerobic and sulfate-reducing bacteria consortia for studying their capacity to reduce hexavalent chromium [Cr(VI)], aiming to use these consortia in biotransformation technologies. The sample site is characterized by slightly warm (nearly 27 [Formula: see text]C), acid (pH 3) and about hypoxic (1.8 mg L[Formula: see text] of dissolved oxygen) conditions. Four culture systems (2 aerobic and 2 anaerobic) were investigated, including their enzymatic activity, capacity to produce biofilms, and an analysis of the total bacterial populations. For the anaerobic condition (using sulfate and sulfur as electron acceptors), four pH values (from 2 to 8) and four carbon sources (pyruvate, glycerol, Na-lactate and Na-acetate) were probed. Significant biological Cr(VI) removal was observed for all the pH values probed, particularly during the first 12 h, being more effective at the most acid conditions. At a pH value of 4 and using pyruvate as carbon source, 100 mg L[Formula: see text] of Cr(VI) were completely depleted in less than 12 h, while the use of Na-lactate was less effective but still reasonable. These results indicate that sulfate-reducing bacteria consortia from geothermal sites like the one studied here are capable of biotransforming Cr(VI) and have the potential to provide metal bioremediation technologies.
Collapse
Affiliation(s)
- E M S Brito
- Environmental Microbiology and Applied Molecular Biology Lab., Dept. Environmental Eng., DI-CGT, Universidad de Guanajuato (UG), Guanajuato, Mexico
| | - M Rodríguez-Galván
- Environmental Microbiology and Applied Molecular Biology Lab., Dept. Environmental Eng., DI-CGT, Universidad de Guanajuato (UG), Guanajuato, Mexico
| | - L G Hernández-Espino
- Environmental Microbiology and Applied Molecular Biology Lab., Dept. Environmental Eng., DI-CGT, Universidad de Guanajuato (UG), Guanajuato, Mexico
| | - C A Caretta
- Dept. of Astronomy, DCNE-CGT, Universidad de Guanajuato (UG), Guanajuato, Mexico.
| | - M Goñi-Urriza
- Environmental Microbiology Group, EEM-UMR IPREM 5254, Université de Pau et des Pays de l'Adour (UPPA), Pau, France
| | - O Malm
- Radioisotopes Lab. (LREPF), IBCCF, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - J P M Torres
- Micropollutants Lab., IBCCF, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - R Guyoneaud
- Environmental Microbiology Group, EEM-UMR IPREM 5254, Université de Pau et des Pays de l'Adour (UPPA), Pau, France
| |
Collapse
|
14
|
Fernandez M, Paulucci NS, Reynoso E, Morales GM, Agostini E, González PS. Morphological and structural response of Bacillus sp. SFC 500-1E after Cr(VI) and phenol treatment. J Basic Microbiol 2020; 60:679-690. [PMID: 32378234 DOI: 10.1002/jobm.202000076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 11/10/2022]
Abstract
Bacillus sp. SFC 500-1E, a bacterial strain isolated from tannery sediments, is able to remove Cr(VI) and simultaneously tolerate high concentrations of phenol. In this study, we used high-resolution microscopies, fluorescence polarization techniques, and several biochemical approaches to improve our understanding about the adaptive mechanisms of this strain to survive in the presence of Cr(VI) and phenol, both individually and simultaneously. Among adaptive strategies developed by Bacillus sp. SFC 500-1E, an increase in bacterial size, such as length, width, and height, and ultrastructural alterations, such as electron-dense precipitates, the presence of exopolymers, and cell lysis, are noteworthy. The exopolymers observed were consistent with the extensive biofilm formation and exopolysaccharides and extracellular protein quantification. At the cell membrane level, a rapid rigidity was induced in Cr(VI) + phenol treatment. This effect was counteracted after 16 h by changes at the level of phospholipids, mainly in the composition of fatty acids (FAs); in particular, an increase in the unsaturated fatty acid/saturated fatty acid ratio was detected. This study shows evidence of some adaptive responses displayed by Bacillus sp. SFC 500-1E, which allows it to survive in stressful conditions.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Natalia S Paulucci
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Eugenia Reynoso
- Departamento de Química- FCEFQyN, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Río Cuarto, Córdoba, Argentina
| | - Gustavo M Morales
- Departamento de Química- FCEFQyN, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
15
|
Zheng X, Yuan D, Li Y, Liu C. Exploration of the reduction mechanism of Cr(VI) in anaerobic hydrogen fermenter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113042. [PMID: 31454583 DOI: 10.1016/j.envpol.2019.113042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/24/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
The bio-reduction of hexavalent chromium (Cr(VI)) by anaerobic fermentation is considered as a promising, low-cost and environment-friendly way. However, it is unclear for the reduction mechanisms of Cr(VI) in an anaerobic hydrogen fermenter, such as reduction kinetics, related electron donors, migration and transformation, reduction site and key components, and related microorganisms. To clarify these issues, a hydrogen fermenter was designed to reduce Cr(VI) at 55 °C with glucose as initial substrate. Results show that 100 mg/L Cr(VI) can be completely reduced (99.5%) to trivalent chromium (Cr(III) through chemical and biological reactions. Bio-reduction dominates Cr(VI) removal in a first-order exponential decay mode with both glucose and its metabolites (volatile fatty acids) as electron donors. Moreover, volatile fatty acids are more suitable as electron donors for Cr(VI) bio-reduction than glucose. Bacilli, Clostridia and Thermotogae in the fermenter dominated the reduction of Cr(VI) by regulating the production and composition of extracellular polymers (EPSs), in which carboxyl and hydroxyl groups play an important role for Cr(VI) reduction by coordination. The results can guide us to regulate the bio-reduction of Cr(VI), and provide reference for the development of bio-reduction technology of Cr(VI).
Collapse
Affiliation(s)
- Xin Zheng
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Dong Yuan
- Department of Chemistry and Chemical Engineering, Qilu Normal University, Shandong Province, 36# Lishan Road, Jinan 250013, PR China
| | - Youxuan Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chunguang Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, PR China.
| |
Collapse
|
16
|
Shen L, Saky SA, Yang Z, Ho SH, Chen C, Qin L, Zhang G, Wang Y, Lu Y. The critical utilization of active heterotrophic microalgae for bioremoval of Cr(VI) in organics co-contaminated wastewater. CHEMOSPHERE 2019; 228:536-544. [PMID: 31051357 DOI: 10.1016/j.chemosphere.2019.04.152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/23/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
Considering the importance of removing toxic Cr(VI) from practical wastewater containing complex pollutants, this study presented for the first time the utilization of the live heterotrophic microalgae (Botryocossuss sp. NJD-1) to achieve a concurrent abatement of Cr(VI), TOC, NO3-N and PO4-P, through a comprehensive biochemical process. The experimental results showed that the Cr(VI) removal efficiencies in the culture with different types of organic descended in the order of sodium acetate, ethanol and methanol. The highest removal efficiencies were achieved as 94.2%, 98.2%, 66.9% and 99.2% for Cr(VI), TOC, NO3-N and PO4-P, respectively, in the culture with 5 mg L-1 Cr(VI) and sodium acetate of equivalent to 2.92 g C L-1. Through mass balance calculation and characterization, the fate of Cr(VI) and Cr(III) was tracked and quantified in the culture system, which indicates that 87.17% of initial Cr(VI) were reduced to Cr(III) and then adsorbed in algal biomass for the optimal removal case. Consequently, the mechanism demonstrating the correlation among the removal process of Cr(VI), the biological activity of microalgae and the effect of organic compounds was proposed.
Collapse
Affiliation(s)
- Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China.
| | - Shaila Akter Saky
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Zheng Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Cuixue Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
17
|
Tran HN, Nguyen DT, Le GT, Tomul F, Lima EC, Woo SH, Sarmah AK, Nguyen HQ, Nguyen PT, Nguyen DD, Nguyen TV, Vigneswaran S, Vo DVN, Chao HP. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:258-270. [PMID: 30925385 DOI: 10.1016/j.jhazmat.2019.03.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
An attempt has been made in this review to provide some insights into the possible adsorption mechanisms of hexavalent chromium onto layered double hydroxides-based adsorbents by critically examining the past and present literature. Layered double hydroxides (LDH) nanomaterials are typical dual-electronic adsorbents because they exhibit positively charged external surfaces and abundant interlayer anions. A high positive zeta potential value indicates that LDH has a high affinity to Cr(VI) anions in solution through electrostatic attraction. The host interlayer anions (i.e., Cl-, NO3-, SO42-, and CO32-) provide a high anion exchange capacity (53-520 meq/100 g) which is expected to have an excellent exchangeable capacity to Cr(VI) oxyanions in water. Regarding the adsorption-coupled reduction mechanism, when Cr(VI) anions make contact with the electron-donor groups in the LDH, they are partly reduced to Cr(III) cations. The reduced Cr(III) cations are then adsorbed by LDH via numerous interactions, such as isomorphic substitution and complexation. Nonetheless, the adsorption-coupled reduction mechanism is greatly dependent on: (1) the nature of divalent and trivalent salts utilized in LDH preparation, and the types of interlayer anions (i.e., guest intercalated organic anions), and (3) the adsorption experiment conditions. The low Brunauer-Emmett-Teller specific surface area of LDH (1.80-179 m2/g) suggests that pore filling played an insignificant role in Cr(VI) adsorption. The Langmuir maximum adsorption capacity of LDH (Qomax) toward Cr(VI) was significantly affected by the natures of used inorganic salts and synthetic methods of LDH. The Qomax values range from 16.3 mg/g to 726 mg/g. Almost all adsorption processes of Cr(VI) by LDH-based adsorbent occur spontaneously (ΔG° <0) and endothermically (ΔH° >0) and increase the randomness (ΔS° >0) in the system. Thus, LDH has much potential as a promising material that can effectively remove anion pollutants, especially Cr(VI) anions in industrial wastewater.
Collapse
Affiliation(s)
- Hai Nguyen Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam.
| | - Dong Thanh Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Fatma Tomul
- Burdur Mehmet Akif Ersoy University, Faculty of Arts and Science, Chemistry Department, 15100 Burdur, Turkey
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Seung Han Woo
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-Gu, Daejeon 305-719, Republic of Korea
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hung Quang Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
| | - Phuong Tri Nguyen
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - Tien Vinh Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia
| | | | - Dai-Viet N Vo
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang 26300, Pahang, Malaysia
| | - Huan-Ping Chao
- Department of Environmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| |
Collapse
|
18
|
Chen H, Jin R, Liu G, Tian T, Gu C, Zhou J, Xing D. Effects of sludge lysate for Cr(VI) bioreduction and analysis of bioaugmentation mechanism of sludge humic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5065-5075. [PMID: 30604364 DOI: 10.1007/s11356-018-3917-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
This study evaluated the effects of sludge lysate (SL) on the anaerobic bioreduction of Cr(VI) and the role of sludge humic acid (SHA) during this process. The results showed that supplement of SL significantly enhanced the efficiency of Cr(VI) bioreduction by 29.61%, in 12 h compared with that of the control without SL. Moreover, SHA exhibited promoting effects on bioreduction of Cr(VI), and the promotion increased with increasing SHA concentrations from 100 to 300 mg/L. In the presence of 300 mg/L SHA, Cr(VI) (98.21 mg/L) was completely reduced after 24 h with a removal rate increased by 34.3% compared with that of the control without SHA. Further investigation on the bioaugmentation mechanism of SHA by studying the nature of SHA and the reaction mechanism between SHA and Cr(VI) revealed that SHA exhibited a strong adsorption ability, which could adsorb and combine with Cr(VI). The adsorption capacity of Cr(VI) by SHA was calculated as 34.4 mg/g with 0.2 g of SHA and 10 mg/L of Cr(VI). It could also act as redox mediators to accelerate the electron transfer between microorganisms and Cr(VI) to promote reduction of Cr(VI). Furthermore, the effects of SL on the microbial community compositions of the anaerobic Cr(VI) bioreduction system were studied. Brachymonas was the primary bacteria at the genus level. The abundance of electroactive bacteria, such as Acinetobacter, Pseudomonas, and Arcobacter, increased in the SL-amended system. These findings expand the versatility of SL and justify wider use of residual activated sludge, which might contribute to the treatment of heavy metal-contaminated wastewater.
Collapse
Affiliation(s)
- Hongling Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
- Drainage Management Office, Tongliao Municipal Commission of Housing Urban-Rural Development, Tongliao, 028000, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chen Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
19
|
Sivaranjani T, Revathy TA, Dhanavel S, Dhanapal K, Narayanan V, Stephen A. Effect of Dendritic Cu-In Alloy on Cr(VI) Reduction Synthesized via Pulsed Electrodeposition. ChemistrySelect 2018. [DOI: 10.1002/slct.201802651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Saminathan Dhanavel
- Department of Nuclear Physics; University of Madras, Guindy Campus, Chennai; 600 025 Tamilnadu India
| | - Kumaresan Dhanapal
- Department of Nuclear Physics; University of Madras, Guindy Campus, Chennai; 600 025 Tamilnadu India
| | - Vengidusamy Narayanan
- Department of Inorganic Chemistry; University of Madras, Guindy Campus, Chennai; 600 025 Tamilnadu India
| | - Arumainathan Stephen
- Department of Nuclear Physics; University of Madras, Guindy Campus, Chennai; 600 025 Tamilnadu India
| |
Collapse
|
20
|
Xu Y, Fang Y, Wang Z, Guo D, Liu Y, Huang Y, Fu P, Jin J, Wei C, Wang H, Zeng T. In-situ sludge reduction and carbon reuse in an anoxic/oxic process coupled with hydrocyclone breakage. WATER RESEARCH 2018; 141:135-144. [PMID: 29783166 DOI: 10.1016/j.watres.2018.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/29/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
The long-term performance of an anoxic-oxic-hydrocyclone (AOH) process with an in-situ hydrocyclone treatment unit in the mixed liquid return line for sludge reduction and carbon reuse has been observed, in comparison with a conventional anoxic-oxic (AO) process. Three parallel side-stream systems, including one AOH25 system with a 25-mm hydrocyclone, one AOH35 system with a 35-mm hydrocyclone and one AO system, were built and fed with real wastewater for a comparative study in a wastewater treatment plant. The results demonstrate that the hydrocyclone in the AOH process was able to break macro-flocs into smaller flocs. And the desorption of the extracellular polymeric substance from return activated sludge (AS) leaded to an average increase of 62.97% and 36.36% in SCOD in the AOH25 and AOH35 system, respectively. In addition, shear forces, centrifugal forces of revolution and flocs' rotation in the hydrocyclone were proposed to be the main influence mechanism of hydrocyclone treatment on AS properties. Compared with the AO process, the SCOD concentration in the effluent of the AOH processes presented a decrease of 12.0 mg/L and the TN was reduced by 21.50% owing to the released carbon sources reuse. Moreover, the sludge production was reduced by 36.81% and 35.92% in the AOH25 and AOH35 process, respectively. By contrast, the AOH25 system was better than the AOH35 system.
Collapse
Affiliation(s)
- Yinxiang Xu
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China; Sichuan Engineering Laboratory of Resource Utilization of Mine Tailings, Sichuan University of Science & Engineering, Sichuan, 643000, PR China; School of Space and Environment, Beijing University of Aeronautics and Astronautics, Beijing, 100191, PR China
| | - Yuanyuan Fang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zhenhua Wang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Dan Guo
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yi Liu
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuan Huang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Pengbo Fu
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Juehui Jin
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Chenwen Wei
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Hualin Wang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Tao Zeng
- Sichuan Engineering Laboratory of Resource Utilization of Mine Tailings, Sichuan University of Science & Engineering, Sichuan, 643000, PR China
| |
Collapse
|
21
|
|
22
|
Durán U, Coronado-Apodaca KG, Meza-Escalante ER, Ulloa-Mercado G, Serrano D. Two combined mechanisms responsible to hexavalent chromium removal on active anaerobic granular consortium. CHEMOSPHERE 2018; 198:191-197. [PMID: 29421729 DOI: 10.1016/j.chemosphere.2018.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/17/2017] [Accepted: 01/06/2018] [Indexed: 06/08/2023]
Abstract
Hexavalent chromium (Cr VI) from industrial wastewaters represents a highly toxic source at low concentrations. Biological treatments with anaerobic granular biomass are a promising alternative for the Cr VI bioremediation. This study evaluated the Cr VI removal in a range of 5-500 mg/L, using an active anaerobic granular consortium. Two removal mechanisms were differentiated from the assays: 1) biological reduction of 70 mg/L to Cr III at a concentration of 250 mg Cr VI/L and 2) physical bioadsorption of 297 mg of Cr VI/L or 31.39 mg of Cr VI/gbiomass at concentration of 500 mg Cr VI /L. The half-maximal inhibitory concentration (IC50) values for the rate and production of methane were 1.4 and 253 mg/L, respectively. In addition, Cr VI is a biostimulant that increase the methane production, in a range from 5 to 100 mg/L, of the anaerobic consortium. This work demonstrates the potential application of the anaerobic granular consortium in metal bioremediation.
Collapse
Affiliation(s)
- U Durán
- Instituto de Ingeniería, UNAM, P.O. Box 70-186, Mexico City, Mexico
| | - K G Coronado-Apodaca
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, C.P. 85000 Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - E R Meza-Escalante
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, C.P. 85000 Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - G Ulloa-Mercado
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, C.P. 85000 Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - D Serrano
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, C.P. 85000 Col. Centro, Ciudad Obregón, Sonora, Mexico.
| |
Collapse
|