1
|
He P, Li H, Zhang Y, Song Y, Liu C, Liu L, Wang B, Guo H, Wang X, Huo Y, Zhang H, Xu X, Nie J, Qin X. Evaluation of plasma vitamin E and development of proteinuria in hypertensive patients. J Transl Int Med 2024; 12:78-85. [PMID: 38525444 PMCID: PMC10956724 DOI: 10.2478/jtim-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Background The prospective relationship between plasma vitamin E levels and proteinuria remains uncertain. We aimed to evaluate the association between baseline plasma vitamin E levels and the development of proteinuria and examine any possible effect modifiers in patients with hypertension. Methods This was a post hoc analysis of the renal sub-study of the China Stroke Primary Prevention Trial (CSPPT). In total, 780 participants with vitamin E measurements and without proteinuria at baseline were included in the current study. The study outcome was the development of proteinuria, defined as a urine dipstick reading of a trace or ≥ 1+ at the exit visit. Results During a median follow-up duration of 4.4 years, the development of proteinuria occurred in 93 (11.9%) participants. Overall, there was an inverse relationship between plasma vitamin E and the development of proteinuria (per standard deviation [SD] increment; odds ratio [OR]: 0.73, 95% confidence interval [CI]: 0.55-0.96). Consistently, when plasma vitamin E was assessed as quartiles, lower risk of proteinuria development was found in participants in quartiles 2-4 (≥ 7.3 μg/mL; OR: 0.57, 95% CI: 0.34-0.96) compared to those in quartile 1. None of the variables, including sex, age, and body mass index, significantly modified the association between vitamin E and proteinuria development. Conclusion There was a significant inverse association between plasma vitamin E levels and the development of proteinuria in patients with hypertension. The results were consistent among participants with different baseline characteristics.
Collapse
Affiliation(s)
- Panpan He
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou510515, Guangdong Province, China
| | - Huan Li
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou510515, Guangdong Province, China
| | - Yuanyuan Zhang
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou510515, Guangdong Province, China
| | - Yun Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Chengzhang Liu
- Institute of Biomedicine, Anhui Medical University, Hefei230032, Anhui Province, China
| | - Lishun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Binyan Wang
- Institute of Biomedicine, Anhui Medical University, Hefei230032, Anhui Province, China
- Shenzhen Evergreen Medical Institute, Shenzhen518057, Guangdong Province, China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore21205, MD, USA
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing100034, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Xiping Xu
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou510515, Guangdong Province, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, China
- AUSA Research Institute, Shenzhen AUSA Pharmed Co Ltd, Shenzhen518057, Guangdong Province, China
| | - Jing Nie
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou510515, Guangdong Province, China
| | - Xianhui Qin
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou510515, Guangdong Province, China
| |
Collapse
|
2
|
Wang H, Liu D, Zheng B, Yang Y, Qiao Y, Li S, Pan S, Liu Y, Feng Q, Liu Z. Emerging Role of Ferroptosis in Diabetic Kidney Disease: Molecular Mechanisms and Therapeutic Opportunities. Int J Biol Sci 2023; 19:2678-2694. [PMID: 37324941 PMCID: PMC10266077 DOI: 10.7150/ijbs.81892] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common and severe microvascular complications of diabetes mellitus (DM), and has become the leading cause of end-stage renal disease (ESRD) worldwide. Although the exact pathogenic mechanism of DKD is still unclear, programmed cell death has been demonstrated to participate in the occurrence and development of diabetic kidney injury, including ferroptosis. Ferroptosis, an iron-dependent form of cell death driven by lipid peroxidation, has been identified to play a vital role in the development and therapeutic responses of a variety of kidney diseases, such as acute kidney injury (AKI), renal cell carcinoma and DKD. In the past two years, ferroptosis has been well investigated in DKD patients and animal models, but the specific mechanisms and therapeutic effects have not been fully revealed. Herein, we reviewed the regulatory mechanisms of ferroptosis, summarized the recent findings associated with the involvement of ferroptosis in DKD, and discussed the potential of ferroptosis as a promising target for DKD treatment, thereby providing a valuable reference for basic study and clinical therapy of DKD.
Collapse
Affiliation(s)
- Hui Wang
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Bin Zheng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shiyang Li
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
3
|
Ayaz H, Kaya S, Seker U, Nergiz Y. Comparison of the anti-diabetic and nephroprotective activities of vitamin E, metformin, and Nigella sativa oil on kidney in experimental diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:395-399. [PMID: 37009001 PMCID: PMC10008389 DOI: 10.22038/ijbms.2023.68051.14876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/28/2023] [Indexed: 04/04/2023]
Abstract
Objectives In this study, we aimed to evaluate and compare the nephroprotective and possible anti-diabetic effects of vitamin E, metformin, and Nigella sativa. Materials and Methods Thirty male Wistar Albino rats were randomly divided into control, experimental diabetes (DM), vitamin E + DM, Metformin + DM, and N. sativa + DM. For experimental diabetes induction, IP 45 mg/kg streptozotocin was administered. Rats in vitamin E + DM, Metformin + DM, and N. sativa + DM received 100 mg/kg vitamin E, 100 mg/kg metformin, and 2.5 ml/kg N. sativa oil for 56 days. After the experiment, all animals were sacrificed, and blood and kidney samples were collected. Results The blood urea level of the DM group was significantly higher (P<0.01) than the control group. Urea levels in vitamin E, metformin, and N. sativa groups were similar to the control group (P>0.05) but significantly different from the DM group (P<0.01). Bax, caspase-3, and caspase-9 immunopositivity intensity were quite low in the control group, and similar to the N. sativa group (P>0.05). Bcl-2 immunopositivity density was highest in the N. sativa group, similar to the control group in terms of percentile area (P>0.05). Conclusion When all three treatment methods were compared in terms of their effectiveness in alleviating DM and DN, it was determined that the most successful result was obtained with N. sativa oil.
Collapse
Affiliation(s)
- Hayat Ayaz
- Dicle University, Faculty of Medicine, Department of Histology and Embryology, Diyarbakir, Turkey
- Corresponding author: Hayat Ayaz. Dicle University Faculty of Medicine, Histology and Embryology Department 212280 Sur, Diyarbakir, Turkey.
| | - Seval Kaya
- Istanbul Aydin University, Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Ugur Seker
- Harran University, Faculty of Medicine, Department of Histology and Embryology, Sanliurfa, Turkey
| | - Yusuf Nergiz
- Dicle University, Faculty of Medicine, Department of Histology and Embryology, Diyarbakir, Turkey
| |
Collapse
|
4
|
Hayashi D, Mouchlis VD, Okamoto S, Namba T, Wang L, Li S, Ueda S, Yamanoue M, Tachibana H, Arai H, Ashida H, Dennis EA, Shirai Y. Vitamin E functions by association with a novel binding site on the 67 kDa laminin receptor activating diacylglycerol kinase. J Nutr Biochem 2022; 110:109129. [PMID: 35977663 PMCID: PMC10243646 DOI: 10.1016/j.jnutbio.2022.109129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/27/2022] [Accepted: 07/16/2022] [Indexed: 01/13/2023]
Abstract
It is generally recognized that the main function of α-tocopherol (αToc), which is the most active form of vitamin E, is its antioxidant effect, while non-antioxidant effects have also been reported. We previously found that αToc ameliorates diabetic nephropathy via diacylglycerol kinase alpha (DGKα) activation in vivo, and the activation was not related to the antioxidant effect. However, the underlying mechanism of how αToc activates DGKα have been enigmatic. We report that the membrane-bound 67 kDa laminin receptor (67LR), which has previously been shown to serve as a receptor for epigallocatechin gallate (EGCG), also contains a novel binding site for vitamin E, and its association with Vitamin E mediates DGKα activation by αToc. We employed hydrogen-deuterium exchange mass spectrometry (HDX/MS) and molecular dynamics (MD) simulations to identify the specific binding site of αToc on the 67LR and discovered the conformation of the specific hydrophobic pocket that accommodates αToc. Also, HDX/MS and MD simulations demonstrated the detailed binding of EGCG to a water-exposed hydrophilic site on 67LR, while in contrast αToc binds to a distinct hydrophobic site. We demonstrated that 67LR triggers an important signaling pathway mediating non-antioxidant effects of αToc, such as DGKα activation. This is the first evidence demonstrating a membrane receptor for αToc and one of the underlying mechanisms of a non-antioxidant function for αToc.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan; Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Varnavas D Mouchlis
- Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Seika Okamoto
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Tomoka Namba
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Liuqing Wang
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo Japan
| | - Hitoshi Ashida
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Edward A Dennis
- Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan.
| |
Collapse
|
5
|
The Role of Diacylglycerol Kinase in the Amelioration of Diabetic Nephropathy. Molecules 2022; 27:molecules27206784. [PMID: 36296376 PMCID: PMC9607625 DOI: 10.3390/molecules27206784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
The drastic increase in the number of patients with diabetes and its complications is a global issue. Diabetic nephropathy, the leading cause of chronic kidney disease, significantly affects patients’ quality of life and medical expenses. Furthermore, there are limited drugs for treating diabetic nephropathy patients. Impaired lipid signaling, especially abnormal protein kinase C (PKC) activation by de novo-synthesized diacylglycerol (DG) under high blood glucose, is one of the causes of diabetic nephropathy. DG kinase (DGK) is an enzyme that phosphorylates DG and generates phosphatidic acid, i.e., DGK can inhibit PKC activation under diabetic conditions. Indeed, it has been proven that DGK activation ameliorates diabetic nephropathy. In this review, we summarize the involvement of PKC and DGK in diabetic nephropathy as therapeutic targets, and its mechanisms, by referring to our recent study.
Collapse
|
6
|
Kaneko YK, Sawatani T, Ishikawa T. Involvement of Diacylglycerol Kinase on the Regulation of Insulin Secretion in Pancreatic β-Cells during Type 2 Diabetes. YAKUGAKU ZASSHI 2022; 142:457-463. [PMID: 35491149 DOI: 10.1248/yakushi.21-00176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depression of lipid metabolism in β-cells has been indicated to be one of the causes of impaired insulin secretion in type 2 diabetes. Diacylglycerol (DAG) is an important lipid mediator and is known to regulate insulin secretion in pancreatic β-cells. Intracellular DAG accumulation is involved in β-cell dysfunction in the pathogenesis of type 2 diabetes; thus, the regulation of intracellular DAG levels is likely important for maintaining the β-cell function. We focused on diacylglycerol kinases (DGKs), which strictly regulate intracellular DAG levels, and analyzed the function of type I DGKs (DGKα, γ), which are activated by intracellular Ca2+ and expressed in the cytoplasm, in β-cells. The suppression of the DGKα and γ expression decreased the insulin secretory response, and the decreased expression of DGKα and γ was observed in islets of diabetic model mice. In the pancreatic β-cell line MIN6, 1 μM R59949 (a type I DGK inhibitor) and 10 μM DiC8 (a cell permeable DAG analog) enhanced glucose-induced [Ca2+]i oscillation in a PKC-dependent manner, while 10 μM R59949 and 100 μM DiC8 suppressed [Ca2+]i oscillation and voltage-dependent Ca2+ channel activity in a PKC-independent manner. These results suggest that the intracellular accumulation of DAG by the loss of the DGKα and γ functions regulates insulin secretion in a dual manner depending on the degree of DAG accumulation. The regulation of the insulin secretory response through DAG metabolism by type I DGKs may change depending on the degree of progression of type 2 diabetes.
Collapse
Affiliation(s)
- Yukiko K. Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Toshiaki Sawatani
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
7
|
Lane BM, Chryst-Stangl M, Wu G, Shalaby M, El Desoky S, Middleton CC, Huggins K, Sood A, Ochoa A, Malone AF, Vancini R, Miller SE, Hall G, Kim SY, Howell DN, Kari JA, Gbadegesin R. Steroid-sensitive nephrotic syndrome candidate gene CLVS1 regulates podocyte oxidative stress and endocytosis. JCI Insight 2022; 7:e152102. [PMID: 34874915 PMCID: PMC9018043 DOI: 10.1172/jci.insight.152102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
We performed next-generation sequencing in patients with familial steroid-sensitive nephrotic syndrome (SSNS) and identified a homozygous segregating variant (p.H310Y) in the gene encoding clavesin-1 (CLVS1) in a consanguineous family with 3 affected individuals. Knockdown of the clavesin gene in zebrafish (clvs2) produced edema phenotypes due to disruption of podocyte structure and loss of glomerular filtration barrier integrity that could be rescued by WT CLVS1 but not the p.H310Y variant. Analysis of cultured human podocytes with CRISPR/Cas9-mediated CLVS1 knockout or homozygous H310Y knockin revealed deficits in clathrin-mediated endocytosis and increased susceptibility to apoptosis that could be rescued with corticosteroid treatment, mimicking the steroid responsiveness observed in patients with SSNS. The p.H310Y variant also disrupted binding of clavesin-1 to α-tocopherol transfer protein, resulting in increased reactive oxygen species (ROS) accumulation in CLVS1-deficient podocytes. Treatment of CLVS1-knockout or homozygous H310Y-knockin podocytes with pharmacological ROS inhibitors restored viability to control levels. Taken together, these data identify CLVS1 as a candidate gene for SSNS, provide insight into therapeutic effects of corticosteroids on podocyte cellular dynamics, and add to the growing evidence of the importance of endocytosis and oxidative stress regulation to podocyte function.
Collapse
Affiliation(s)
- Brandon M. Lane
- Department of Pediatrics, Division of Nephrology, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Megan Chryst-Stangl
- Department of Pediatrics, Division of Nephrology, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Guanghong Wu
- Department of Pediatrics, Division of Nephrology, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mohamed Shalaby
- Pediatric Department, Pediatric Nephrology Center of Excellence, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif El Desoky
- Pediatric Department, Pediatric Nephrology Center of Excellence, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Claire C. Middleton
- Department of Pediatrics, Division of Nephrology, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kinsie Huggins
- Department of Pediatrics, Division of Nephrology, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amika Sood
- Department of Biostatistics and Bioinformatics and Duke Center for Statistical Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Alejandro Ochoa
- Department of Biostatistics and Bioinformatics and Duke Center for Statistical Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Andrew F. Malone
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | | | - Gentzon Hall
- Department of Pediatrics, Division of Nephrology, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Nephrology; and
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Jameela A. Kari
- Pediatric Department, Pediatric Nephrology Center of Excellence, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasheed Gbadegesin
- Department of Pediatrics, Division of Nephrology, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Nephrology; and
| |
Collapse
|
8
|
Abdelrazik E, Hassan HM, Abdallah Z, Magdy A, Farrag EA. Renoprotective effect of N-acetylcystein and vitamin E in bisphenol A-induced rat nephrotoxicity; Modulators of Nrf2/ NF-κB and ROS signaling pathway. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022301. [PMID: 36533744 PMCID: PMC9828897 DOI: 10.23750/abm.v93i6.13732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIM OF THE WORK Bisphenol A (BPA) is a chemical product that is widely used as a plastic precursor. It acts directly on the kidney mitochondria, causing renal dysfunction. N-acetylcysteine is effective in protecting the kidneys from chemical-induced damage. Vitamin E is an antioxidant that protects cells from the damaging effects of free radicals. The aim of this study is to further evaluate and compare NAC and vitamin E to oppose the nephrotoxicity caused by BPA. RESEARCH DESIGN AND METHODS Forty-two adult male rats were divided into 7 groups: control, BPA, NAC, vitamin E, BPA plus NAC, BPA plus vitamin E, and combined BPA, NAC and vitamin E. BPA, NAC, vitamin E were given orally at doses of 50 mg/kg, 200 mg/kg, and 1000 mg/kg respectively, for 5 weeks. RESULTS NAC and vitamin E groups showed improved kidney function tests and alleviated BPA-induced oxidative stress; increased GSH and decreased MDA, NO and iNOS levels. NAC and vitamin E significantly attenuated inflammation; decreased NF-κB and increased IL-4, and Nrf2, in addition there was alleviation of renal histopathology. To some extent, vitamin E administration showed significant improvement. Moreover, combined NAC and vitamin E treatment showed more significance than either NAC or vitamin E separate groups. CONCLUSIONS This study determined the substantial protective effects of NAC and/or vitamin E in BPA-induced nephrotoxicity through modulation of Nrf2 with subsequent improvement of oxidative stress and inflammation. The alleviation was more significant in combined NAC and vitamin E treatment mainly through their synergistic effect on Nrf2.
Collapse
Affiliation(s)
- Eman Abdelrazik
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hend M. Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine Mansoura University, Mansoura, Egypt
| | - Zienab Abdallah
- Department of Medical Physiology, Faculty of Medicine Mansoura University, Mansoura, Egypt
| | - Alshimaa Magdy
- Department of Biochemistry, Faculty of Medicine Mansoura University, Mansoura, Egypt
| | - Eman A.E. Farrag
- Department of Clinical Pharmacology, Faculty of Medicine Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Lee H. Vitamin E acetate as linactant in the pathophysiology of EVALI. Med Hypotheses 2020; 144:110182. [PMID: 33254504 PMCID: PMC7422838 DOI: 10.1016/j.mehy.2020.110182] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022]
Abstract
The recent identification of Vitamin E acetate as one of the causal agents for the e-cigarette, or vaping, product use associated lung injury (EVALI) is a major milestone. In membrane biophysics, Vitamin E is a linactant and a potent modulator of lateral phase separation that effectively reduces the line tension at the two-dimensional phase boundaries and thereby exponentially increases the surface viscosity of the pulmonary surfactant. Disrupted dynamics of respiratory compression-expansion cycling may result in an extensive hypoxemia, leading to an acute respiratory distress entailing the formation of intraalveolar lipid-laden macrophages. Supplementation of pulmonary surfactants which retain moderate level of cholesterol and controlled hypothermia for patients are recommended when the hypothesis that the line-active property of the vitamin derivative drives the pathogenesis of EVALI holds.
Collapse
Affiliation(s)
- Hanjun Lee
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
10
|
Castellano JM, Espinosa JM, Perona JS. Modulation of Lipid Transport and Adipose Tissue Deposition by Small Lipophilic Compounds. Front Cell Dev Biol 2020; 8:555359. [PMID: 33163484 PMCID: PMC7591460 DOI: 10.3389/fcell.2020.555359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Small lipophilic molecules present in foods of plant origin have relevant biological activities at rather low concentrations. Evidence suggests that phytosterols, carotenoids, terpenoids, and tocopherols can interact with different metabolic pathways, exerting beneficial effects against a number of metabolic diseases. These small molecules can modulate triacylglycerol absorption in the intestine and the biosynthesis of chylomicrons, the lipid carriers in the blood. Once in the bloodstream, they can impact lipoprotein clearance from blood, thereby affecting fatty acid release, incorporation into adipocytes and triglyceride reassembling and deposit. Consequently, some of these molecules can regulate pathophysiological processes associated to obesity and its related conditions, such as insulin resistance, metabolic syndrome and type-2 diabetes. The protective capacity of some lipophilic small molecules on oxidative and chemotoxic stress, can modify the expression of key genes in the adaptive cellular response, such as transcription factors, contributing to prevent the inflammatory status of adipose tissue. These small lipophilic compounds can be incorporated into diet as natural parts of food but they can also be employed to supplement other dietary and pharmacologic products as nutraceuticals, exerting protective effects against the development of metabolic diseases in which inflammation is involved. The aim of this review is to summarize the current knowledge of the influence of dietary lipophilic small biomolecules (phytosterols, carotenoids, tocopherols, and triterpenes) on lipid transport, as well as on the effects they may have on pathophysiological metabolic states, related to obesity, insulin resistance and inflammation, providing an evidence-based summary of their main beneficial effects on human health.
Collapse
Affiliation(s)
- José M Castellano
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Juan M Espinosa
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Javier S Perona
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
11
|
Beyond Lipid Signaling: Pleiotropic Effects of Diacylglycerol Kinases in Cellular Signaling. Int J Mol Sci 2020; 21:ijms21186861. [PMID: 32962151 PMCID: PMC7554708 DOI: 10.3390/ijms21186861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The diacylglycerol kinase family, which can attenuate diacylglycerol signaling and activate phosphatidic acid signaling, regulates various signaling transductions in the mammalian cells. Studies on the regulation of diacylglycerol and phosphatidic acid levels by various enzymes, the identification and characterization of various diacylglycerol and phosphatidic acid-regulated proteins, and the overlap of different diacylglycerol and phosphatidic acid metabolic and signaling processes have revealed the complex and non-redundant roles of diacylglycerol kinases in regulating multiple biochemical and biological networks. In this review article, we summarized recent progress in the complex and non-redundant roles of diacylglycerol kinases, which is expected to aid in restoring dysregulated biochemical and biological networks in various pathological conditions at the bed side.
Collapse
|
12
|
Hayashi D, Wang L, Ueda S, Yamanoue M, Ashida H, Shirai Y. The mechanisms of ameliorating effect of a green tea polyphenol on diabetic nephropathy based on diacylglycerol kinase α. Sci Rep 2020; 10:11790. [PMID: 32678222 PMCID: PMC7366667 DOI: 10.1038/s41598-020-68716-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Significant efforts have been made to ameliorate diabetic nephropathy (DN) by inhibiting protein kinase C. However, these efforts have not been successful in human trials, suggesting that novel therapeutic strategies are required. Thus far, it has been reported that green tea polyphenol epigallocatechin gallate (EGCg) improved albuminuria in DN in a human trial. Our previous study revealed that activation of diacylglycerol kinase α (DGKα) plays a crucial role in the amelioration of DN and that EGCg activates DGKα. Here, we investigated whether and how DGKα contributes to the amelioration of DN upon stimulation by EGCg by using streptozotocin-induced type 1 diabetic model mice. Our results revealed that EGCg ameliorated albuminuria in DN through DGKα in vivo, and methylated EGCg, which has higher absorption in the plasma improved albuminuria in DN effectively. Additionally, we showed that c-Src mediated EGCg-induced DGKα translocation and colocalized with the 67 kDa laminin receptor, which is an EGCg receptor. Furthermore, EGCg attenuated the loss of podocytes in DN by preventing a decrease in focal adhesion under high glucose conditions. Our results indicate that the DGKα pathway is an attractive therapeutic target and that activating this pathway is a novel strategy for treating DN.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Rokkodai-Cho 1-1, Nada-Ku, Kobe, 657-8501, Japan
| | - Liuqing Wang
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Rokkodai-Cho 1-1, Nada-Ku, Kobe, 657-8501, Japan
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Rokkodai-Cho 1-1, Nada-Ku, Kobe, 657-8501, Japan
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Rokkodai-Cho 1-1, Nada-Ku, Kobe, 657-8501, Japan
| | - Hitoshi Ashida
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Rokkodai-Cho 1-1, Nada-Ku, Kobe, 657-8501, Japan
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Rokkodai-Cho 1-1, Nada-Ku, Kobe, 657-8501, Japan.
| |
Collapse
|
13
|
Barber CN, Raben DM. Roles of DGKs in neurons: Postsynaptic functions? Adv Biol Regul 2019; 75:100688. [PMID: 31836314 DOI: 10.1016/j.jbior.2019.100688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 01/12/2023]
Abstract
Diacylglycerol kinases (DGKs) contribute to an important part of intracellular signaling because, in addition to reducing diacylglycerol levels, they generate phosphatidic acid (PtdOH) Recent research has led to the discovery of ten mammalian DGK isoforms, all of which are found in the mammalian brain. Many of these isoforms have studied functions within the brain, while others lack such understanding in regards to neuronal roles, regulation, and structural dynamics. However, while previously a neuronal function for DGKθ was unknown, it was recently found that DGKθ is required for the regulation of synaptic vesicle endocytosis and work is currently being conducted to elucidate the mechanism behind this regulation. Here we will review some of the roles of all mammalian DGKs and hypothesize additional roles. We will address the topic of redundancy among the ten DGK isoforms and discuss the possibility that DGKθ, among other DGKs, may have unstudied postsynaptic functions. We also hypothesize that in addition to DGKθ's presynaptic endocytic role, DGKθ might also regulate the endocytosis of AMPA receptors and other postsynaptic membrane proteins.
Collapse
Affiliation(s)
- Casey N Barber
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Daniel M Raben
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Di Vincenzo A, Tana C, El Hadi H, Pagano C, Vettor R, Rossato M. Antioxidant, Anti-Inflammatory, and Metabolic Properties of Tocopherols and Tocotrienols: Clinical Implications for Vitamin E Supplementation in Diabetic Kidney Disease. Int J Mol Sci 2019; 20:ijms20205101. [PMID: 31618817 PMCID: PMC6834186 DOI: 10.3390/ijms20205101] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus is a metabolic disorder characterized by the development of vascular complications associated with high morbidity and mortality and the consequent relevant costs for the public health systems. Diabetic kidney disease is one of these complications that represent the main cause of end-stage renal disease in Western countries. Hyperglycemia, inflammation, and oxidative stress contribute to its physiopathology, and several investigations have been performed to evaluate the role of antioxidant supplementation as a complementary approach for the prevention and control of diabetes and associated disturbances. Vitamin E compounds, including different types of tocopherols and tocotrienols, have been considered as a treatment to tackle major cardiovascular outcomes in diabetic subjects, but often with conflicting or even negative results. However, their effects on diabetic nephropathy are even less clear, despite several intervention studies that showed the improvement of renal parameters after supplementation in patients with diabetic kidney disease. Then we performed a review of the literature about the role of vitamin E supplementation on diabetic nephropathy, also describing the underlying antioxidant, anti-inflammatory, and metabolic mechanisms to evaluate the possible use of tocopherols and tocotrienols in clinical practice.
Collapse
Affiliation(s)
- Angelo Di Vincenzo
- Department of Medicine-DIMED, Clinica Medica 3, Center for the Study and Integrated Management of Obesity, University-Hospital of Padova, 35100 Padova, Italy.
| | - Claudio Tana
- Internal Medicine and Critical Subacute Care Unit, Medicine Geriatric-Rehabilitation Department, and Department of Medicine and Surgery, University-Hospital of Parma, 43126 Parma, Italy.
| | - Hamza El Hadi
- Department of Medicine-DIMED, Clinica Medica 3, Center for the Study and Integrated Management of Obesity, University-Hospital of Padova, 35100 Padova, Italy.
- Department of Medicine, Klinikum Rheine, 48431 Rheine, Germany.
| | - Claudio Pagano
- Department of Medicine-DIMED, Clinica Medica 3, Center for the Study and Integrated Management of Obesity, University-Hospital of Padova, 35100 Padova, Italy.
| | - Roberto Vettor
- Department of Medicine-DIMED, Clinica Medica 3, Center for the Study and Integrated Management of Obesity, University-Hospital of Padova, 35100 Padova, Italy.
| | - Marco Rossato
- Department of Medicine-DIMED, Clinica Medica 3, Center for the Study and Integrated Management of Obesity, University-Hospital of Padova, 35100 Padova, Italy.
| |
Collapse
|
15
|
Chen J, Wu J, Kong D, Yang C, Yu H, Pan Q, Liu W, Ding Y, Liu H. The Effect of Antioxidant Vitamins on Patients With Diabetes and Albuminuria: A Meta-Analysis of Randomized Controlled Trials. J Ren Nutr 2019; 30:101-110. [PMID: 31466888 DOI: 10.1053/j.jrn.2019.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/22/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of antioxidant vitamins, including vitamins E and C, on patients with diabetes and albuminuria by conducting a meta-analysis of randomized controlled trials. DESIGN The PubMed, Embase, CENTRAL (the Cochrane Central Register of Controlled Trials at the Cochrane Library), Web of Science, OVID, and www.clinicaltrials.gov (latest search: December 10, 2018) databases were searched. This study was limited to randomized controlled trials. Patients with diabetes and albuminuria were included regardless of diabetic type, and patients must have received treatment with vitamins C or E. RESULTS Ten studies, representing 445 participants, were identified for analysis. Antioxidant vitamins had significant effects on serum creatinine levels (mean difference = -0.11 mg/dL, 95% confidence interval -0.19 to -0.03, P = .007) and systolic pressure (mean difference = -6.02 mm Hg, 95% confidence interval -9.65 to -2.40, P = .001) with low heterogeneity. Antioxidant vitamins had no effect on albuminuria or proteinuria, diastolic blood pressure, glucose, or lipid metabolism. CONCLUSION This meta-analysis indicated that antioxidant vitamins can benefit kidney function and systolic blood pressure in patients with diabetes and albuminuria. Further studies with larger sample sizes and longer follow-up are needed to completely understand the effect of antioxidant vitamins in these patients.
Collapse
Affiliation(s)
- Jinxia Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Jiayuan Wu
- Department of Clinical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Danli Kong
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Haibing Yu
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, People's Republic of China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, People's Republic of China.
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China.
| |
Collapse
|
16
|
Sawatani T, Kaneko YK, Ishikawa T. Dual effect of reduced type I diacylglycerol kinase activity on insulin secretion from MIN6 β-cells. J Pharmacol Sci 2019; 140:178-186. [PMID: 31279581 DOI: 10.1016/j.jphs.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
The role of type I diacylglycerol kinases (DGKs) in the regulation of insulin secretion was investigated in MIN6 β-cells. In intracellular Ca2+ concentration ([Ca2+]i) measurement experiments, 1 μM R59949, a type I DGK inhibitor, and 10 μM DiC8, a diacylglycerol (DAG) analog, amplified 22.2 mM glucose-induced [Ca2+]i oscillations in a protein kinase C (PKC)-dependent manner, whereas 10 μM R59949 and 100 μM DiC8 decreased [Ca2+]i independent of PKC. High concentrations of R59949 and DiC8 attenuated voltage-dependent Ca2+ channel currents. According to these results, 22.2 mM glucose-stimulated insulin secretion (GSIS) was potentiated by 1 μM R59949 but suppressed by 10 μM of the same. The DGKα inhibitor R59022 showed a similar dual effect. Conversely, DiC8 at 10 and 100 μM potentiated GSIS, although 100 μM DiC8 decreased [Ca2+]i. These results suggest that DAG accumulated through declined type I DGK activity shows a dual effect on insulin secretion depending on the degree of accumulation; a mild DAG accumulation induces a PKC-dependent stimulatory effect on insulin secretion, whereas an excessive DAG accumulation suppresses it in a PKC-independent manner, possibly via attenuation of VDCC activity.
Collapse
Affiliation(s)
- Toshiaki Sawatani
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan.
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| |
Collapse
|
17
|
Hayashi D, Tsumagari R, Liu K, Ueda S, Yamanoue M, Sakane F, Shirai Y. Screening of subtype-specific activators and inhibitors for diacylglycerol kinase. J Biochem 2019; 165:517-522. [DOI: 10.1093/jb/mvz008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 02/03/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe, Japan
| | - Ryosuke Tsumagari
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe, Japan
| | - Ke Liu
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe, Japan
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe, Japan
| |
Collapse
|
18
|
Zhao Y, Zhang W, Jia Q, Feng Z, Guo J, Han X, Liu Y, Shang H, Wang Y, Liu WJ. High Dose Vitamin E Attenuates Diabetic Nephropathy via Alleviation of Autophagic Stress. Front Physiol 2019; 9:1939. [PMID: 30719008 PMCID: PMC6348272 DOI: 10.3389/fphys.2018.01939] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
It has been reported that autophagic stress, which is involved in many diseases, plays a key role in the development of diabetic nephropathy (DN). In this study, we investigated the effects of high dose vitamin E on renal tubular epithelial cells and autophagic stress-related mechanisms in diabetes condition. In diabetic rats, high dose vitamin E treatment significantly decreased the serum creatinine, urea nitrogen, urinary albumin and urinary protein, reduced the levels of LCN2, HAVCR1, LDH and 8-OHdG in urine, and attenuated the cellular apoptosis and interstitial fibrosis in renal cortex. In vitro, vitamin E could reduce the release of LCN2 and HAVCR1 and the protein levels of caspase 3 and TGF-β1, as well as improve the growth inhibition in cultured HK-2 cells after exposure to advanced glycation end products (AGEs). Also, LC3-II and SQSTM1-positive dots were significantly increased in the renal tubular epithelial cells of DN patients and diabetic rats, and in HK-2 cells after exposure to AGEs, which were markedly declined by vitamin E. In addition, we found that the autophagosome formation was not affected by AGEs, as assessed by the mRNA levels of LC3B, Beclin-1, and ATG7. However, AGEs blocked the lysosomal degradation of autophagosome, which was characterized by a decrease in the enzymatic activity of cathepsin B/cathepsin L and DQ-ovalbumin degradation in HK-2 cells, indicating that AGEs-induced accumulation of autophagic vacuoles was a sign of autophagic stress. Interestingly, vitamin E exerted a protective effect on lysosomes to reduce the autophagic stress. Taken together, we conclude that autophagic stress may play an important part in the progression of DN, and alleviation of autophagic stress though improvement of lysosomal function provides a promising novel approach for treating DN.
Collapse
Affiliation(s)
- Yuxue Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zhendong Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xueting Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yuning Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Merida I, Arranz-Nicolás J, Torres-Ayuso P, Ávila-Flores A. Diacylglycerol Kinase Malfunction in Human Disease and the Search for Specific Inhibitors. Handb Exp Pharmacol 2019; 259:133-162. [PMID: 31227890 DOI: 10.1007/164_2019_221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The diacylglycerol kinases (DGKs) are master regulator kinases that control the switch from diacylglycerol (DAG) to phosphatidic acid (PA), two lipids with important structural and signaling properties. Mammalian DGKs distribute into five subfamilies that regulate local availability of DAG and PA pools in a tissue- and subcellular-restricted manner. Pharmacological manipulation of DGK activity holds great promise, given the critical contribution of specific DGK subtypes to the control of membrane structure, signaling complexes, and cell-cell communication. The latest advances in the DGK field have unveiled the differential contribution of selected isoforms to human disease. Defects in the expression/activity of individual DGK isoforms contribute substantially to cognitive impairment, mental disorders, insulin resistance, and vascular pathologies. Abnormal DGK overexpression, on the other hand, confers the acquisition of malignant traits including invasion, chemotherapy resistance, and inhibition of immune attack on tumors. Translation of these findings into therapeutic approaches will require development of methods to pharmacologically modulate DGK functions. In particular, inhibitors that target the DGKα isoform hold particular promise in the fight against cancer, on their own or in combination with immune-targeting therapies.
Collapse
Affiliation(s)
- Isabel Merida
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain.
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Pedro Torres-Ayuso
- Laboratory of Cell and Developmental Signaling, National Cancer Institute (NCI-NIH), Frederick, MD, USA
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| |
Collapse
|
20
|
Hayashi D, Ueda S, Yamanoue M, Ashida H, Shirai Y. Amelioration of diabetic nephropathy by oral administration of d-α-tocopherol and its mechanisms. Biosci Biotechnol Biochem 2018; 82:65-73. [DOI: 10.1080/09168451.2017.1411184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Diabetic nephropathy (DN) is a diabetic vascular complication, and abnormal protein kinase C (PKC) activation from increased diacylglycerol (DG) production in diabetic hyperglycemia is one of the causes of DN. Diacylglycerol kinase (DGK) converts DG into phosphatidic acid. In other words, DGK can attenuate PKC activity by reducing the amount of DG. Recently, we reported that intraperitoneally administered d-α-tocopherol (vitamin E, αToc) induces an amelioration of DN in vivo through the activation of DGKα and the prevention of podocyte loss. However, the effect of the oral administration of αToc on DN in mice remains unknown. Here, we evaluated the effect of oral administration of αToc on DN and its molecular mechanism using streptozocin-induced diabetic mice. Consequently, the oral administration of αToc significantly ameliorated the symptoms of DN by preventing the loss of podocytes, and it was revealed that the inhibition of PKC activity was involved in this amelioration.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Hitoshi Ashida
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| |
Collapse
|