1
|
Berke JM, Tan Y, Sauviller S, Wu DT, Zhang K, Conceição-Neto N, Blázquez Moreno A, Kong D, Kukolj G, Li C, Zhu R, Nájera I, Pauwels F. Class A capsid assembly modulator apoptotic elimination of hepatocytes with high HBV core antigen level in vivo is dependent on de novo core protein translation. J Virol 2024; 98:e0150223. [PMID: 38315015 PMCID: PMC10949496 DOI: 10.1128/jvi.01502-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Capsid assembly is critical in the hepatitis B virus (HBV) life cycle, mediated by the viral core protein. Capsid assembly is the target for new anti-viral therapeutics known as capsid assembly modulators (CAMs) of which the CAM-aberrant (CAM-A) class induces aberrant shaped core protein structures and leads to hepatocyte cell death. This study aimed to identify the mechanism of action of CAM-A modulators leading to HBV-infected hepatocyte elimination where CAM-A-mediated hepatitis B surface antigen (HBsAg) reduction was evaluated in a stable HBV replicating cell line and in AAV-HBV-transduced C57BL/6, C57BL/6 SCID, and HBV-infected chimeric mice with humanized livers. Results showed that in vivo treatment with CAM-A modulators induced pronounced reductions in hepatitis B e antigen (HBeAg) and HBsAg, associated with a transient alanine amino transferase (ALT) increase. Both HBsAg and HBeAg reductions and ALT increase were delayed in C57BL/6 SCID and chimeric mice, suggesting that adaptive immune responses may indirectly contribute. However, CD8+ T cell depletion in transduced wild-type mice did not impact antigen reduction, indicating that CD8+ T cell responses are not essential. Transient ALT elevation in AAV-HBV-transduced mice coincided with a transient increase in endoplasmic reticulum stress and apoptosis markers, followed by detection of a proliferation marker. Microarray data revealed antigen presentation pathway (major histocompatibility complex class I molecules) upregulation, overlapping with the apoptosis. Combination treatment with HBV-specific siRNA demonstrated that CAM-A-mediated HBsAg reduction is dependent on de novo core protein translation. To conclude, CAM-A treatment eradicates HBV-infected hepatocytes with high core protein levels through the induction of apoptosis, which can be a promising approach as part of a regimen to achieve functional cure. IMPORTANCE Treatment with hepatitis B virus (HBV) capsid assembly modulators that induce the formation of aberrant HBV core protein structures (CAM-A) leads to programmed cell death, apoptosis, of HBV-infected hepatocytes and subsequent reduction of HBV antigens, which differentiates CAM-A from other CAMs. The effect is dependent on the de novo synthesis and high levels of core protein.
Collapse
Affiliation(s)
- Jan Martin Berke
- Infectious Diseases Discovery, Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg, Beerse, Belgium
| | - Ying Tan
- Infectious Diseases Discovery, Janssen Research and Development, Jinchuang Mansion, Pudong, Shanghai, China
| | - Sarah Sauviller
- Infectious Diseases Discovery, Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg, Beerse, Belgium
| | - Dai-tze Wu
- Infectious Diseases Discovery, Janssen Research and Development, Jinchuang Mansion, Pudong, Shanghai, China
| | - Ke Zhang
- Infectious Diseases Discovery, Janssen Research and Development, Jinchuang Mansion, Pudong, Shanghai, China
| | - Nádia Conceição-Neto
- Infectious Diseases Discovery, Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg, Beerse, Belgium
| | - Alfonso Blázquez Moreno
- Infectious Diseases Biomarkers, Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg, Beerse, Belgium
| | - Desheng Kong
- Infectious Diseases Discovery, Janssen Research and Development, Jinchuang Mansion, Pudong, Shanghai, China
| | - George Kukolj
- Infectious Diseases Discovery, Janssen Research and Development, Brisbane, California, USA
| | - Chris Li
- Infectious Diseases Discovery, Janssen Research and Development, Brisbane, California, USA
| | - Ren Zhu
- Infectious Diseases Discovery, Janssen Research and Development, Jinchuang Mansion, Pudong, Shanghai, China
| | - Isabel Nájera
- Infectious Diseases Discovery, Janssen Research and Development, Brisbane, California, USA
| | - Frederik Pauwels
- Infectious Diseases Discovery, Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg, Beerse, Belgium
| |
Collapse
|
2
|
Wróblewska J, Wróblewski M, Hołyńska-Iwan I, Modrzejewska M, Nuszkiewicz J, Wróblewska W, Woźniak A. The Role of Glutathione in Selected Viral Diseases. Antioxidants (Basel) 2023; 12:1325. [PMID: 37507865 PMCID: PMC10376684 DOI: 10.3390/antiox12071325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
During inflammatory processes, immunocompetent cells are exposed to substantial amounts of free radicals and toxic compounds. Glutathione is a cysteine-containing tripeptide that is an important and ubiquitous antioxidant molecule produced in human organs. The intracellular content of GSH regulates the detoxifying capacity of cells, as well as the inflammatory and immune response. GSH is particularly important in the liver, where it serves as the major non-protein thiol involved in cellular antioxidant defense. There are numerous causes of hepatitis. The inflammation of the liver can be caused by a variety of infectious viruses. The relationship between oxidative stress and the hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis E virus (HEV) infection is not fully known. The aim of this study was to examine the relationship between hepatotropic viruses and glutathione status, including reduced glutathione (GSH) and oxidized glutathione (GSSG), as well as antioxidant enzymes, e.g., glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) in liver diseases.
Collapse
Affiliation(s)
- Joanna Wróblewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Weronika Wróblewska
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
3
|
Finan RR, Chemaitelly H, Racoubian E, Aimagambetova G, Almawi WY. Genetic diversity of human papillomavirus (HPV) as specified by the detection method, gender, and year of sampling: a retrospective cross-sectional study. Arch Gynecol Obstet 2023; 307:1469-1479. [PMID: 36624228 DOI: 10.1007/s00404-022-06907-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE This study assesses HPV prevalence and genotype distribution in Lebanon, and identifies differentials in HPV infection, infection with multiple genotypes, and with high-risk genotypes, by sex, age, and year of data collection. METHODS Study participants comprised 1042 female and 160 male participants between 2006 and 2018. HPV genotyping was done by PCR and hybridization (2006-2013) or real-time PCR (2013 onwards). Diversity of HPV genotypes across gender, age groups, and years of data collection was tested by applying Shannon Diversity Index. RESULTS The overall HPV prevalence was 44.8% among study participants, and threefold higher in women than men. Single HPV infection was seen in two-third of HPV-positive participants. Women were less likely to be infected with multiple HPV strains, but more likely to be infected with high-risk or mixed-risk HPV genotypes. HPV-16 (11.0%, 9.8%) and HPV-53 (8.5%, 4.9%) were the most prevalent high-risk HPV genotypes in women and men, respectively, while HPV-18 prevalence was 4.9% in men and 3.1% in women, while HPV-59 prevalence was 6.6% in men and 2.1% in women. Samples collected post-2011 from women showed twice higher odds of HPV infection than those collected earlier and were threefold more likely to be infected with multiple HPV strains, and twice more likely to be infected with high-risk genotypes compared to those tested earlier. Women scored higher on Shannon index indicating high diversity in HPV types and frequency, with trend of increased diversity over time. While the odds of HPV infection remained associated with sex and temporal trend in multivariable analysis, odds of having high-risk genotypes was mainly associated with infection with multiple HPV strains. CONCLUSION Our study showed high diversity in HPV genotypes and an increasing trend of infection with multiple and high-risk genotypes in recent years. Findings underscore the need for effective screening/surveillance and HPV vaccination programs.
Collapse
Affiliation(s)
- Ramzi R Finan
- Department of Obstetrics and Gynecology, St Joseph University, Beirut, Lebanon
| | - Hiam Chemaitelly
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar.,Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, USA
| | - Eddie Racoubian
- St. Marc Medical and Diagnostic Center, Ashrafieh, Beirut, Lebanon
| | | | - Wassim Y Almawi
- Nazarbayev University School of Medicine, Astana, Kazakhstan. .,Faculte' des Sciences de Tunis, Universite' de Tunis El Manar, Campus Universitaire El-Manar, 2092, Tunis, Tunisia.
| |
Collapse
|
4
|
Athamneh RY, Arıkan A, Sayan M, Mahafzah A, Sallam M. Variable Proportions of Phylogenetic Clustering and Low Levels of Antiviral Drug Resistance among the Major HBV Sub-Genotypes in the Middle East and North Africa. Pathogens 2021; 10:1333. [PMID: 34684283 PMCID: PMC8540944 DOI: 10.3390/pathogens10101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health threat in the Middle East and North Africa (MENA). Phylogenetic analysis of HBV can be helpful to study the putative transmission links and patterns of inter-country spread of the virus. The objectives of the current study were to analyze the HBV genotype/sub-genotype (SGT) distribution, reverse transcriptase (RT), and surface (S) gene mutations and to investigate the domestic transmission of HBV in the MENA. All HBV molecular sequences collected in the MENA were retrieved from GenBank as of 30 April 2021. Determination of genotypes/SGT, RT, and S mutations were based on the Geno2pheno (hbv) 2.0 online tool. For the most prevalent HBV SGTs, maximum likelihood phylogenetic analysis was conducted to identify the putative phylogenetic clusters, with approximate Shimodaira-Hasegawa-like likelihood ratio test values ≥ 0.90, and genetic distance cut-off values ≤ 0.025 substitutions/site as implemented in Cluster Picker. The total number of HBV sequences used for genotype/SGT determination was 4352 that represented a total of 20 MENA countries, with a majority from Iran (n = 2103, 48.3%), Saudi Arabia (n = 503, 11.6%), Tunisia (n = 395, 9.1%), and Turkey (n = 267, 6.1%). Genotype D dominated infections in the MENA (86.6%), followed by genotype A (4.1%), with SGT D1 as the most common in 14 MENA countries and SGT D7 dominance in the Maghreb. The highest prevalence of antiviral drug resistance was observed against lamivudine (4.5%) and telbivudine (4.3%). The proportion of domestic phylogenetic clustering was the highest for SGT D7 (61.9%), followed by SGT D2 (28.2%) and genotype E (25.7%). The largest fraction of domestic clusters with evidence of inter-country spread within the MENA was seen in SGT D7 (81.3%). Small networks (containing 3-14 sequences) dominated among domestic phylogenetic clusters. Specific patterns of HBV genetic diversity were seen in the MENA with SGT D1 dominance in the Levant, Iran, and Turkey; SGT D7 dominance in the Maghreb; and extensive diversity in Saudi Arabia and Egypt. A low prevalence of lamivudine, telbivudine, and entecavir drug resistance was observed in the region, with almost an absence of resistance to tenofovir and adefovir. Variable proportions of phylogenetic clustering indicated prominent domestic transmission of SGT D7 (particularly in the Maghreb) and relatively high levels of virus mobility in SGT D1.
Collapse
Affiliation(s)
- Rabaa Y. Athamneh
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus; (R.Y.A.); (A.A.)
| | - Ayşe Arıkan
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus; (R.Y.A.); (A.A.)
- DESAM, Near East University, Nicosia 99138, Cyprus;
| | - Murat Sayan
- DESAM, Near East University, Nicosia 99138, Cyprus;
- Clinical Laboratory, PCR Unit, Faculty of Medicine, Kocaeli University, İzmit 41380, Turkey
| | - Azmi Mahafzah
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, the University of Jordan, Amman 11942, Jordan;
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, the University of Jordan, Amman 11942, Jordan;
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, 22184 Malmö, Sweden
| |
Collapse
|
5
|
Campos-Valdez M, Monroy-Ramírez HC, Armendáriz-Borunda J, Sánchez-Orozco LV. Molecular Mechanisms during Hepatitis B Infection and the Effects of the Virus Variability. Viruses 2021; 13:v13061167. [PMID: 34207116 PMCID: PMC8235420 DOI: 10.3390/v13061167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
The immunopathogenesis and molecular mechanisms involved during a hepatitis B virus (HBV) infection have made the approaches for research complex, especially concerning the patients’ responses in the course of the early acute stage. The study of molecular bases involved in the viral clearance or persistence of the infection is complicated due to the difficulty to detect patients at the most adequate points of the disease, especially in the time lapse between the onset of the infection and the viral emergence. Despite this, there is valuable data obtained from animal and in vitro models, which have helped to clarify some aspects of the early immune response against HBV infection. The diversity of the HBV (genotypes and variants) has been proven to be associated not only with the development and outcome of the disease but also with the response to treatments. That is why factors involved in the virus evolution need to be considered while studying hepatitis B infection. This review brings together some of the published data to try to explain the immunological and molecular mechanisms involved in the different stages of the infection, clinical outcomes, viral persistence, and the impact of the variants of HBV in these processes.
Collapse
Affiliation(s)
- Marina Campos-Valdez
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
| | - Hugo C. Monroy-Ramírez
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
| | - Juan Armendáriz-Borunda
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Campus Guadalajara, Zapopan 45201, Jalisco, México
| | - Laura V. Sánchez-Orozco
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
- Correspondence: ; Tel.: +52-33-3954-5677
| |
Collapse
|
6
|
Locarnini SA, Littlejohn M, Yuen LKW. Origins and Evolution of the Primate Hepatitis B Virus. Front Microbiol 2021; 12:653684. [PMID: 34108947 PMCID: PMC8180572 DOI: 10.3389/fmicb.2021.653684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Recent interest in the origins and subsequent evolution of the hepatitis B virus (HBV) has strengthened with the discovery of ancient HBV sequences in fossilized remains of humans dating back to the Neolithic period around 7,000 years ago. Metagenomic analysis identified a number of African non-human primate HBV sequences in the oldest samples collected, indicating that human HBV may have at some stage, evolved in Africa following zoonotic transmissions from higher primates. Ancestral genotype A and D isolates were also discovered from the Bronze Age, not in Africa but rather Eurasia, implying a more complex evolutionary and migratory history for HBV than previously recognized. Most full-length ancient HBV sequences exhibited features of inter genotypic recombination, confirming the importance of recombination and the mutation rate of the error-prone viral replicase as drivers for successful HBV evolution. A model for the origin and evolution of HBV is proposed, which includes multiple cross-species transmissions and favors subsequent recombination events that result in a pathogen and can successfully transmit and cause persistent infection in the primate host.
Collapse
Affiliation(s)
- Stephen A Locarnini
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lilly K W Yuen
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Cortese MF, González C, Gregori J, Casillas R, Carioti L, Guerrero-Murillo M, Riveiro-Barciela M, Godoy C, Sopena S, Yll M, Quer J, Rando A, Lopez-Martinez R, Pacín Ruiz B, García-García S, Esteban-Mur R, Tabernero D, Buti M, Rodríguez-Frías F. Sophisticated viral quasispecies with a genotype-related pattern of mutations in the hepatitis B X gene of HBeAg-ve chronically infected patients. Sci Rep 2021; 11:4215. [PMID: 33603102 PMCID: PMC7892877 DOI: 10.1038/s41598-021-83762-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with HBeAg-negative chronic infection (CI) have not been extensively studied because of low viremia. The HBx protein, encoded by HBX, has a key role in viral replication. Here, we analyzed the viral quasispecies at the 5' end of HBX in CI patients and compared it with that of patients in other clinical stages. Fifty-eight HBeAg-negative patients were included: 16 CI, 19 chronic hepatitis B, 16 hepatocellular carcinoma and 6 liver cirrhosis. Quasispecies complexity and conservation were determined in the region between nucleotides 1255 and 1611. Amino acid changes detected were tested in vitro. CI patients showed higher complexity in terms of mutation frequency and nucleotide diversity and higher quasispecies conservation (p < 0.05). A genotype D-specific pattern of mutations (A12S/P33S/P46S/T36D-G) was identified in CI (median frequency, 81.7%), which determined a reduction in HBV DNA release of up to 1.5 log in vitro. CI patients showed a more complex and conserved viral quasispecies than the other groups. The genotype-specific pattern of mutations could partially explain the low viremia observed in these patients.
Collapse
Affiliation(s)
- Maria Francesca Cortese
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Research Institute, Passeig Vall d'Hebrón, 119-129, Barcelona, Spain.
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Carolina González
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Gregori
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Research Institute, Passeig Vall d'Hebrón, 119-129, Barcelona, Spain
- Roche Diagnostics SL, Sant Cugat del Vallès, Spain
| | - Rosario Casillas
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Research Institute, Passeig Vall d'Hebrón, 119-129, Barcelona, Spain
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Mar Riveiro-Barciela
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto De Salud Carlos III, Madrid, Spain
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Godoy
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto De Salud Carlos III, Madrid, Spain
| | - Sara Sopena
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Research Institute, Passeig Vall d'Hebrón, 119-129, Barcelona, Spain
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marçal Yll
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Research Institute, Passeig Vall d'Hebrón, 119-129, Barcelona, Spain
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Quer
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Research Institute, Passeig Vall d'Hebrón, 119-129, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto De Salud Carlos III, Madrid, Spain
| | - Ariadna Rando
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Lopez-Martinez
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Pacín Ruiz
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Research Institute, Passeig Vall d'Hebrón, 119-129, Barcelona, Spain
| | - Selene García-García
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Research Institute, Passeig Vall d'Hebrón, 119-129, Barcelona, Spain
| | - Rafael Esteban-Mur
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto De Salud Carlos III, Madrid, Spain
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Tabernero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto De Salud Carlos III, Madrid, Spain
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto De Salud Carlos III, Madrid, Spain
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto De Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Phylogeographic Genetic Diversity in the White Sucker Hepatitis B Virus across the Great Lakes Region and Alberta, Canada. Viruses 2021; 13:v13020285. [PMID: 33673082 PMCID: PMC7918172 DOI: 10.3390/v13020285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B viruses belong to a family of circular, double-stranded DNA viruses that infect a range of organisms, with host responses that vary from mild infection to chronic infection and cancer. The white sucker hepatitis B virus (WSHBV) was first described in the white sucker (Catostomus commersonii), a freshwater teleost, and belongs to the genus Parahepadnavirus. At present, the host range of WSHBV and its impact on fish health are unknown, and neither genetic diversity nor association with fish health have been studied in any parahepadnavirus. Given the relevance of genomic diversity to disease outcome for the orthohepadnaviruses, we sought to characterize genomic variation in WSHBV and determine how it is structured among watersheds. We identified WSHBV-positive white sucker inhabiting tributaries of Lake Michigan, Lake Superior, Lake Erie (USA), and Lake Athabasca (Canada). Copy number in plasma and in liver tissue was estimated via qPCR. Templates from 27 virus-positive fish were amplified and sequenced using a primer-specific, circular long-range amplification method coupled with amplicon sequencing on the Illumina MiSeq. Phylogenetic analysis of the WSHBV genome identified phylogeographical clustering reminiscent of that observed with human hepatitis B virus genotypes. Notably, most non-synonymous substitutions were found to cluster in the pre-S/spacer overlap region, which is relevant for both viral entry and replication. The observed predominance of p1/s3 mutations in this region is indicative of adaptive change in the polymerase open reading frame (ORF), while, at the same time, the surface ORF is under purifying selection. Although the levels of variation we observed do not meet the criteria used to define sub/genotypes of human and avian hepadnaviruses, we identified geographically associated genome variation in the pre-S and spacer domain sufficient to define five WSHBV haplotypes. This study of WSHBV genetic diversity should facilitate the development of molecular markers for future identification of genotypes and provide evidence in future investigations of possible differential disease outcomes.
Collapse
|
9
|
Mobini S, Chizari M, Mafakher L, Rismani E, Rismani E. Computational Design of a Novel VLP-Based Vaccine for Hepatitis B Virus. Front Immunol 2020; 11:2074. [PMID: 33042118 PMCID: PMC7521014 DOI: 10.3389/fimmu.2020.02074] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) is a global virus responsible for a universal disease burden for millions of people. Various vaccination strategies have been developed using viral vector, nucleic acid, protein, peptide, and virus-like particles (VLPs) to stimulate favorable immune responses against HBV. Given the pivotal role of specific immune responses of hepatitis B surface antigen (HBsAg) and hepatitis B core antigen (HBcAg) in infection control, we designed a VLP-based vaccine by placing the antibody-binding fragments of HBsAg in the major immunodominant region (MIR) epitope of HBcAg to stimulate multilateral immunity. A computational approach was employed to predict and evaluate the conservation, antigenicity, allergenicity, and immunogenicity of the construct. Modeling and molecular dynamics (MD) demonstrated the folding stability of HBcAg as a carrier in inserting Myrcludex and "a" determinant of HBsAg. Regions 1-50 and 118-150 of HBsAg were considered to have the highest stability to be involved in the designed vaccine. Molecular docking revealed appropriate interactions between the B cell epitope of the designed vaccine and the antibodies. Totally, the final construct was promising for inducing humoral and cellular responses against HBV.
Collapse
Affiliation(s)
- Saeed Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Chizari
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ladan Mafakher
- Medicinal Plant Research Center, Ahvaz Jundishapur of Medical Science, Ahvaz, Iran
| | - Elmira Rismani
- Department of Biology, Payam Noor University, Tehran, Iran
| | - Elham Rismani
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Berke JM, Dehertogh P, Vergauwen K, Mostmans W, Vandyck K, Raboisson P, Pauwels F. Antiviral Properties and Mechanism of Action Studies of the Hepatitis B Virus Capsid Assembly Modulator JNJ-56136379. Antimicrob Agents Chemother 2020; 64:e02439-19. [PMID: 32094138 PMCID: PMC7179615 DOI: 10.1128/aac.02439-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Capsid assembly is a critical step in the hepatitis B virus (HBV) life cycle, mediated by the core protein. Core is a potential target for new antiviral therapies, the capsid assembly modulators (CAMs). JNJ-56136379 (JNJ-6379) is a novel and potent CAM currently in phase II trials. We evaluated the mechanisms of action (MOAs) and antiviral properties of JNJ-6379 in vitro Size exclusion chromatography and electron microscopy studies demonstrated that JNJ-6379 induced the formation of morphologically intact viral capsids devoid of genomic material (primary MOA). JNJ-6379 accelerated the rate and extent of HBV capsid assembly in vitro JNJ-6379 specifically and potently inhibited HBV replication; its median 50% effective concentration (EC50) was 54 nM (HepG2.117 cells). In HBV-infected primary human hepatocytes (PHHs), JNJ-6379, when added with the viral inoculum, dose-dependently reduced extracellular HBV DNA levels (median EC50 of 93 nM) and prevented covalently closed circular DNA (cccDNA) formation, leading to a dose-dependent reduction of intracellular HBV RNA levels (median EC50 of 876 nM) and reduced antigen levels (secondary MOA). Adding JNJ-6379 to PHHs 4 or 5 days postinfection reduced extracellular HBV DNA and did not prevent cccDNA formation. Time-of-addition PHH studies revealed that JNJ-6379 most likely interfered with postentry processes. Collectively, these data demonstrate that JNJ-6379 has dual MOAs in the early and late steps of the HBV life cycle, which is different from the MOA of nucleos(t)ide analogues. JNJ-6379 is in development for chronic hepatitis B treatment and may translate into higher HBV functional cure rates.
Collapse
Affiliation(s)
| | | | | | | | - Koen Vandyck
- Janssen Research and Development, Beerse, Belgium
| | | | | |
Collapse
|
11
|
Godoy BA, Pinho JRR, Fagundes NJR. Hepatitis B Virus: Alternative phylogenetic hypotheses and its impact on molecular evolution inferences. Virus Res 2019; 276:197776. [PMID: 31722242 DOI: 10.1016/j.virusres.2019.197776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/22/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
Characterizing molecular evolution patterns of the Hepatitis B Virus (HBV) is important for a better understanding of the natural history of this infection. However, several molecular evolution estimates are conditioned on tree topology. There is no consensus about the phylogenetic relationships of HBV genotypes, and different studies often find alternative topologies. While most studies consider HBV genotypes F and H as sister to all other human genotypes, a recent study suggested an alternative HBV phylogeny that indicates an accelerated substitution rate for HBV-F/H partially driven by positive selection. In this study, we evaluate the impact of alternative HBV topologies on inferences of HBV phylogeny, rate acceleration, and positive selection on the HBV-F/H branch. Our results indicate that under certain methodological approaches alternative HBV topologies are equally likely. Considering phylogenetic uncertainty, there is no evidence that HBV-F/H had an accelerated substitution rate, even though inferences of positive selection are robust to alternative background topologies. Our results further suggest that, under reasonable assumptions, HBV-F/H most likely represents the sister lineage to all other human/ape HBV genotypes. Understanding the full range of likely topologies will be crucial for elaborating, testing, and refining hypothesis about the evolutionary HBV origins in our species.
Collapse
Affiliation(s)
- Bibiane A Godoy
- Postgraduation Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - João Renato R Pinho
- São Paulo Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Nelson J R Fagundes
- Postgraduation Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
Bahar M, Pervez MT, Ali A, Babar ME. In Silico Analysis of Hepatitis B Virus Genotype D Subgenotype D1 Circulating in Pakistan, China, and India. Evol Bioinform Online 2019; 15:1176934319861337. [PMID: 31320794 PMCID: PMC6610437 DOI: 10.1177/1176934319861337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
The focus of this study was the computational analysis of hepatitis B virus (HBV)
genotype D subgenotype D1 in Pakistan, China, and India. In total, 54 complete
genome sequences of HBV genotype D subgenotype D1 were downloaded from National
Center for Biotechnology Information (NCBI). Of these, 6 complete genome
sequences were from Pakistan, 14 were from China, and 34 were from India.
Sequence alignment showed less than 4% divergence in these sequences. C and X
genes showed divergence of less than 3%. Comparison over the S gene showed more
than 97% similarity among the nucleotide sequences of genotype D subgenotype D1.
The identity and similarity matrix of 54 nucleotide sequences of HBV genotype D
subgenotype D1 from Pakistan, China, and India revealed more than 93% identity
and 93% similarity. Phylogenetic analysis highlighted that complete genome
isolates of HBV circulating in Pakistan had the closest evolutionary
relationship with its neighboring countries China and India. China’s (HQ833466)
and Pakistan’s (AB583680.1) isolates shared the same ancestor. Gene structure
analysis showed that “P” gene exons were the longest, about three-fourth of the
genome size, whereas gene “S” had the second longest coding regions with 2 exons
and 1 intron. However, “C” and “X” genes had 1 smallest exon. X proteins had
proven role in spreading of the HBV infection diseases. For HBx analysis, 1 X
protein sequence of HBV genotype D subgenotype D1 belonging to each country was
obtained. Homology models of the 3 X proteins generated using SWISS-MODEL
revealed GMQE (Global Model Quality Estimation) = 0.1. Global and local quality
estimate scores including Z-scores for Qualitative Model Energy
Analysis (QMEAN) C-beta, all-atom, solvation, and torsion energy scores were
similar indicating good quality, accuracy, and reliability of the predicted
models. Three-dimensional (3D) visualization showed similar structures and
Ramachandran plots showed a high percentage of protein residues into the
favorable region for X protein models.
Collapse
Affiliation(s)
- Muneeb Bahar
- Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan
| | - Muhammad Tariq Pervez
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Akhtar Ali
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | | |
Collapse
|
13
|
Kramvis A, Kostaki EG, Hatzakis A, Paraskevis D. Immunomodulatory Function of HBeAg Related to Short-Sighted Evolution, Transmissibility, and Clinical Manifestation of Hepatitis B Virus. Front Microbiol 2018; 9:2521. [PMID: 30405578 PMCID: PMC6207641 DOI: 10.3389/fmicb.2018.02521] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) infection, a global public health problem can be asymptomatic, acute or chronic and can lead to serious consequences of infection, including cirrhosis, and hepatocellular carcinoma. HBV, a partially double stranded DNA virus, belongs to the family Hepadnaviridae, and replicates via reverse transcription of an RNA intermediate. This reverse transcription is catalyzed by a virus-encoded polymerase that lacks proof reading ability, which leads to sequence heterogeneity. HBV is classified into nine genotypes and at least 35 subgenotypes, which may be characterized by distinct geographical distributions. This HBV diversification and distinct geographical distribution has been proposed to be the result of the co-expansion of HBV with modern humans, after their out-of-Africa migration. HBeAg is a non-particulate protein of HBV that has immunomodulatory properties as a tolerogen that allows the virus to establish HBV infection in vivo. During the natural course of infection, there is seroconversion from a HBeAg-positive phase to a HBeAg-negative, anti-HBe-positive phase. During this seroconversion, there is loss of tolerance to infection and immune escape-HBeAg-negative mutants can be selected in response to the host immune response. The different genotypes and, in some cases, subgenotypes develop different mutations that can affect HBeAg expression at the transcriptional, translational and post-translational levels. The ability to develop mutations, affecting HBeAg expression, can influence the length of the HBeAg-positive phase, which is important in determining both the mode of transmission and the clinical course of HBV infection. Thus, the different genotypes/subgenotypes have evolved in such a way that they exhibit different modes of transmission and clinical manifestation of infection. Loss of HBeAg may be a sign of short-sighted evolution because there is loss of tolerogenic ability of HBeAg and HBeAg-negative virions are less transmissible. Depending on their ability to lead to HBeAg seroconversion, the genotype/subgenotypes exhibit varying degrees of short-sighted evolution. The “arms race” between HBV and the immune response to HBeAg is multifaceted and its elucidation intricate, with transmissibility and persistence being important for the survival of the virus. We attempt to shed some light on this complex interplay between host and virus.
Collapse
Affiliation(s)
- Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Evangelia-Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
De Silva Feelixge HS, Stone D, Roychoudhury P, Aubert M, Jerome KR. CRISPR/Cas9 and Genome Editing for Viral Disease-Is Resistance Futile? ACS Infect Dis 2018; 4:871-880. [PMID: 29522311 PMCID: PMC5993632 DOI: 10.1021/acsinfecdis.7b00273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic viral infections remain a major public health issue affecting millions of people worldwide. Highly active antiviral treatments have significantly improved prognosis and infection-related morbidity and mortality but have failed to eliminate persistent viral forms. Therefore, new strategies to either eradicate or control these viral reservoirs are paramount to allow patients to stop antiretroviral therapy and realize a cure. Viral genome disruption based on gene editing by programmable endonucleases is one promising curative gene therapy approach. Recent findings on RNA-guided human immunodeficiency virus 1 (HIV-1) genome cleavage by Cas9 and other gene-editing enzymes in latently infected cells have shown high levels of site-specific genome disruption and potent inhibition of virus replication. However, HIV-1 can readily develop resistance to genome editing at a single antiviral target site. Current data suggest that cellular repair associated with DNA double-strand breaks can accelerate the emergence of resistance. On the other hand, a combination antiviral target strategy can exploit the same repair mechanism to functionally cure HIV-1 infection in vitro while avoiding the development of resistance. This perspective summarizes recent findings on the biology of resistance to genome editing and discusses the significance of viral genetic diversity on the application of gene editing strategies toward cure.
Collapse
Affiliation(s)
- Harshana S De Silva Feelixge
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle 98109, WA, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle 98109, WA, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, 1959 NE Pacific St, Seattle 98195, WA, USA
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle 98109, WA, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle 98109, WA, USA
- Department of Laboratory Medicine, University of Washington, 1959 NE Pacific St, Seattle 98195, WA, USA
- Department of Microbiology, University of Washington, 1959 NE Pacific St, Seattle 98195, WA, USA
| |
Collapse
|
15
|
Joshi SS, Coffin CS. Hepatitis B virus lymphotropism: emerging details and challenges. Biotechnol Genet Eng Rev 2018; 34:139-151. [DOI: 10.1080/02648725.2018.1474324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shivali S. Joshi
- Calgary Liver Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Carla S. Coffin
- Calgary Liver Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
16
|
Patterson Ross Z, Klunk J, Fornaciari G, Giuffra V, Duchêne S, Duggan AT, Poinar D, Douglas MW, Eden JS, Holmes EC, Poinar HN. The paradox of HBV evolution as revealed from a 16th century mummy. PLoS Pathog 2018; 14:e1006750. [PMID: 29300782 PMCID: PMC5754119 DOI: 10.1371/journal.ppat.1006750] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a ubiquitous viral pathogen associated with large-scale morbidity and mortality in humans. However, there is considerable uncertainty over the time-scale of its origin and evolution. Initial shotgun data from a mid-16th century Italian child mummy, that was previously paleopathologically identified as having been infected with Variola virus (VARV, the agent of smallpox), showed no DNA reads for VARV yet did for hepatitis B virus (HBV). Previously, electron microscopy provided evidence for the presence of VARV in this sample, although similar analyses conducted here did not reveal any VARV particles. We attempted to enrich and sequence for both VARV and HBV DNA. Although we did not recover any reads identified as VARV, we were successful in reconstructing an HBV genome at 163.8X coverage. Strikingly, both the HBV sequence and that of the associated host mitochondrial DNA displayed a nearly identical cytosine deamination pattern near the termini of DNA fragments, characteristic of an ancient origin. In contrast, phylogenetic analyses revealed a close relationship between the putative ancient virus and contemporary HBV strains (of genotype D), at first suggesting contamination. In addressing this paradox we demonstrate that HBV evolution is characterized by a marked lack of temporal structure. This confounds attempts to use molecular clock-based methods to date the origin of this virus over the time-frame sampled so far, and means that phylogenetic measures alone cannot yet be used to determine HBV sequence authenticity. If genuine, this phylogenetic pattern indicates that the genotypes of HBV diversified long before the 16th century, and enables comparison of potential pathogenic similarities between modern and ancient HBV. These results have important implications for our understanding of the emergence and evolution of this common viral pathogen.
Collapse
Affiliation(s)
- Zoe Patterson Ross
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer Klunk
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
| | - Gino Fornaciari
- Division of Paleopathology, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Valentina Giuffra
- Division of Paleopathology, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Sebastian Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Ana T. Duggan
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
| | - Debi Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
| | - Mark W. Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Hendrik N. Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry, McMaster University, Hamilton, ON, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
17
|
Xiao SR, Xu GD, Wei WJ, Peng B, Deng YB. Antiviral effect of hepatitis B virus S gene-specific anti-gene locked nucleic acid in hepatitis B virus transgenic mice. Shijie Huaren Xiaohua Zazhi 2017; 25:2782-2790. [DOI: 10.11569/wcjd.v25.i31.2782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the antiviral effect of hepatitis B virus (HBV) S gene-specific anti-gene locked nucleic acid (LNA) in transgenic mice.
METHODS Thirty HBV transgenic mice were randomly divided into 5 groups (n = 6 each): blank control group, negative control group (unrelated sequence), lamivudine group, antisense-LNA treatment group, and anti-gene LNA treatment group. LNA was injected into transgenic mice via the tail vein, and lamivudine was given by gavage. Serum HBV DNA was tested by real-time PCR; serum hepatitis B surface antigen (HBsAg) was determined by ELISA; the mRNA level of HBV S gene was detected by RT-PCR; and the positive rate of HBsAg in liver cells was detected by immunohistochemistry.
RESULTS On 3, 5, and 7 d after anti-gene LNA treatment, HBV DNA was reduced by 37.18%, 50.27%, and 61.46%, respectively, and HBsAg was reduced by 30.17%, 44%, and 57.76%, respectively; there was a significant difference in HBV DNA and HBsAg compared with those before administration (P < 0.05) or compared with control groups (blank control, negative control, lamivudine, and antisense-LNA) (P < 0.05). The mRNA level of HBV S gene (0.33) and the HBsAg positive rate of liver cells (31%) were significantly reduced compared with control groups (P < 0.05). The function of liver and kidney tests and tissue HE staining showed no abnormal changes.
CONCLUSION Anti-gene LNA targeting the S gene has a strong inhibitory effect on HBV replication and expression in HBV transgenic mice, and this provides experimental basis for gene therapy of HBV.
Collapse
Affiliation(s)
- Shu-Rong Xiao
- Center for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Gui-Dan Xu
- Center for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Wu-Jun Wei
- Center for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Bin Peng
- Center for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Yi-Bin Deng
- Center for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|