1
|
Chivers SB, Andrade MA, Hammack RJ, Shannonhouse J, Gomez R, Zhang Y, Nguyen B, Shah P, Kim YS, Toney GM, Jeske NA. Peripheral macrophages contribute to nociceptor priming in mice with chronic intermittent hypoxia. Sci Signal 2024; 17:eadn8936. [PMID: 39078919 PMCID: PMC11412124 DOI: 10.1126/scisignal.adn8936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/13/2024] [Indexed: 09/21/2024]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with increased incidence of chronic musculoskeletal pain. We investigated the mechanism of this association in a mouse model of chronic intermittent hypoxia (CIH) that mimics the repetitive hypoxemias of OSA. After 14 days of CIH, both male and female mice exhibited behaviors indicative of persistent pain, with biochemical markers in the spinal cord dorsal horn and sensory neurons of the dorsal root ganglia consistent with hyperalgesic priming. CIH, but not sleep fragmentation alone, induced an increase in macrophage recruitment to peripheral sensory tissues (sciatic nerve and dorsal root ganglia), an increase in inflammatory cytokines in the circulation, and nociceptor sensitization. Peripheral macrophage ablation blocked CIH-induced hyperalgesic priming. The findings suggest that correcting the hypoxia or targeting macrophage signaling might suppress persistent pain in patients with OSA.
Collapse
Affiliation(s)
- Samuel B. Chivers
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mary Ann Andrade
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert J. Hammack
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Brian Nguyen
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Pankil Shah
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Glenn M. Toney
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
2
|
Ji G, Presto P, Kiritoshi T, Chen Y, Navratilova E, Porreca F, Neugebauer V. Chemogenetic Manipulation of Amygdala Kappa Opioid Receptor Neurons Modulates Amygdala Neuronal Activity and Neuropathic Pain Behaviors. Cells 2024; 13:705. [PMID: 38667320 PMCID: PMC11049235 DOI: 10.3390/cells13080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroplasticity in the central nucleus of the amygdala (CeA) plays a key role in the modulation of pain and its aversive component. The dynorphin/kappa opioid receptor (KOR) system in the amygdala is critical for averse-affective behaviors in pain conditions, but its mechanisms are not well understood. Here, we used chemogenetic manipulations of amygdala KOR-expressing neurons to analyze the behavioral consequences in a chronic neuropathic pain model. For the chemogenetic inhibition or activation of KOR neurons in the CeA, a Cre-inducible viral vector encoding Gi-DREADD (hM4Di) or Gq-DREADD (hM3Dq) was injected stereotaxically into the right CeA of transgenic KOR-Cre mice. The chemogenetic inhibition of KOR neurons expressing hM4Di with a selective DREADD actuator (deschloroclozapine, DCZ) in sham control mice significantly decreased inhibitory transmission, resulting in a shift of inhibition/excitation balance to promote excitation and induced pain behaviors. The chemogenetic activation of KOR neurons expressing hM3Dq with DCZ in neuropathic mice significantly increased inhibitory transmission, decreased excitability, and decreased neuropathic pain behaviors. These data suggest that amygdala KOR neurons modulate pain behaviors by exerting an inhibitory tone on downstream CeA neurons. Therefore, activation of these interneurons or blockade of inhibitory KOR signaling in these neurons could restore control of amygdala output and mitigate pain.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
| | - Yong Chen
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
3
|
Vlachova V, Barvik I, Zimova L. Human Transient Receptor Potential Ankyrin 1 Channel: Structure, Function, and Physiology. Subcell Biochem 2024; 104:207-244. [PMID: 38963489 DOI: 10.1007/978-3-031-58843-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.
Collapse
Affiliation(s)
- Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Ivan Barvik
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Walters ET. Exaptation and Evolutionary Adaptation in Nociceptor Mechanisms Driving Persistent Pain. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:314-330. [PMID: 38035556 PMCID: PMC10922759 DOI: 10.1159/000535552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Several evolutionary explanations have been proposed for why chronic pain is a major clinical problem. One is that some mechanisms important for driving chronic pain, while maladaptive for modern humans, were adaptive because they enhanced survival. Evidence is reviewed for persistent nociceptor hyperactivity (PNH), known to promote chronic pain in rodents and humans, being an evolutionarily adaptive response to significant bodily injury, and primitive molecular mechanisms related to cellular injury and stress being exapted (co-opted or repurposed) to drive PNH and consequent pain. SUMMARY PNH in a snail (Aplysia californica), squid (Doryteuthis pealeii), fruit fly (Drosophila melanogaster), mice, rats, and humans has been documented as long-lasting enhancement of action potential discharge evoked by peripheral stimuli, and in some of these species as persistent extrinsically driven ongoing activity and/or intrinsic spontaneous activity (OA and SA, respectively). In mammals, OA and SA are often initiated within the protected nociceptor soma long after an inducing injury. Generation of OA or SA in nociceptor somata may be very rare in invertebrates, but prolonged afterdischarge in nociceptor somata readily occurs in sensitized Aplysia. Evidence for the adaptiveness of injury-induced PNH has come from observations of decreased survival of injured squid exposed to predators when PNH is blocked, from plausible survival benefits of chronic sensitization after severe injuries such as amputation, and from the functional coherence and intricacy of mammalian PNH mechanisms. Major contributions of cAMP-PKA signaling (with associated calcium signaling) to the maintenance of PNH both in mammals and molluscs suggest that this ancient stress signaling system was exapted early during the evolution of nociceptors to drive hyperactivity following bodily injury. Vertebrates have retained core cAMP-PKA signaling modules for PNH while adding new extracellular modulators (e.g., opioids) and cAMP-regulated ion channels (e.g., TRPV1 and Nav1.8 channels). KEY MESSAGES Evidence from multiple phyla indicates that PNH is a physiological adaptation that decreases the risk of attacks on injured animals. Core cAMP-PKA signaling modules make major contributions to the maintenance of PNH in molluscs and mammals. This conserved signaling has been linked to ancient cellular responses to stress, which may have been exapted in early nociceptors to drive protective hyperactivity that can persist while bodily functions recover after significant injury.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Scheraga RG, Olman MA. TRP Channels in Pulmonary Fibrosis: Variety Is a Spice of Life. Am J Respir Cell Mol Biol 2023; 68:241-242. [PMID: 36413749 PMCID: PMC9989481 DOI: 10.1165/rcmb.2022-0446ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Zhang Y, Jeske NA. A-kinase anchoring protein 79/150 coordinates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor sensitization in sensory neurons. Mol Pain 2023; 19:17448069231222406. [PMID: 38073552 PMCID: PMC10722943 DOI: 10.1177/17448069231222406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Changes in sensory afferent activity contribute to the transition from acute to chronic pain. However, it is unlikely that a single sensory receptor is entirely responsible for persistent pain. It is more probable that extended changes to multiple receptor proteins expressed by afferent neurons support persistent pain. A-Kinase Anchoring Protein 79/150 (AKAP) is an intracellular scaffolding protein expressed in sensory neurons that spatially and temporally coordinates signaling events. Since AKAP scaffolds biochemical modifications of multiple TRP receptors linked to pain phenotypes, we probed for other ionotropic receptors that may be mediated by AKAP and contribute to persistent pain. Here, we identify a role for AKAP modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor (AMPA-R) functionality in sensory neurons. Pharmacological manipulation of distinct AMPA-R subunits significantly reduces persistent mechanical hypersensitivity observed during hyperalgesic priming. Stimulation of both protein kinases C and A (PKC, PKA, respectively) modulate AMPA-R subunit GluR1 and GluR2 phosphorylation and surface expression in an AKAP-dependent manner in primary cultures of DRG neurons. Furthermore, AKAP knock out reduces sensitized AMPA-R responsivity in DRG neurons. Collectively, these data indicate that AKAP scaffolds AMPA-R subunit organization in DRG neurons that may contribute to the transition from acute-to-chronic pain.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nathaniel A Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
7
|
Khan S, Patra PH, Somerfield H, Benya-Aphikul H, Upadhya M, Zhang X. IQGAP1 promotes chronic pain by regulating the trafficking and sensitization of TRPA1 channels. Brain 2022:6881565. [PMID: 36477832 DOI: 10.1093/brain/awac462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
TRPA1 channels have been implicated in mechanical and cold hypersensitivity in chronic pain. But how TRPA1 mediates this process is unclear. Here we show that IQ-motif containing GTPase activating protein 1 (IQGAP1) is responsible using a combination of biochemical, molecular, Ca2+ imaging and behavioural approaches. TRPA1 and IQGAP1 bind to each other and are highly colocalised in sensory DRG neurons in mice. The expression of IQGAP1 but not TRPA1 is increased in chronic inflammatory and neuropathic pain. However, TRPA1 undergoes increased trafficking to the membrane of DRG neurons catalysed by the small GTPase Cdc42 associated with IQGAP1, leading to functional sensitization of the channel. Activation of PKA is also sufficient to evoke TRPA1 trafficking and sensitization. All these responses are, however, completely prevented in the absence of IQGAP1. Concordantly, deletion of IQGAP1 markedly reduces mechanical and cold hypersensitivity in chronic inflammatory and neuropathic pain in mice. IQGAP1 thus promotes chronic pain by coupling the trafficking and signalling machineries to TRPA1 channels.
Collapse
Affiliation(s)
- Shakil Khan
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Pabitra H Patra
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Hannah Somerfield
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Manoj Upadhya
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Xuming Zhang
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
8
|
Inferiority complex: why do sensory ion channels multimerize? Biochem Soc Trans 2022; 50:213-222. [PMID: 35166323 PMCID: PMC9022975 DOI: 10.1042/bst20211002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Peripheral somatosensory nerves are equipped with versatile molecular sensors which respond to acute changes in the physical environment. Most of these sensors are ion channels that, when activated, depolarize the sensory nerve terminal causing it to generate action potentials, which is the first step in generation of most somatic sensations, including pain. The activation and inactivation of sensory ion channels is tightly regulated and modulated by a variety of mechanisms. Amongst such mechanisms is the regulation of sensory ion channel activity via direct molecular interactions with other proteins in multi-protein complexes at the plasma membrane of sensory nerve terminals. In this brief review, we will consider several examples of such complexes formed around a prototypic sensory receptor, transient receptor potential vanilloid type 1 (TRPV1). We will also discuss some inherent conceptual difficulties arising from the multitude of reported complexes.
Collapse
|
9
|
Mini-review: The nociceptive sensory functions of the polymodal receptor Transient Receptor Potential Ankyrin Type 1 (TRPA1). Neurosci Lett 2021; 764:136286. [PMID: 34624396 DOI: 10.1016/j.neulet.2021.136286] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023]
Abstract
Over the last 17 years since its cloning in 2003, the receptor-channel TRPA1 has received increasing attention due to its polymodal features and prominent role in pain signaling in a variety of human disease states. While evidence has been accumulating for non-neuronal TRPA1 expression, it is the presence of this channel in nociceptive nerve endings which has taken centre stage, due to its potential clinical ramifications. As a consequence, we shall focus in this review on the sensory functions of TRPA1 related to its expression in the peripheral nervous system. While substantial research has been focused on the putative role of TRPA1 in detecting irritant compounds, noxious cold and mechanical stimuli, the current overall picture is, to some extent, still cloudy. The chemosensory function of the channel is well demonstrated, as well as its involvement in the detection of oxidative and nitrosative stress; however, the other sensory features of TRPA1 have not been fully elucidated yet. The current state of the experimental evidence for these physiological roles of TRPA1 in mammals, and particularly in humans, will be discussed in this review.
Collapse
|
10
|
McMillan H, Lundy FT, Dunne OM, Al-Natour B, Jeanneau C, About I, Curtis TM, El Karim I. Endogenous Mas-related G-protein-coupled receptor X1 activates and sensitizes TRPA1 in a human model of peripheral nerves. FASEB J 2021; 35:e21492. [PMID: 33788969 DOI: 10.1096/fj.202001667rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Mas-related G-protein-coupled receptor X1 (MrgprX1) is a human-specific Mrgpr and its expression is restricted to primary sensory neurons. However, its role in nociception and pain signaling pathways is largely unknown. This study aims to investigate a role for MrgprX1 in nociception via interaction with the pain receptor, Transient Receptor Potential Ankyrin 1 (TRPA1), using in-vitro and in-vivo human neuronal models. MrgprX1 protein expression in human trigeminal nociceptors was investigated by the immunolabeling of the dental pulp and cultured peripheral neuronal equivalent (PNE) cells. MrgprX1 receptor signaling was monitored by Fura-2-based Ca2+ imaging using PNEs and membrane potential responses were measured using FluoVoltTM . Immunofluorescent staining revealed MrgprX1 expression in-vivo in dental afferents, which was more intense in inflamed compared to healthy dental pulps. Endogenous MrgprX1 protein expression was confirmed in the in-vitro human PNE model. MrgprX1 receptor signaling and the mechanisms through which it couples to TRPA1 were studied by Ca2+ imaging. Results showed that MrgprX1 activates TRPA1 and induces membrane depolarization in a TRPA1 dependent manner. In addition, MrgprX1 sensitizes TRPA1 to agonist stimulation via Protein Kinase C (PKC). The activation and sensitization of TRPA1 by MrgprX1 in a model of human nerves suggests an important role for this receptor in the modulation of nociception.
Collapse
Affiliation(s)
- Hayley McMillan
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | - Fionnuala T Lundy
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | - Orla M Dunne
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | - Banan Al-Natour
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
- Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Imad About
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Tim M Curtis
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | - Ikhlas El Karim
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| |
Collapse
|
11
|
Calmodulin Supports TRPA1 Channel Association with Opioid Receptors and Glutamate NMDA Receptors in the Nervous Tissue. Int J Mol Sci 2020; 22:ijms22010229. [PMID: 33379368 PMCID: PMC7795679 DOI: 10.3390/ijms22010229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Transient receptor potential ankyrin member 1 (TRPA1) belongs to the family of thermo TRP cation channels that detect harmful temperatures, acids and numerous chemical pollutants. TRPA1 is expressed in nervous tissue, where it participates in the genesis of nociceptive signals in response to noxious stimuli and mediates mechanical hyperalgesia and allodynia associated with different neuropathies. The glutamate N-methyl-d-aspartate receptor (NMDAR), which plays a relevant role in allodynia to mechanical stimuli, is connected via histidine triad nucleotide-binding protein 1 (HINT1) and type 1 sigma receptor (σ1R) to mu-opioid receptors (MORs), which mediate the most potent pain relief. Notably, neuropathic pain causes a reduction in MOR antinociceptive efficacy, which can be reversed by blocking spinal NMDARs and TRPA1 channels. Thus, we studied whether TRPA1 channels form complexes with MORs and NMDARs that may be implicated in the aforementioned nociceptive signals. Our data suggest that TRPA1 channels functionally associate with MORs, delta opioid receptors and NMDARs in the dorsal root ganglia, the spinal cord and brain areas. These associations were altered in response to pharmacological interventions and the induction of inflammatory and also neuropathic pain. The MOR-TRPA1 and NMDAR-TRPA1 associations do not require HINT1 or σ1R but appear to be mediated by calcium-activated calmodulin. Thus, TRPA1 channels may associate with NMDARs to promote ascending acute and chronic pain signals and to control MOR antinociception.
Collapse
|
12
|
Phospho-Mimetic Mutation at Ser602 Inactivates Human TRPA1 Channel. Int J Mol Sci 2020; 21:ijms21217995. [PMID: 33121177 PMCID: PMC7663402 DOI: 10.3390/ijms21217995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
The Transient Receptor Potential Ankyrin 1 (TRPA1) channel is an integrative molecular sensor for detecting environmental irritant compounds, endogenous proalgesic and inflammatory agents, pressure, and temperature. Different post-translational modifications participate in the discrimination of the essential functions of TRPA1 in its physiological environment, but the underlying structural bases are poorly understood. Here, we explored the role of the cytosolic N-terminal residue Ser602 located near a functionally important allosteric coupling domain as a potential target of phosphorylation. The phosphomimetic mutation S602D completely abrogated channel activation, whereas the phosphonull mutations S602G and S602N produced a fully functional channel. Using mutagenesis, electrophysiology, and molecular simulations, we investigated the possible structural impact of a modification (mutation or phosphorylation) of Ser602 and found that this residue represents an important regulatory site through which the intracellular signaling cascades may act to reversibly restrict or “dampen” the conformational space of the TRPA1 channel and promote its transitions to the closed state.
Collapse
|
13
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
14
|
Zimova L, Barvikova K, Macikova L, Vyklicka L, Sinica V, Barvik I, Vlachova V. Proximal C-Terminus Serves as a Signaling Hub for TRPA1 Channel Regulation via Its Interacting Molecules and Supramolecular Complexes. Front Physiol 2020; 11:189. [PMID: 32226391 PMCID: PMC7081373 DOI: 10.3389/fphys.2020.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Our understanding of the general principles of the polymodal regulation of transient receptor potential (TRP) ion channels has grown impressively in recent years as a result of intense efforts in protein structure determination by cryo-electron microscopy. In particular, the high-resolution structures of various TRP channels captured in different conformations, a number of them determined in a membrane mimetic environment, have yielded valuable insights into their architecture, gating properties and the sites of their interactions with annular and regulatory lipids. The correct repertoire of these channels is, however, organized by supramolecular complexes that involve the localization of signaling proteins to sites of action, ensuring the specificity and speed of signal transduction events. As such, TRP ankyrin 1 (TRPA1), a major player involved in various pain conditions, localizes into cholesterol-rich sensory membrane microdomains, physically interacts with calmodulin, associates with the scaffolding A-kinase anchoring protein (AKAP) and forms functional complexes with the related TRPV1 channel. This perspective will contextualize the recent biochemical and functional studies with emerging structural data with the aim of enabling a more thorough interpretation of the results, which may ultimately help to understand the roles of TRPA1 under various physiological and pathophysiological pain conditions. We demonstrate that an alteration to the putative lipid-binding site containing a residue polymorphism associated with human asthma affects the cold sensitivity of TRPA1. Moreover, we present evidence that TRPA1 can interact with AKAP to prime the channel for opening. The structural bases underlying these interactions remain unclear and are definitely worth the attention of future studies.
Collapse
Affiliation(s)
- Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Kristyna Barvikova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Lucie Macikova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Lenka Vyklicka
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Viktor Sinica
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Ivan Barvik
- Division of Biomolecular Physics, Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czechia
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
15
|
Patil MJ, Salas M, Bialuhin S, Boyd JT, Jeske NA, Akopian AN. Sensitization of small-diameter sensory neurons is controlled by TRPV1 and TRPA1 association. FASEB J 2020; 34:287-302. [PMID: 31914619 PMCID: PMC7539696 DOI: 10.1096/fj.201902026r] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Unique features of sensory neuron subtypes are manifest by their distinct physiological and pathophysiological functions. Using patch-clamp electrophysiology, Ca2+ imaging, calcitonin gene-related peptide release assay from tissues, protein biochemistry approaches, and behavioral physiology on pain models, this study demonstrates the diversity of sensory neuron pathophysiology is due in part to subtype-dependent sensitization of TRPV1 and TRPA1. Differential sensitization is influenced by distinct expression of inflammatory mediators, such as prostaglandin E2 (PGE2), bradykinin (BK), and nerve growth factor (NGF) as well as multiple kinases, including protein kinase A (PKA) and C (PKC). However, the co-expression and interaction of TRPA1 with TRPV1 proved to be the most critical for differential sensitization of sensory neurons. We identified N- and C-terminal domains on TRPV1 responsible for TRPA1-TRPV1 (A1-V1) complex formation. Ablation of A1-V1 complex with dominant-negative peptides against these domains substantially reduced the sensitization of TRPA1, as well as BK- and CFA-induced hypersensitivity. These data indicate that often occurring TRP channel complexes regulate diversity in neuronal sensitization and may provide a therapeutic target for many neuroinflammatory pain conditions.
Collapse
Affiliation(s)
- Mayur J. Patil
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- The Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224
| | - Margaux Salas
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- United States Army Institute of Surgical Research, Air Force- 59th Medical Wing, San Antonio, TX 78234
| | - Siarhei Bialuhin
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jacob T. Boyd
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
16
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
17
|
Moehring F, Halder P, Seal RP, Stucky CL. Uncovering the Cells and Circuits of Touch in Normal and Pathological Settings. Neuron 2019; 100:349-360. [PMID: 30359601 DOI: 10.1016/j.neuron.2018.10.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
Abstract
The sense of touch is fundamental as it provides vital, moment-to-moment information about the nature of our physical environment. Primary sensory neurons provide the basis for this sensation in the periphery; however, recent work demonstrates that touch transduction mechanisms also occur upstream of the sensory neurons via non-neuronal cells such as Merkel cells and keratinocytes. Within the spinal cord, deep dorsal horn circuits transmit innocuous touch centrally and also transform touch into pain in the setting of injury. Here non-neuronal cells play a key role in the induction and maintenance of persistent mechanical pain. This review highlights recent advances in our understanding of mechanosensation, including a growing appreciation for the role of non-neuronal cells in both touch and pain.
Collapse
Affiliation(s)
- Francie Moehring
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Priyabrata Halder
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, Pittsburgh, PA 15213, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
18
|
Fu W, Nelson TS, Santos DF, Doolen S, Gutierrez JJ, Ye N, Zhou J, Taylor B. An NPY Y1 receptor antagonist unmasks latent sensitization and reveals the contribution of protein kinase A and Epac to chronic inflammatory pain. Pain 2019; 160:1754-1765. [PMID: 31335645 PMCID: PMC6903783 DOI: 10.1097/j.pain.0000000000001557] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peripheral inflammation produces a long-lasting latent sensitization of spinal nociceptive neurons, that is, masked by tonic inhibitory controls. We explored mechanisms of latent sensitization with an established four-step approach: (1) induction of inflammation; (2) allow pain hypersensitivity to resolve; (3) interrogate latent sensitization with a channel blocker, mutant mouse, or receptor antagonist; and (4) disrupt compensatory inhibition with a receptor antagonist so as to reinstate pain hypersensitivity. We found that the neuropeptide Y Y1 receptor antagonist BIBO3304 reinstated pain hypersensitivity, indicative of an unmasking of latent sensitization. BIBO3304-evoked reinstatement was not observed in AC1 knockout mice and was prevented with intrathecal co-administration of a pharmacological blocker to the N-methyl-D-aspartate receptor (NMDAR), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), transient receptor potential cation channel A1 (TRPA1), channel V1 (TRPV1), or exchange protein activated by cAMP (Epac1 or Epac2). A PKA activator evoked both pain reinstatement and touch-evoked pERK expression in dorsal horn; the former was prevented with intrathecal co-administration of a TRPA1 or TRPV1 blocker. An Epac activator also evoked pain reinstatement and pERK expression. We conclude that PKA and Epac are sufficient to maintain long-lasting latent sensitization of dorsal horn neurons that is kept in remission by the NPY-Y1 receptor system. Furthermore, we have identified and characterized 2 novel molecular signaling pathways in the dorsal horn that drive latent sensitization in the setting of chronic inflammatory pain: NMDAR→AC1→PKA→TRPA1/V1 and NMDAR→AC1→Epac1/2. New treatments for chronic inflammatory pain might either increase endogenous NPY analgesia or inhibit AC1, PKA, or Epac.
Collapse
Affiliation(s)
- Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
| | - Tyler S. Nelson
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Diogo F. Santos
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Suzanne Doolen
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Javier J.P. Gutierrez
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Na Ye
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bradley Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
19
|
Carboplatin Enhances the Activity of Human Transient Receptor Potential Ankyrin 1 through the Cyclic AMP-Protein Kinase A-A-Kinase Anchoring Protein (AKAP) Pathways. Int J Mol Sci 2019; 20:ijms20133271. [PMID: 31277262 PMCID: PMC6651390 DOI: 10.3390/ijms20133271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
Carboplatin, an anticancer drug, often causes chemotherapy-induced peripheral neuropathy (PN). Transient receptor potential ankyrin 1 (TRPA1), a non-selective cation channel, is a polymodal nociceptor expressed in sensory neurons. TRPA1 is not only involved in pain transmission, but also in allodynia or hyperalgesia development. However, the effects of TRPA1 on carboplatin-induced PN is unclear. We revealed that carboplatin induced mechanical allodynia and cold hyperalgesia, and the pains observed in carboplatin-induced PN models were significantly suppressed by the TRPA1 antagonist HC-030031 without a change in the level of TRPA1 protein. In cells expressing human TRPA, carboplatin had no effects on changes in intracellular Ca2+ concentration ([Ca2+]i); however, carboplatin pretreatment enhanced the increase in [Ca2+]i induced by the TRPA1 agonist, allyl isothiocyanate (AITC). These effects were suppressed by an inhibitor of protein kinase A (PKA). The PKA activator forskolin enhanced AITC-induced increase in [Ca2+]i and carboplatin itself increased intracellular cyclic adenosine monophosphate (cAMP) levels. Moreover, inhibition of A-kinase anchoring protein (AKAP) significantly decreased the carboplatin-induced enhancement of [Ca2+]i induced by AITC and improved carboplatin-induced mechanical allodynia and cold hyperalgesia. These results suggested that carboplatin induced mechanical allodynia and cold hyperalgesia by increasing sensitivity to TRPA1 via the cAMP-PKA-AKAP pathway.
Collapse
|
20
|
Jeske NA. Dynamic Opioid Receptor Regulation in the Periphery. Mol Pharmacol 2019; 95:463-467. [PMID: 30723091 PMCID: PMC6442319 DOI: 10.1124/mol.118.114637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022] Open
Abstract
Opioids serve a vital role in the current analgesic array of treatment options. They are useful in acute instances involving severe pain associated with trauma, surgery, and terminal diseases such as cancer. In the past three decades, multiple receptor isoforms and conformations have been reported throughout literature. Most of these studies conducted systemic analyses of opioid receptor function, often generalizing findings from receptor systems in central nervous tissue or exogenously expressing immortalized cell lines as common mechanisms throughout physiology. However, a culmination of innovative experimental data indicates that opioid receptor systems are differentially modulated depending on their anatomic expression profile. Importantly, opioid receptors expressed in the peripheral nervous system undergo regulation uncommon to similar receptors expressed in central nervous system tissues. This distinctive characteristic begs one to question whether peripheral opioid receptors maintain anatomically unique roles, and whether they may serve an analgesic advantage in providing pain relief without promoting addiction.
Collapse
Affiliation(s)
- Nathaniel A Jeske
- Departments of Oral and Maxillofacial Surgery, Pharmacology, and Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
21
|
Griggs RB, Santos DF, Laird DE, Doolen S, Donahue RR, Wessel CR, Fu W, Sinha GP, Wang P, Zhou J, Brings S, Fleming T, Nawroth PP, Susuki K, Taylor BK. Methylglyoxal and a spinal TRPA1-AC1-Epac cascade facilitate pain in the db/db mouse model of type 2 diabetes. Neurobiol Dis 2019; 127:76-86. [PMID: 30807826 DOI: 10.1016/j.nbd.2019.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Painful diabetic neuropathy (PDN) is a devastating neurological complication of diabetes. Methylglyoxal (MG) is a reactive metabolite whose elevation in the plasma corresponds to PDN in patients and pain-like behavior in rodent models of type 1 and type 2 diabetes. Here, we addressed the MG-related spinal mechanisms of PDN in type 2 diabetes using db/db mice, an established model of type 2 diabetes, and intrathecal injection of MG in conventional C57BL/6J mice. Administration of either a MG scavenger (GERP10) or a vector overexpressing glyoxalase 1, the catabolic enzyme for MG, attenuated heat hypersensitivity in db/db mice. In C57BL/6J mice, intrathecal administration of MG produced signs of both evoked (heat and mechanical hypersensitivity) and affective (conditioned place avoidance) pain. MG-induced Ca2+ mobilization in lamina II dorsal horn neurons of C57BL/6J mice was exacerbated in db/db, suggestive of MG-evoked central sensitization. Pharmacological and/or genetic inhibition of transient receptor potential ankyrin subtype 1 (TRPA1), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), or exchange protein directly activated by cyclic adenosine monophosphate (Epac) blocked MG-evoked hypersensitivity in C57BL/6J mice. Similarly, intrathecal administration of GERP10, or inhibitors of TRPA1 (HC030031), AC1 (NB001), or Epac (HJC-0197) attenuated hypersensitivity in db/db mice. We conclude that MG and sensitization of a spinal TRPA1-AC1-Epac signaling cascade facilitate PDN in db/db mice. Our results warrant clinical investigation of MG scavengers, glyoxalase inducers, and spinally-directed pharmacological inhibitors of a MG-TRPA1-AC1-Epac pathway for the treatment of PDN in type 2 diabetes.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America; Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States of America.
| | - Diogo F Santos
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Don E Laird
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Suzanne Doolen
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Renee R Donahue
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Caitlin R Wessel
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Weisi Fu
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Ghanshyam P Sinha
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Sebastian Brings
- Department of Nuclear Medicine, University Hospital of Heidelberg, INF 400 Heidelberg, Germany; Department of Medicine and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter P Nawroth
- Department of Medicine and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Zentrum München, Neuherberg, Germany
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States of America
| | - Bradley K Taylor
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
22
|
Serum response factor mediates nociceptor inflammatory pain plasticity. Pain Rep 2018; 3:e658. [PMID: 29922747 PMCID: PMC5999410 DOI: 10.1097/pr9.0000000000000658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 01/09/2023] Open
Abstract
Supplemental Digital Content is Available in the Text. Serum response factor upregulates A-Kinase Anchoring Protein 79/150 expression in afferent sensory neurons through metabotropic glutamate receptor signaling. Introduction: Chronic metabotropic glutamate receptor activation in nociceptive afferents may upregulate A-Kinase Anchoring Protein 150 (AKAP150) expression and/or function. Objectives: To quantify transcriptional changes in AKAP150 expression and/or function after long-term mGluR5 agonist exposure, and identify transcriptional elements responsible. Methods: Dorsal root ganglia (DRG) were dissected from Sprague-Dawley rats and cultured for biochemical analysis of AKAP150 expression after prolonged mGluR5 agonist exposure. Serum response factor (SRF) expression was knocked down through siRNA in cultures to demonstrate significance to AKAP150 upregulation. Serum response factor was also knocked down in vivo through intrathecal injections of specifically targeted oligonucleotides to demonstrate significance to hyperalgesic priming behavior in persistent mechanical hypersensitivity. Results: Serum response factor and AKAP150 are coexpressed in TRPV1(+) DRG neurons in intact DRG. Prolonged mGluR5 agonist exposure increases SRF-dependent transcription and AKAP150 expression in a manner sensitive to protein kinase C inhibition and SRF knock down. Serum response factor in vivo knock down reduces mechanical hyperalgesic priming. Conclusion: Serum response factor transcription plays an important role in transcriptional upregulation of AKAP and hyperalgesic priming behavior, and may contribute to the increased role of AKAP150 in the transition from acute to chronic pain.
Collapse
|
23
|
Hall BE, Prochazkova M, Sapio MR, Minetos P, Kurochkina N, Binukumar BK, Amin ND, Terse A, Joseph J, Raithel SJ, Mannes AJ, Pant HC, Chung MK, Iadarola MJ, Kulkarni AB. Phosphorylation of the Transient Receptor Potential Ankyrin 1 by Cyclin-dependent Kinase 5 affects Chemo-nociception. Sci Rep 2018; 8:1177. [PMID: 29352128 PMCID: PMC5775258 DOI: 10.1038/s41598-018-19532-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/04/2018] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a key neuronal kinase that is upregulated during inflammation, and can subsequently modulate sensitivity to nociceptive stimuli. We conducted an in silico screen for Cdk5 phosphorylation sites within proteins whose expression was enriched in nociceptors and identified the chemo-responsive ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) as a possible Cdk5 substrate. Immunoprecipitated full length TRPA1 was shown to be phosphorylated by Cdk5 and this interaction was blocked by TFP5, an inhibitor that prevents activation of Cdk5. In vitro peptide-based kinase assay revealed that four of six TRPA1 Cdk5 consensus sites acted as substrates for Cdk5, and modeling of the ankyrin repeats disclosed that phosphorylation would occur at characteristic pockets within the (T/S)PLH motifs. Calcium imaging of trigeminal ganglion neurons from genetically engineered mice overexpressing or lacking the Cdk5 activator p35 displayed increased or decreased responsiveness, respectively, to stimulation with the TRPA1 agonist allylisothiocyanate (AITC). AITC-induced chemo-nociceptive behavior was also heightened in vivo in mice overexpressing p35 while being reduced in p35 knockout mice. Our findings demonstrate that TRPA1 is a substrate of Cdk5 and that Cdk5 activity is also able to modulate TRPA1 agonist-induced calcium influx and chemo-nociceptive behavioral responses.
Collapse
Affiliation(s)
- Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Paul Minetos
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,Tulane University School of Medicine, New Orleans, LA, USA
| | | | - B K Binukumar
- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Niranjana D Amin
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - John Joseph
- University of Maryland, School of Dentistry, Baltimore, MD, USA
| | - Stephen J Raithel
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Harish C Pant
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Man-Kyo Chung
- University of Maryland, School of Dentistry, Baltimore, MD, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Ji G, Yakhnitsa V, Kiritoshi T, Presto P, Neugebauer V. Fear extinction learning ability predicts neuropathic pain behaviors and amygdala activity in male rats. Mol Pain 2018; 14:1744806918804441. [PMID: 30209982 PMCID: PMC6172937 DOI: 10.1177/1744806918804441] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/15/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022] Open
Abstract
Background The amygdala plays a key role in fear learning and extinction and has emerged as an important node of emotional-affective aspects of pain and pain modulation. Impaired fear extinction learning, which involves prefrontal cortical control of amygdala processing, has been linked to neuropsychiatric disorders. Here, we tested the hypothesis that fear extinction learning ability can predict the magnitude of neuropathic pain. Results We correlated fear extinction learning in naive adult male rats with sensory and affective behavioral outcome measures (mechanical thresholds, vocalizations, and anxiety- and depression-like behaviors) before and after the induction of the spinal nerve ligation model of neuropathic pain compared to sham controls. Auditory fear conditioning, extinction learning, and extinction retention tests were conducted after baseline testing. All rats showed increased freezing responses after fear conditioning. During extinction training, the majority (75%) of rats showed a decline in freezing level to 50% in 5 min (fear extinction+), whereas 25% of the rats maintained a high freezing level (>50%, fear extinction-). Fear extinction- rats showed decreased open-arm preference in the elevated plus maze, reflecting anxiety-like behavior, but there were no significant differences in sensory thresholds, vocalizations, or depression-like behavior (forced swim test) between fear extinction+ and fear extinction- types. In the neuropathic pain model (four weeks after spinal nerve ligation), fear extinction- rats showed a greater increase in vocalizations and anxiety-like behavior than fear extinction+ rats. Fear extinction- rats, but not fear extinction+ rats, also developed depression-like behavior. Extracellular single unit recordings of amygdala (central nucleus) neurons in behaviorally tested rats (anesthetized with isoflurane) found greater increases in background activity, bursting, and evoked activity in fear extinction- rats than fear extinction+ rats in the spinal nerve ligation model compared to sham controls. Conclusion The data may suggest that fear extinction learning ability predicts the magnitude of neuropathic pain-related affective rather than sensory behaviors, which correlates with differences in amygdala activity changes.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|