1
|
Li R, Shi W, Zhang P, Ma J, Zou R, Zhang X, Kohler A, Martin FM, Zhang F. The poplar SWEET1c glucose transporter plays a key role in the ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2024. [PMID: 39434237 DOI: 10.1111/nph.20183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
The mutualistic interaction between ectomycorrhizal fungi and trees is characterized by the coordinated exchange of soil nutrients with soluble sugars. Despite the importance of this process, the precise mechanism by which sugars are transported from host roots to colonizing hyphae remains unclear. This study aimed to identify the specific membrane transporters responsible for the unloading of sugars at the symbiotic interface, with a focus on the role of the root Sugars Will Eventually Be Exported Transporter (SWEET) uniporters. Our study used RNA sequencing and quantitative PCR to identify PtaSWEET gene expression in Populus tremula × alba-Laccaria bicolor ectomycorrhizal root tips. Our results suggest that symbiosis-induced PtaSWEET1c is primarily responsible for transporting glucose and sucrose, as demonstrated by the yeast assays. Moreover, we used a promoter-YFP reporter to confirm the localization of the PtaSWEET1c expression in cortical cells of ectomycorrhizal rootlets, supporting its major role in supplying glucose at the symbiotic interface. Furthermore, our observations confirmed the localization of PtaSWEET1c-GFP in the plasma membrane. The inactivation of PtaSWEET1c reduced ectomycorrhizal root formation and 13C translocation to ectomycorrhizal roots. Our findings highlight the crucial role of PtaSWEET1c in facilitating glucose and sucrose transport at the symbiotic interface of Populus-L. bicolor symbiosis.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
| | - Wensheng Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
| | - Pan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
| | - Jianan Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
| | - Rong Zou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
| | - Xinyin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
| | - Annegret Kohler
- INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Université de Lorraine, 54280, Champenoux, France
| | - Francis M Martin
- INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Université de Lorraine, 54280, Champenoux, France
| | - Feng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
- INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Université de Lorraine, 54280, Champenoux, France
| |
Collapse
|
2
|
Xu W, Cheng H, Cheng J, Zhu S, Cui Y, Wang C, Wu J, Lan X, Cheng Y. A COBRA family protein, PtrCOB3, contributes to gelatinous layer formation of tension wood fibers in poplar. PLANT PHYSIOLOGY 2024; 196:323-337. [PMID: 38850037 DOI: 10.1093/plphys/kiae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Angiosperm trees usually develop tension wood (TW) in response to gravitational stimulation. TW comprises abundant gelatinous (G-) fibers with thick G-layers primarily composed of crystalline cellulose. Understanding the pivotal factors governing G-layer formation in TW fiber remains elusive. This study elucidates the role of a Populus trichocarpa COBRA family protein, PtrCOB3, in the G-layer formation of TW fibers. PtrCOB3 expression was upregulated, and its promoter activity was enhanced during TW formation. Comparative analysis with wild-type trees revealed that ptrcob3 mutants, mediated by Cas9/gRNA gene editing, were incapable of producing G-layers within TW fibers and showed severely impaired stem lift. Fluorescence immunolabeling data revealed a dearth of crystalline cellulose in the tertiary cell wall (TCW) of ptrcob3 TW fibers. The role of PtrCOB3 in G-layer formation is contingent upon its native promoter, as evidenced by the comparative phenotypic assessments of pCOB11::PtrCOB3, pCOB3::PtrCOB3, and pCOB3::PtrCOB11 transgenic lines in the ptrcob3 background. Overexpression of PtrCOB3 under the control of its native promoter expedited G-layer formation within TW fibers. We further identified 3 transcription factors that bind to the PtrCOB3 promoter and positively regulate its transcriptional levels. Alongside the primary TCW synthesis genes, these findings enable the construction of a 2-layer transcriptional regulatory network for the G-layer formation of TW fibers. Overall, this study uncovers mechanistic insight into TW formation, whereby a specific COB protein executes the deposition of cellulose, and consequently, G-layer formation within TW fibers.
Collapse
Affiliation(s)
- Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Siran Zhu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yongyao Cui
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jianzhen Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xingguo Lan
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Wang R, Cheng Y, Jiang N, Jiang T, Wei Z. Overexpression of the PtrNF-YA6 gene inhibits secondary cell wall thickening in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112058. [PMID: 38447913 DOI: 10.1016/j.plantsci.2024.112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
The NF-Y gene family in plants plays a crucial role in numerous biological processes, encompassing hormone response, stress response, as well as growth and development. In this study, we first used bioinformatics techniques to identify members of the NF-YA family that may function in wood formation. We then used molecular biology techniques to investigate the role and molecular mechanism of PtrNF-YA6 in secondary cell wall (SCW) formation in Populus trichocarpa. We found that PtrNF-YA6 protein was localized in the nucleus and had no transcriptional activating activity. Overexpression of PtrNF-YA6 had an inhibitory effect on plant growth and development and significantly suppressed hemicellulose synthesis and SCW thickening in transgenic plants. Yeast one-hybrid and ChIP-PCR assays revealed that PtrNF-YA6 directly regulated the expression of hemicellulose synthesis genes (PtrGT47A-1, PtrGT8C, PtrGT8F, PtrGT43B, PtrGT47C, PtrGT8A and PtrGT8B). In conclusion, PtrNF-YA6 can inhibit plant hemicellulose synthesis and SCW thickening by regulating the expression of downstream SCW formation-related target genes.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yujia Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Nan Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Zhigang Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
| |
Collapse
|
4
|
Guo M, Ma X, Xu S, Cheng J, Xu W, Elsheery NI, Cheng Y. Genome-Wide Identification of TLP Gene Family in Populus trichocarpa and Functional Characterization of PtTLP6, Preferentially Expressed in Phloem. Int J Mol Sci 2024; 25:5990. [PMID: 38892187 PMCID: PMC11173255 DOI: 10.3390/ijms25115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Thaumatin-like proteins (TLPs) in plants are involved in diverse biotic and abiotic stresses, including antifungal activity, low temperature, drought, and high salinity. However, the roles of the TLP genes are rarely reported in early flowering. Here, the TLP gene family was identified in P. trichocarpa. The 49 PtTLP genes were classified into 10 clusters, and gene structures, conserved motifs, and expression patterns were analyzed in these PtTLP genes. Among 49 PtTLP genes, the PtTLP6 transcription level is preferentially high in stems, and GUS staining signals were mainly detected in the phloem tissues of the PtTLP6pro::GUS transgenic poplars. We generated transgenic Arabidopsis plants overexpressing the PtTLP6 gene, and its overexpression lines showed early flowering phenotypes. However, the expression levels of main flowering regulating genes were not significantly altered in these PtTLP6-overexpressing plants. Our data further showed that overexpression of the PtTLP6 gene led to a reactive oxygen species (ROS) burst in Arabidopsis, which might advance the development process of transgenic plants. In addition, subcellular localization of PtTLP6-fused green fluorescent protein (GFP) was in peroxisome, as suggested by tobacco leaf transient transformation. Overall, this work provides a comprehensive analysis of the TLP gene family in Populus and an insight into the role of TLPs in woody plants.
Collapse
Affiliation(s)
- Mengjie Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (M.G.); (X.M.); (S.X.); (J.C.)
| | - Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (M.G.); (X.M.); (S.X.); (J.C.)
| | - Shiying Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (M.G.); (X.M.); (S.X.); (J.C.)
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (M.G.); (X.M.); (S.X.); (J.C.)
| | - Wenjing Xu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China;
| | - Nabil Ibrahim Elsheery
- Agricultural Botany Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (M.G.); (X.M.); (S.X.); (J.C.)
| |
Collapse
|
5
|
Chen F, Zeng Y, Cheng Q, Xiao L, Ji J, Hou X, Huang Q, Lei Z. Tissue culture and Agrobacterium-mediated genetic transformation of the oil crop sunflower. PLoS One 2024; 19:e0298299. [PMID: 38722945 PMCID: PMC11081250 DOI: 10.1371/journal.pone.0298299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/03/2024] [Indexed: 05/13/2024] Open
Abstract
Sunflower is one of the four major oil crops in the world. 'Zaoaidatou' (ZADT), the main variety of oil sunflower in the northwest of China, has a short growth cycle, high yield, and high resistance to abiotic stress. However, the ability to tolerate adervesity is limited. Therefore, in this study, we used the retention line of backbone parent ZADT as material to establish its tissue culture and genetic transformation system for new variety cultivating to enhance resistance and yields by molecular breeding. The combination of 0.05 mg/L IAA and 2 mg/L KT in MS was more suitable for direct induction of adventitious buds with cotyledon nodes and the addition of 0.9 mg/L IBA to MS was for adventitious rooting. On this basis, an efficient Agrobacterium tumefaciens-mediated genetic transformation system for ZADT was developed by the screening of kanamycin and optimization of transformation conditions. The rate of positive seedlings reached 8.0%, as determined by polymerase chain reaction (PCR), under the condition of 45 mg/L kanamycin, bacterial density of OD600 0.8, infection time of 30 min, and co-cultivation of three days. These efficient regeneration and genetic transformation platforms are very useful for accelerating the molecular breeding process on sunflower.
Collapse
Affiliation(s)
- Fangyuan Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, XinJiang, China
- Key Laboratory of Microbial Resources Protection, Development and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, XinJiang, China
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, XinJiang, China
| | - Quan Cheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, XinJiang, China
| | - Lvting Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, XinJiang, China
| | - Jieyun Ji
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, XinJiang, China
| | - Xianfei Hou
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, XinJiang, China
| | - Qixiu Huang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, XinJiang, China
| | - Zhonghua Lei
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, XinJiang, China
| |
Collapse
|
6
|
Yu J, Gao B, Li D, Li S, Chiang VL, Li W, Zhou C. Ectopic Expression of PtrLBD39 Retarded Primary and Secondary Growth in Populus trichocarpa. Int J Mol Sci 2024; 25:2205. [PMID: 38396881 PMCID: PMC10889148 DOI: 10.3390/ijms25042205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Primary and secondary growth of trees are needed for increments in plant height and stem diameter, respectively, affecting the production of woody biomass for applications in timber, pulp/paper, and related biomaterials. These two types of growth are believed to be both regulated by distinct transcription factor (TF)-mediated regulatory pathways. Notably, we identified PtrLBD39, a highly stem phloem-specific TF in Populus trichocarpa and found that the ectopic expression of PtrLBD39 in P. trichocarpa markedly retarded both primary and secondary growth. In these overexpressing plants, the RNA-seq, ChIP-seq, and weighted gene co-expression network analysis (WGCNA) revealed that PtrLBD39 directly or indirectly regulates TFs governing vascular tissue development, wood formation, hormonal signaling pathways, and enzymes responsible for wood components. This regulation led to growth inhibition, decreased fibrocyte secondary cell wall thickness, and reduced wood production. Therefore, our study indicates that, following ectopic expression in P. trichocarpa, PtrLBD39 functions as a repressor influencing both primary and secondary growth.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Boyuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Danning Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| |
Collapse
|
7
|
Pavlichenko VV, Protopopova MV. Simplified Method for Agrobacterium-Mediated Genetic Transformation of Populus x berolinensis K. Koch. Methods Protoc 2024; 7:12. [PMID: 38392686 PMCID: PMC10892322 DOI: 10.3390/mps7010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid advancement of genetic technologies has made it possible to modify various plants through both genetic transformation and gene editing techniques. Poplar, with its rapid in vitro growth and regeneration enabling high rates of micropropagation, has emerged as a model system for the genetic transformation of woody plants. In this study, Populus × berolinensis K. Koch. (Berlin poplar) was chosen as the model organism due to its narrow leaves and spindle-shaped crown, which make it highly suitable for in vitro manipulations. Various protocols for the Agrobacterium-mediated transformation of poplar species have been developed to date. However, the genetic transformation procedures are often constrained by the complexity of the nutrient media used for plant regeneration and growth, which could potentially be simplified. Our study presents a cheaper, simplified, and relatively fast protocol for the Agrobacterium-mediated transformation of Berlin poplar. The protocol involved using internode sections without axillary buds as explants, which were co-cultivated in 10 µL droplets of bacterial suspension directly on the surface of a solid agar-based medium without rinsing and sterile paper drying after inoculation. We used only one regeneration Murashige and Skoogbased medium supplemented with BA (0.2 mg·L-1), TDZ (0.02 mg·L-1), and NAA (0.01 mg·L-1). Acetosyringone was not used as an induction agent for vir genes during the genetic transformation. Applying our protocol and using the binary plasmid pBI121 carrying the nptII selective and uidA reporter genes, we obtained the six transgenic lines of poplar. Transgenesis was confirmed through a PCR-based screening of kanamycin-selected regenerants for the presence of both mentioned genes, Sanger sequencing, and tests for detecting the maintained activity of both genes. The transformation efficiency, considering the 100 explants taken originally, was 6%.
Collapse
Affiliation(s)
- Vasiliy V. Pavlichenko
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, Lermontov St., 132, Irkutsk 664033, Russia
| | | |
Collapse
|
8
|
Li H, Wang H, Guan L, Li Z, Wang H, Luo J. Optimization of High-Efficiency Tissue Culture Regeneration Systems in Gray Poplar. Life (Basel) 2023; 13:1896. [PMID: 37763300 PMCID: PMC10532866 DOI: 10.3390/life13091896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
A series of tissue culture regeneration protocols were conducted on gray poplar (P. tremula × P. alba) to select the most efficient callus induction medium, adventitious shoot differentiation medium, shoot elongation medium and rooting medium, which laid the foundation for the optimization of genetic transformation technology for gray poplar. The results showed that the Woody Plant Medium (WPM) supplemented with 0.10 mg L-1 kinetin (KT) and 1.00 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D) was the most suitable medium for callus induction. The callus induction rates of different tissues were greater than 85.7%. The optimal adventitious shoot differentiation medium was the WPM supplemented with 0.02 mg L-1 thidiazuron (TDZ), and the adventitious shoot differentiation rates of young tissues were 22.2-41.9%. The optimal direct differentiation medium was the Murashige and Skoog (MS) medium supplemented with 0.20 mg L-1 6-benzylaminopurine (6-BA), 0.10 mg L-1 indole butyric acid (IBA) and 0.001 mg L-1 TDZ, and the differentiation rate of adventitious shoots was greater than 94%. The best shoot elongation medium for adventitious shoots was the MS medium with 0.10 mg L-1 naphthylacetic acid (NAA). After 45 days of cultivation in the MS medium with 0.10 mg L-1 NAA, the average plant height was 1.8 cm, and the average number of elongated adventitious shoots was 11 per explant. The 1/2 MS medium with 0.10 mg L-1 NAA showed the best performance for rooting, and later, shoot growth. The direct shoot induction pathway can induce adventitious shoots much faster than the indirect adventitious shoot induction pathway can, and the time cost via the direct adventitious shoot induction pathway can be shortened by 2-6 weeks compared to that of the indirect shoot induction pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Luo
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (H.W.); (L.G.); (Z.L.); (H.W.)
| |
Collapse
|
9
|
Sun L, Dong X, Song X. PtrABR1 Increases Tolerance to Drought Stress by Enhancing Lateral Root Formation in Populus trichocarpa. Int J Mol Sci 2023; 24:13748. [PMID: 37762051 PMCID: PMC10530772 DOI: 10.3390/ijms241813748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Roots are the main organ for water uptake and the earliest part of a plant's response to drought, making them of great importance to our understanding of the root system's response to drought. However, little is known about the underlying molecular mechanisms that control root responses to drought stress. Here, we identified and functionally characterized the AP2/ERF family transcription factor (TF) PtrABR1 and the upstream target gene zinc-finger protein TF PtrYY1, which respond to drought stress by promoting the growth and development of lateral roots in Populus trichocarpa. A root-specific induction of PtrABR1 under drought stress was explored. The overexpression of PtrABR1 (PtrABR1-OE) promoted root growth and development, thereby increasing tolerance to drought stress. In addition, PtrYY1 is directly bound to the promoter of PtrABR1 under drought stress, and the overexpression of PtrYY1 (PtrYY1-OE) promoted lateral root growth and development and increased tolerance to drought stress. An RNA-seq analysis of PtrABR1-OE with wild-type (WT) poplar identified PtrGH3.6 and PtrPP2C44, which share the same pattern of expression changes as PtrABR1. A qRT-PCR and cis-element analysis further suggested that PtrGH3.6 and PtrPP2C44 may act as potential downstream targets of PtrABR1 genes in the root response pathway to drought stress. In conclusion, these results reveal a novel drought regulatory pathway in which PtrABR1 regulates the network through the upstream target gene PtrYY1 and the potential downstream target genes PtrGH3.6 and PtrPP2C44, thereby promoting root growth and development and improving tolerance to drought stress.
Collapse
Affiliation(s)
- Lijiao Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (L.S.); (X.D.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xinxin Dong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (L.S.); (X.D.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xingshun Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (L.S.); (X.D.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
10
|
Wang R, Zhao W, Yao W, Wang Y, Jiang T, Liu H. Genome-Wide Analysis of Strictosidine Synthase-like Gene Family Revealed Their Response to Biotic/Abiotic Stress in Poplar. Int J Mol Sci 2023; 24:10117. [PMID: 37373265 DOI: 10.3390/ijms241210117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The strictosidine synthase-like (SSL) gene family is a small plant immune-regulated gene family that plays a critical role in plant resistance to biotic/abiotic stresses. To date, very little has been reported on the SSL gene in plants. In this study, a total of thirteen SSLs genes were identified from poplar, and these were classified into four subgroups based on multiple sequence alignment and phylogenetic tree analysis, and members of the same subgroup were found to have similar gene structures and motifs. The results of the collinearity analysis showed that poplar SSLs had more collinear genes in the woody plants Salix purpurea and Eucalyptus grandis. The promoter analysis revealed that the promoter region of PtrSSLs contains a large number of biotic/abiotic stress response elements. Subsequently, we examined the expression patterns of PtrSSLs following drought, salt, and leaf blight stress, using RT-qPCR to validate the response of PtrSSLs to biotic/abiotic stresses. In addition, the prediction of transcription factor (TF) regulatory networks identified several TFs, such as ATMYB46, ATMYB15, AGL20, STOP1, ATWRKY65, and so on, that may be induced in the expression of PtrSSLs in response to adversity stress. In conclusion, this study provides a solid basis for a functional analysis of the SSL gene family in response to biotic/abiotic stresses in poplar.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wenna Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yuting Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Huanzhen Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
11
|
Li J, Zhou X, Xiong C, Zhou H, Li H, Ruan C. Yellowhorn Xso-miR5149-XsGTL1 enhances water-use efficiency and drought tolerance by regulating leaf morphology and stomatal density. Int J Biol Macromol 2023; 237:124060. [PMID: 36933587 DOI: 10.1016/j.ijbiomac.2023.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Yellowhorn (Xanthoceras sorbifolium) is a unique edible woody oil tree species in China. Drought stress is the major yield-limiting factor of yellowhorn. MicroRNAs play an important role in regulating the response of woody plants to drought stress. However, the regulatory function of miRNAs in yellowhorn remains unclear. Here, we first constructed coregulatory networks integrated with miRNAs and their target genes. According to GO function and expression pattern analysis, we selected the Xso-miR5149-XsGTL1 module for further study. Xso-miR5149 is a key regulator of leaf morphology and stomatal density by directly mediating the expression of the transcription factor XsGTL1. Downregulation of XsGTL1 in yellowhorn led to increased leaf area and reduced stomatal density. RNA-seq analysis indicated that downregulation of XsGTL1 increased the expression of genes involved in the negative control of stomatal density, leaf morphology, and drought tolerance. After drought stress treatments, the XsGTL1-RNAi yellowhorn plants were less damaged and had higher water-use efficiency than the WT plants, while destruction of Xso-miR5149 or overexpression of XsGTL1 had the opposite effect. Our findings indicated that the Xso-miR5149-XsGTL1 regulatory module plays a critical role in controlling leaf morphology and stomatal density; hence, it's a potential candidate module for engineering enhanced drought tolerance in yellowhorn.
Collapse
Affiliation(s)
- Jingbin Li
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 116600 Dalian, Liaoning Province, PR China
| | - Xudong Zhou
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, 311300 Lin'an, Zhejiang Province, PR China
| | - Chaowei Xiong
- College of Forestry, Northwest Agriculture and Forestry University, 712100 Yangling, Shaanxi Province, PR China
| | - Hui Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 116600 Dalian, Liaoning Province, PR China
| | - He Li
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 116600 Dalian, Liaoning Province, PR China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 116600 Dalian, Liaoning Province, PR China.
| |
Collapse
|
12
|
Li M, Dong H, Li J, Dai X, Lin J, Li S, Zhou C, Chiang VL, Li W. PtrVCS2 Regulates Drought Resistance by Changing Vessel Morphology and Stomatal Closure in Populus trichocarpa. Int J Mol Sci 2023; 24:ijms24054458. [PMID: 36901889 PMCID: PMC10003473 DOI: 10.3390/ijms24054458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Drought has severe effects on plant growth, forest productivity, and survival throughout the world. Understanding the molecular regulation of drought resistance in forest trees can enable effective strategic engineering of novel drought-resistant genotypes of tree species. In this study, we identified a gene, PtrVCS2, encoding a zinc finger (ZF) protein of the ZF-homeodomain transcription factor in Populus trichocarpa (Black Cottonwood) Torr. & A. Gray. ex Hook. Overexpression of PtrVCS2 (OE-PtrVCS2) in P. trichocarpa resulted in reduced growth, a higher proportion of smaller stem vessels, and strong drought-resistance phenotypes. Stomatal movement experiments revealed that the OE-PtrVCS2 transgenics showed lower stomata apertures than wild-type plants under drought conditions. RNA-seq analysis of the OE-PtrVCS2 transgenics showed that PtrVCS2 regulates the expression of multiple genes involved in regulation of stomatal opening and closing, particularly the PtrSULTR3;1-1 gene, and several genes related to cell wall biosynthesis, such as PtrFLA11-12 and PtrPR3-3. Moreover, we found that the water use efficiency of the OE-PtrVCS2 transgenic plants was consistently higher than that of wild type plants when subjected to chronic drought stress. Taken together, our results suggest that PtrVCS2 plays a positive role in improving drought adaptability and resistance in P. trichocarpa.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hao Dong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiaojiao Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|
13
|
Cas9/gRNA-Mediated Mutations in PtrFLA40 and PtrFLA45 Reveal Redundant Roles in Modulating Wood Cell Size and SCW Synthesis in Poplar. Int J Mol Sci 2022; 24:ijms24010427. [PMID: 36613871 PMCID: PMC9820481 DOI: 10.3390/ijms24010427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Fasciclin-like arabinogalactan proteins (FLAs) play an important role in plant development and adaptation to the environment. However, the roles of FLAs in wood formation remain poorly understood. Here, we identified a total of 50 PtrFLA genes in poplar. They were classified into four groups: A to D, among which group A was the largest group with 28 members clustered into four branches. Most PtrFLAs of group A were dominantly expressed in developing xylem based on microarray and RT-qPCR data. The roles of PtrFLA40 and PtrFLA45 in group A were investigated via the Cas9/gRNA-induced mutation lines. Loss of PtrFLA40 and PtrFLA45 increased stem length and diameter in ptrfla40ptrfla45 double mutants, but not in ptrfla40 or ptrfla45 single mutants. Further, our findings indicated that the ptrfla40ptrfla45 mutants enlarged the cell size of xylem fibers and vessels, suggesting a negative modulation in stem xylem cell size. In addition, wood lignin content in the ptrfla40fla45 mutants was increased by nearly 9%, and the lignin biosynthesis-related genes were significantly up-regulated in the ptrfla40fla45 mutants, in agreement with the increase in wood lignin content. Overall, Cas9/gRNA-mediated mutations in PtrFLA40 and PtrFLA45 reveal redundant roles in modulating wood cell size and secondary cell wall (SCW) synthesis in poplar.
Collapse
|
14
|
Cao S, Guo M, Cheng J, Cheng H, Liu X, Ji H, Liu G, Cheng Y, Yang C. Aspartic proteases modulate programmed cell death and secondary cell wall synthesis during wood formation in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6876-6890. [PMID: 36040843 PMCID: PMC9629783 DOI: 10.1093/jxb/erac347] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Programmed cell death (PCD) is essential for wood development in trees. However, the determination of crucial factors involved in xylem PCD of wood development is still lacking. Here, two Populus trichocarpa typical aspartic protease (AP) genes, AP17 and AP45, modulate xylem maturation, especially fibre PCD, during wood formation. AP17 and AP45 were dominantly expressed in the fibres of secondary xylem, as suggested by GUS expression in APpro::GUS transgenic plants. Cas9/gRNA-induced AP17 or AP45 mutants delayed secondary xylem fibre PCD, and ap17ap45 double mutants showed more serious defects. Conversely, AP17 overexpression caused premature PCD in secondary xylem fibres, indicating a positive modulation in wood fibre PCD. Loss of AP17 and AP45 did not alter wood fibre wall thickness, whereas the ap17ap45 mutants showed a low lignin content in wood. However, AP17 overexpression led to a significant decrease in wood fibre wall thickness and lignin content, revealing the involvement in secondary cell wall synthesis during wood formation. In addition, the ap17ap45 mutant and AP17 overexpression plants resulted in a significant increase in saccharification yield in wood. Overall, AP17 and AP45 are crucial modulators in xylem maturation during wood development, providing potential candidate genes for engineering lignocellulosic wood for biofuel utilization.
Collapse
Affiliation(s)
- Shenquan Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Mengjie Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiaomeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Huanhuan Ji
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | | |
Collapse
|
15
|
Ye X, Wang S, Zhao X, Gao N, Wang Y, Yang Y, Wu E, Jiang C, Cheng Y, Wu W, Liu S. Role of lncRNAs in cis- and trans-regulatory responses to salt in Populus trichocarpa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:978-993. [PMID: 35218100 DOI: 10.1111/tpj.15714] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 06/05/2023]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as versatile regulators in diverse biological processes. However, little is known about their cis- and trans-regulatory contributions in gene expression under salt stress. Using 27 RNA-seq data sets from Populus trichocarpa leaves, stems and roots, we identified 2988 high-confidence lncRNAs, including 1183 salt-induced differentially expressed lncRNAs. Among them, 301 lncRNAs have potential for positively affecting their neighboring genes, predominantly in a cis-regulatory manner rather than by co-transcription. Additionally, a co-expression network identified six striking salt-associated modules with a total of 5639 genes, including 426 lncRNAs, and in these lncRNA sequences, the DNA/RNA binding motifs are enriched. This suggests that lncRNAs might contribute to distant gene expression of the salt-associated modules in a trans-regulatory manner. Moreover, we found 30 lncRNAs that have potential to simultaneously cis- and trans-regulate salt-responsive homologous genes, and Ptlinc-NAC72, significantly induced under long-term salt stress, was selected for validating its regulation of the expression and functional roles of the homologs PtNAC72.A and PtNAC72.B (PtNAC72.A/B). The transient transformation of Ptlinc-NAC72 and a dual-luciferase assay of Ptlinc-NAC72 and PtNAC72.A/B promoters confirmed that Ptlinc-NAC72 can directly upregulate PtNAC72.A/B expression, and a presence/absence assay was further conducted to show that the regulation is probably mediated by Ptlinc-NAC72 recognizing the tandem elements (GAAAAA) in the PtNAC72.A/B 5' untranslated region (5'-UTR). Finally, the overexpression of Ptlinc-NAC72 produces a hypersensitive phenotype under salt stress. Altogether, our results shed light on the cis- and trans-regulation of gene expression by lncRNAs in Populus and provides an example of long-term salt-induced Ptlinc-NAC72 that could be used to mitigate growth costs by conferring plant resilience to salt stress.
Collapse
Affiliation(s)
- Xiaoxue Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Ni Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yanmei Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Ernest Wu
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| |
Collapse
|
16
|
An Efficient Agrobacterium-Mediated Transformation Method for Hybrid Poplar 84K (Populus alba × P. glandulosa) Using Calli as Explants. Int J Mol Sci 2022; 23:ijms23042216. [PMID: 35216331 PMCID: PMC8879841 DOI: 10.3390/ijms23042216] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
A highly efficient Agrobacterium-mediated transformation method is needed for the molecular study of model tree species such as hybrid poplar 84K (Populus alba × P. glandulosa cv. ‘84K’). In this study, we report a callus-based transformation method that exhibits high efficiency and reproducibility. The optimized callus induction medium (CIM1) induced the development of calli from leaves with high efficiency, and multiple shoots were induced from calli growing on the optimized shoot induction medium (SIM1). Factors affecting the transformation frequency of calli were optimized as follows: Agrobacterium concentration sets at an OD600 of 0.6, Agrobacterium infective suspension with an acetosyringone (AS) concentration of 100 µM, infection time of 15 min, cocultivation duration of 2 days and precultivation duration of 6 days. Using this method, transgenic plants are obtained within approximately 2 months with a transformation frequency greater than 50%. Polymerase chain reaction (PCR), reverse transcription-PCR (RT-PCR) and β-galactosidase (GUS) histochemical staining analyses confirmed the successful generation of stable transformants. Additionally, the calli from leaves were subcultured and used to obtain new explants; the high transformation efficiency was still maintained in subcultured calli after 6 cycles. This method provides a reference for developing effective transformation protocols for other poplar species.
Collapse
|
17
|
Turley EK, Etchells JP. Laying it on thick: a study in secondary growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:665-679. [PMID: 34655214 PMCID: PMC8793872 DOI: 10.1093/jxb/erab455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 05/12/2023]
Abstract
The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world's biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide-receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants.
Collapse
Affiliation(s)
- Emma K Turley
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - J Peter Etchells
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Correspondence:
| |
Collapse
|
18
|
Ren H, Xu Y, Zhao X, Zhang Y, Hussain J, Cui F, Qi G, Liu S. Optimization of Tissue Culturing and Genetic Transformation Protocol for Casuarina equisetifolia. FRONTIERS IN PLANT SCIENCE 2022; 12:784566. [PMID: 35126414 PMCID: PMC8814579 DOI: 10.3389/fpls.2021.784566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Casuarina equisetifolia is widely used in agroforestry plantations for soil stabilization, ecosystem rehabilitation, reclamation, and coastal protection. Moreover, C. equisetifolia has remarkable resistance to typhoons, desert, low soil fertility, drought, and salinity, but not cold. Therefore, it is significant to breed high-quality Casuarina varieties to improve the tolerance and adaptability to cold weather by molecular techniques. The establishment of a rapid and efficient callus induction and regeneration system via tissue culture is pre-requisite for the genetic transformation of C. equisetifolia, which is so far lacking. In this study, we reported an efficient and rapid regeneration system using stem segment explants, in which callus induction was found to be optimal in a basal medium supplemented with 0.1 mg⋅L-1 TDZ and 0.1 mg⋅L-1 NAA, and proliferation in a basal medium containing 0.1 mg⋅L-1 TDZ and 0.5 mg⋅L-1 6-BA. For bud regeneration and rooting, the preferred plant growth regulator (PGR) in basal medium was 0.5 mg⋅L-1 6-BA, and a combination of 0.02 mg⋅L-1 IBA and 0.4 mg⋅L-1 IAA, respectively. We also optimized genetic a transformation protocol using Agrobacterium tumefaciens harboring the binary vector pCAMBIA1301 with β-glucuronidase (GUS) as a reporter gene. Consequently, 5 mg L-1 hygromycin, 20 mg L-1 acetosyringone (As), and 2 days of co-cultivation duration were optimized to improve the transformation efficiency. With these optimized parameters, transgenic plants were obtained in about 4 months. Besides that, Agrobacterium rhizogenes-mediated transformation involving adventitious root induction was also optimized. Our findings will not only increase the transformation efficiency but also shorten the time for developing transgenic C. equisetifolia plants. Taken together, this pioneer study on tissue culturing and genetic transformation of C. equisetifolia will pave the way for further genetic manipulation and functional genomics of C. equisetifolia.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Yan Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Xiaohong Zhao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Yan Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
19
|
Yu J, Zhou C, Li D, Li S, Jimmy Lin YC, Wang JP, Chiang VL, Li W. A PtrLBD39-mediated transcriptional network regulates tension wood formation in Populus trichocarpa. PLANT COMMUNICATIONS 2022; 3:100250. [PMID: 35059630 PMCID: PMC8760142 DOI: 10.1016/j.xplc.2021.100250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/10/2021] [Accepted: 10/19/2021] [Indexed: 05/29/2023]
Abstract
Tension wood (TW) is a specialized xylem tissue formed in angiosperm trees under gravitational stimulus or mechanical stresses (e.g., bending). The genetic regulation that underlies this important mechanism remains poorly understood. Here, we used laser capture microdissection of stem xylem cells coupled with full transcriptome RNA-sequencing to analyze TW formation in Populus trichocarpa. After tree bending, PtrLBD39 was the most significantly induced transcription factor gene; it has a phylogenetically paired homolog, PtrLBD22. CRISPR-based knockout of PtrLBD39/22 severely inhibited TW formation, reducing cellulose and increasing lignin content. Transcriptomic analyses of CRISPR-based PtrLBD39/22 double mutants showed that these two genes regulate a set of TW-related genes. Chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify direct targets of PtrLBD39. We integrated transcriptomic analyses and ChIP-seq assays to construct a transcriptional regulatory network (TRN) mediated by PtrLBD39. In this TRN, PtrLBD39 directly regulates 26 novel TW-responsive transcription factor genes. Our work suggests that PtrLBD39 and PtrLBD22 specifically control TW formation by mediating a TW-specific TRN in Populus.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Danning Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ying-Chung Jimmy Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan 10617, China
| | - Jack P. Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, NC 27695, USA
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
20
|
Li D, Yang J, Pak S, Zeng M, Sun J, Yu S, He Y, Li C. PuC3H35 confers drought tolerance by enhancing lignin and proanthocyanidin biosynthesis in the roots of Populus ussuriensis. THE NEW PHYTOLOGIST 2022; 233:390-408. [PMID: 34643281 DOI: 10.1111/nph.17799] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Since the roots are the very organ where plants first sense and respond drought stress, it is of great importance to better understand root responses to drought. Yet the underlying molecular mechanisms governing root responses to drought stress have been poorly understood. Here, we identified and functionally characterized a CCCH type transcription factor, PuC3H35, and its targets, anthocyanin reductase (PuANR) and early Arabidopsis aluminum induced1 (PuEARLI1), which are involved in mediating proanthocyanidin (PA) and lignin biosynthesis in response to drought stress in Populus ussuriensis root. PuC3H35 was root-specifically induced upon drought stress. Overexpressing PuC3H35 promoted PA and lignin biosynthesis and vascular tissue development, resulting in enhanced tolerance to drought stress by the means of anti-oxidation and mechanical supporting. We further demonstrated that PuC3H35 directly bound to the promoters of PuANR and PuEARLI1 and overexpressing PuANR or PuEARLI1 increased root PA or lignin levels, respectively, under drought stress. Taken together, these results revealed a novel regulatory pathway for drought tolerance, in which PuC3H35 mediated PA and lignin biosynthesis by collaboratively regulating 'PuC3H35-PuANR-PA' and 'PuC3H35-PuEARLI1-PuCCRs-lignin' modules in poplar roots.
Collapse
Affiliation(s)
- Dandan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Key Lab Forest Tree Genetics and Breeding of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Solme Pak
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Minzhen Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jiali Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Sen Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yuting He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
21
|
Cao Y, Sun G, Zhai X, Xu P, Ma L, Deng M, Zhao Z, Yang H, Dong Y, Shang Z, Lv Y, Yan L, Liu H, Cao X, Li B, Wang Z, Zhao X, Yu H, Wang F, Ma W, Huang J, Fan G. Genomic insights into the fast growth of paulownias and the formation of Paulownia witches' broom. MOLECULAR PLANT 2021; 14:1668-1682. [PMID: 34214658 DOI: 10.1016/j.molp.2021.06.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Paulownias are among the fastest growing trees in the world, but they often suffer tremendous loss of wood production due to infection by Paulownia witches' broom (PaWB) phytoplasmas. In this study, we have sequenced and assembled a high-quality nuclear genome of Paulownia fortunei, a commonly cultivated paulownia species. The assembled genome of P. fortunei is 511.6 Mb in size, with 93.2% of its sequences anchored to 20 pseudo-chromosomes, and it contains 31 985 protein-coding genes. Phylogenomic analyses show that the family Paulowniaceae is sister to a clade composed of Phrymaceae and Orobanchaceae. Higher photosynthetic efficiency is achieved by integrating C3 photosynthesis and the crassulacean acid metabolism pathway, which may contribute to the extremely fast growth habit of paulownia trees. Comparative transcriptome analyses reveal modules related to cambial growth and development, photosynthesis, and defense responses. Additional genome sequencing of PaWB phytoplasma, combined with functional analyses, indicates that the effector PaWB-SAP54 interacts directly with Paulownia PfSPLa, which in turn causes the degradation of PfSPLa by the ubiquitin-mediated pathway and leads to the formation of witches' broom. Taken together, these results provide significant insights into the biology of paulownias and the regulatory mechanism for the formation of PaWB.
Collapse
Affiliation(s)
- Yabing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Guiling Sun
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiaoqiao Zhai
- Henan Academy of Forestry, Zhengzhou, Henan 450002, China
| | - Pingluo Xu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Liming Ma
- Biomarker Technologies Corporation, Beijing 101399, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Haibo Yang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhonghai Shang
- Henan Academy of Forestry, Zhengzhou, Henan 450002, China
| | - Yujie Lv
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Lijun Yan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Haifang Liu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xibing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Bingbing Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xiaogai Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, Beijing 101399, China
| | - Fan Wang
- Biomarker Technologies Corporation, Beijing 101399, China
| | - Wen Ma
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jinling Huang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| |
Collapse
|
22
|
Zhao H, Niu Y, Dong H, Jia Y, Wang Y. Characterization of the Function of Two S1Fa-Like Family Genes From Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2021; 12:753099. [PMID: 34671378 PMCID: PMC8521066 DOI: 10.3389/fpls.2021.753099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
S1Fa-like transcription factors (TFs) are small molecular weight proteins that contain both nuclear localization and DNA binding domains. However, the functions of S1Fa-like TFs are poorly understood. In the present study, we identified the S1Fa-like TFs from the Populus trichocarpa genome, which revealed two S1Fa-like TF genes, PtS1Fa1 and PtS1Fa2. PtS1Fa1 and PtS1Fa2 expression was suppressed by drought and salt stress, and was also significantly altered by ABA, MeJA, or SA treatment. Both PtS1Fa1 and PtS1Fa2 are nuclear proteins. Transgenic P. trichocarpa plants overexpressing PtS1Fa1 and PtS1Fa2, respectively, were generated. The plants overexpressing PtS1Fa2 showed increased fresh weight, chlorophyll content, and root length and weight compared with those in wild-type (WT) P. trichocarpa under drought conditions. Meanwhile, these phenotype traits of plants overexpressing PtS1Fa1 were similar to those of WT plants. Furthermore, overexpression of PtS1Fa2 reduced the malondialdehyde (MDA) content, electrolyte leakage, H2O2 and O2- contents, and increased superoxide dismutase (SOD) and peroxidase (POD) activities. The expression of SOD and POD was also induced by PtS1Fa2. However, overexpression of PtS1Fa1 failed to affect any of these physiological parameters or SOD and POD gene expression. These results suggested that PtS1Fa2 plays a role in drought tolerance, and confers drought tolerance by increase antioxidant activity to reduce reactive oxygen species (ROS) accumulation.
Collapse
|
23
|
Wang R, Reng M, Tian S, Liu C, Cheng H, Liu Y, Zhang H, Saqib M, Wei H, Wei Z. Transcriptome-wide identification and characterization of microRNAs in diverse phases of wood formation in Populus trichocarpa. G3 (BETHESDA, MD.) 2021; 11:jkab195. [PMID: 34849817 PMCID: PMC8633455 DOI: 10.1093/g3journal/jkab195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/29/2021] [Indexed: 01/15/2023]
Abstract
We applied miRNA expression profiling method to Populus trichocarpa stems of the three developmental stages, primary stem (PS), transitional stem (TS), and secondary stem (SS), to investigate miRNA species and their regulation on lignocellulosic synthesis and related processes. We obtained 892, 872, and 882 known miRNAs and 1727, 1723, and 1597 novel miRNAs, from PS, TS, and SS, respectively. Comparisons of these miRNA species among different developmental stages led to the identification of 114, 306, and 152 differentially expressed miRNAs (DE-miRNAs), which had 921, 2639, and 2042 candidate target genes (CTGs) in the three respective stages of the same order. Correlation analysis revealed 47, 439, and 71 DE-miRNA-CTG pairs of high negative correlation in PS, TS, and SS, respectively. Through biological process analysis, we finally identified 34, 6, and 76 miRNA-CTG pairs from PS, TS, and SS, respectively, and the miRNA target genes in these pairs regulate or participate lignocellulosic biosynthesis-related biological processes: cell division and differentiation, cell wall modification, secondary cell wall biosynthesis, lignification, and programmed cell death processes. This is the first report on an integrated analysis of genome-wide mRNA and miRNA profilings during multiple phases of poplar stem development. Our analysis results imply that individual miRNAs modulate secondary growth and lignocellulosic biosynthesis through regulating transcription factors and lignocellulosic biosynthetic pathway genes, resulting in more dynamic promotion, suppression, or regulatory circuits. This study advanced our understanding of many individual miRNAs and their essential, diversified roles in the dynamic regulation of secondary growth in woody tree species.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin 150040, China
| | - Mengxuan Reng
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Shuanghui Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin 150040, China
| | - Cong Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin 150040, China
| | - He Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin 150040, China
| | - Huaxin Zhang
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Muhammad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Hairong Wei
- College of Forest Resource and Environmental Science, Michigan Technological University, Houghton MI49931, USA
| | - Zhigang Wei
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
24
|
Xu W, Cheng H, Zhu S, Cheng J, Ji H, Zhang B, Cao S, Wang C, Tong G, Zhen C, Mu L, Zhou Y, Cheng Y. Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts. THE NEW PHYTOLOGIST 2021; 231:1478-1495. [PMID: 33713445 PMCID: PMC8362133 DOI: 10.1111/nph.17338] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 05/12/2023]
Abstract
Plant cellulose is synthesized by a large plasma membrane-localized cellulose synthase (CesA) complex. However, an overall functional determination of secondary cell wall (SCW) CesAs is still lacking in trees, especially one based on gene knockouts. Here, the Cas9/gRNA-induced knockouts of PtrCesA4, 7A, 7B, 8A and 8B genes were produced in Populus trichocarpa. Based on anatomical, immunohistochemical and wood composition evidence, we gained a comprehensive understanding of five SCW PtrCesAs at the genetic level. Complete loss of PtrCesA4, 7A/B or 8A/B led to similar morphological abnormalities, indicating similar and nonredundant genetic functions. The absence of the gelatinous (G) layer, one-layer-walled fibres and a 90% decrease in cellulose in these mutant woods revealed that the three classes of SCW PtrCesAs are essential for multilayered SCW structure and wood G-fibre. In addition, the mutant primary and secondary phloem fibres lost the n(G + L)- and G-layers and retained the thicker S-layers (L, lignified; S, secondary). Together with polysaccharide immunolocalization data, these findings suggest differences in the role of SCW PtrCesAs-synthesized cellulose in wood and phloem fibre wall structures. Overall, this functional understanding of the SCW PtrCesAs provides further insights into the impact of lacking cellulose biosynthesis on growth, SCW, wood G-fibre and phloem fibre wall structures in the tree.
Collapse
Affiliation(s)
- Wenjing Xu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
- School of ForestryNortheast Forestry UniversityHarbin150040China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Siran Zhu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Huanhuan Ji
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Baocai Zhang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Shenquan Cao
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Guimin Tong
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Cheng Zhen
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Liqiang Mu
- School of ForestryNortheast Forestry UniversityHarbin150040China
| | - Yihua Zhou
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
25
|
An Y, Geng Y, Yao J, Wang C, Du J. An Improved CRISPR/Cas9 System for Genome Editing in Populus by Using Mannopine Synthase (MAS) Promoter. FRONTIERS IN PLANT SCIENCE 2021; 12:703546. [PMID: 34322148 PMCID: PMC8311491 DOI: 10.3389/fpls.2021.703546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Gene editing technology in woody plants has great potential for understanding gene function, and altering traits affecting economically and ecologically important traits. Gene editing applications in woody species require a high genome editing efficiency due to the difficulty during transformation and complexities resulting from gene redundancy. In this study, we used poplar 84K (Populus alba × P. glandulosa), which is a model hybrid for studying wood formation and growth. We developed a new CRISPR/Cas9 system to edit multiple genes simultaneously. Using this system, we successfully knocked out multiple targets of the PHYTOENE DESATURASE 8 in poplar. We found the mutation rate of our CRISPR/Cas9 system is higher (67.5%) than existing reports in woody trees. We further improved the mutation rate up to 75% at editing sites through the usage of the mannopine synthase (MAS) promoter to drive Cas9. The MAS-CRISPR/Cas9 is an improved genome-editing tool for woody plants with a higher efficiency and a higher mutation rate than currently available technologies.
Collapse
Affiliation(s)
- Yi An
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Ya Geng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Junguang Yao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Chun Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Juan Du
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Shen D, Holmer R, Kulikova O, Mannapperuma C, Street NR, Yan Z, van der Maden T, Bu F, Zhang Y, Geurts R, Magne K. The BOP-type co-transcriptional regulator NODULE ROOT1 promotes stem secondary growth of the tropical Cannabaceae tree Parasponia andersonii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1366-1386. [PMID: 33735477 PMCID: PMC9543857 DOI: 10.1111/tpj.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
Tree stems undergo a massive secondary growth in which secondary xylem and phloem tissues arise from the vascular cambium. Vascular cambium activity is driven by endogenous developmental signalling cues and environmental stimuli. Current knowledge regarding the genetic regulation of cambium activity and secondary growth is still far from complete. The tropical Cannabaceae tree Parasponia andersonii is a non-legume research model of nitrogen-fixing root nodulation. Parasponia andersonii can be transformed efficiently, making it amenable for CRISPR-Cas9-mediated reverse genetics. We considered whether P. andersonii also could be used as a complementary research system to investigate tree-related traits, including secondary growth. We established a developmental map of stem secondary growth in P. andersonii plantlets. Subsequently, we showed that the expression of the co-transcriptional regulator PanNODULE ROOT1 (PanNOOT1) is essential for controlling this process. PanNOOT1 is orthologous to Arabidopsis thaliana BLADE-ON-PETIOLE1 (AtBOP1) and AtBOP2, which are involved in the meristem-to-organ-boundary maintenance. Moreover, in species forming nitrogen-fixing root nodules, NOOT1 is known to function as a key nodule identity gene. Parasponia andersonii CRISPR-Cas9 loss-of-function Pannoot1 mutants are altered in the development of the xylem and phloem tissues without apparent disturbance of the cambium organization and size. Transcriptomic analysis showed that the expression of key secondary growth-related genes is significantly down-regulated in Pannoot1 mutants. This allows us to conclude that PanNOOT1 positively contributes to the regulation of stem secondary growth. Our work also demonstrates that P. andersonii can serve as a tree research system.
Collapse
Affiliation(s)
- Defeng Shen
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
- Present address:
Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologne50829Germany
| | - Rens Holmer
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Chanaka Mannapperuma
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeå907 36Sweden
| | - Nathaniel R. Street
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeå907 36Sweden
| | - Zhichun Yan
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Thomas van der Maden
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Fengjiao Bu
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Yuanyuan Zhang
- Laboratory of Plant PhysiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708 PBThe Netherlands
- Present address:
State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmCollege of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhou510642China
| | - Rene Geurts
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Kévin Magne
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
- Present address:
Institute of Plant Sciences Paris‐Saclay (IPS2)Université Paris‐SaclayCNRSINRAEUniv EvryOrsay91405France
| |
Collapse
|
27
|
An Optimized Transformation System and Functional Test of CYC-Like TCP Gene CpCYC in Chirita pumila (Gesneriaceae). Int J Mol Sci 2021; 22:ijms22094544. [PMID: 33925272 PMCID: PMC8123712 DOI: 10.3390/ijms22094544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022] Open
Abstract
The development of an ideal model plant located at a key phylogenetic node is critically important to advance functional and regulatory studies of key regulatory genes in the evolutionary developmental (evo-devo) biology field. In this study, we selected Chirita pumila in the family Gesneriaceae, a basal group in Lamiales, as a model plant to optimize its genetic transformation system established previously by us through investigating a series of factors and further conduct functional test of the CYC-like floral symmetry gene CpCYC. By transforming a RNAi:CpCYC vector, we successfully achieved the desired phenotypes of upright actinomorphic flowers, which suggest that CpCYC actually determines the establishment of floral zygomorphy and the horizontal orientation of flowers in C. pumila. We also confirmed the activities of CpCYC promoter in dorsal petals, dorsal/lateral staminodes, as well as the pedicel by transferring a CpCYC promoter:GUS vector into C. pumila. Furthermore, we testified the availability of a transient gene expression system using C. pumila mesophyll protoplasts. The improved transformation system together with the inherent biological features would make C. pumila an attractive new model in functional and regulatory studies for a broad range of evo-devo issues.
Collapse
|
28
|
Liu Q, Wang Z, Yu S, Li W, Zhang M, Yang J, Li D, Yang J, Li C. Pu-miR172d regulates stomatal density and water-use efficiency via targeting PuGTL1 in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1370-1383. [PMID: 33098429 DOI: 10.1093/jxb/eraa493] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 05/22/2023]
Abstract
miRNAs play essential regulatory roles in many aspects of plant development and in responses to abiotic and biotic stresses. Here, we characterize Pu-miR172d, which acts as a negative regulator of stomatal density by directly repressing the expression of PuGTL1 in Populus ussuriensis. Quantitative real-time PCR and GUS reporter analyses showed that Pu-miR172d was strongly expressed in the guard cells of young leaves. Overexpression of Pu-miR172d significantly decreased stomatal density, resulting in increases in water use efficiency (WUE) and drought tolerance by reducing net photosynthetic rate, stomatal conductance, and transpiration. Molecular analysis showed that PuGTL1 was a major target of Pu-miR172d cleavage. Moreover, PuGTL1-SRDX plants, in which PuGTL1 is suppressed, phenocopied Pu-miR172d-overexpression lines with reduced stomatal density and enhanced WUE. The expression of PuSDD1, a negative regulator of stomatal development, was significantly increased in young leaves of both Pu-miR172d-overexpression and PuGTL1-SRDX plants. RNA-seq analysis of mature leaves indicated that overexpression of Pu-miR172d decreased the expression of many genes related to photosynthesis. Our findings show that the Pu-miR172d/PuGTL1/PuSDD1 module plays an important role in stomatal differentiation, and hence it is a potential target for engineering improved drought tolerance in poplar.
Collapse
Affiliation(s)
- Quangang Liu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Zhanchao Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Sen Yu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Wenlong Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Mengqiu Zhang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Jia Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Dandan Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
29
|
Ren M, Zhang Y, Liu C, Liu Y, Tian S, Cheng H, Zhang H, Wei H, Wei Z. Characterization of a High Hierarchical Regulator, PtrGATA12, Functioning in Differentially Regulating Secondary Wall Component Biosynthesis in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2021; 12:657787. [PMID: 33968111 PMCID: PMC8096934 DOI: 10.3389/fpls.2021.657787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/01/2021] [Indexed: 05/16/2023]
Abstract
In plants, GATA transcription factors (TFs) have been reported to play vital roles in to a wide range of biological processes. To date, there is still no report about the involvement and functions of woody plant GATA TFs in wood formation. In this study, we described the functional characterization of a Populus trichocarpa GATA TF, PtrGATA12, which encodes a nuclear-localized transcriptional activator predominantly expressing in developing xylem tissues. Overexpression of PtrGATA12 not only inhibited growths of most phenotypic traits and biomass accumulation, but also altered the expressions of some master TFs and pathway genes involved in secondary cell wall (SCW) and programmed cell death, leading to alternated SCW components and breaking forces of stems of transgenic lines. The significant changes occurred in the contents of hemicellulose and lignin and SCW thicknesses of fiber and vessel that increased by 13.5 and 10.8%, and 20.83 and 11.83%, respectively. Furthermore, PtrGATA12 bound directly to the promoters of a battery of TFs and pathway genes and activated them; the binding sites include two cis-acting elements that were specifically enriched in their promoter regions. Taken together, our results suggest PtrGATA12, as a higher hierarchical TF on the top of PtrWND6A, PtrWND6B, PtrMYB152, and PtrMYB21, exert a coordinated regulation of SCW components biosynthesis pathways through directly and indirectly controlling master TFs, middle-level TFs, and further downstream pathway genes of the currently known hierarchical transcription network that governs SCW formation.
Collapse
Affiliation(s)
- Mengxuan Ren
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, China
| | - Yang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Cong Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shuanghui Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - He Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Huaxin Zhang
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Zhigang Wei
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Zhigang Wei,
| |
Collapse
|
30
|
De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, Van Montagu M, Depuydt S. Agrobacterium strains and strain improvement: Present and outlook. Biotechnol Adv 2020; 53:107677. [PMID: 33290822 DOI: 10.1016/j.biotechadv.2020.107677] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Almost 40 years ago the first transgenic plant was generated through Agrobacterium tumefaciens-mediated transformation, which, until now, remains the method of choice for gene delivery into plants. Ever since, optimized Agrobacterium strains have been developed with additional (genetic) modifications that were mostly aimed at enhancing the transformation efficiency, although an optimized strain also exists that reduces unwanted plasmid recombination. As a result, a collection of very useful strains has been created to transform a wide variety of plant species, but has also led to a confusing Agrobacterium strain nomenclature. The latter is often misleading for choosing the best-suited strain for one's transformation purposes. To overcome this issue, we provide a complete overview of the strain classification. We also indicate different strain modifications and their purposes, as well as the obtained results with regard to the transformation process sensu largo. Furthermore, we propose additional improvements of the Agrobacterium-mediated transformation process and consider several worthwhile modifications, for instance, by circumventing a defense response in planta. In this regard, we will discuss pattern-triggered immunity, pathogen-associated molecular pattern detection, hormone homeostasis and signaling, and reactive oxygen species in relationship to Agrobacterium transformation. We will also explore alterations that increase agrobacterial transformation efficiency, reduce plasmid recombination, and improve biocontainment. Finally, we recommend the use of a modular system to best utilize the available knowledge for successful plant transformation.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Marine Sciences, Incheon National University, Incheon 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
31
|
Song Y, Bai X, Dong S, Yang Y, Dong H, Wang N, Zhang H, Li S. Stable and Efficient Agrobacterium-Mediated Genetic Transformation of Larch Using Embryogenic Callus. FRONTIERS IN PLANT SCIENCE 2020; 11:584492. [PMID: 33324434 PMCID: PMC7723890 DOI: 10.3389/fpls.2020.584492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/16/2020] [Indexed: 05/24/2023]
Abstract
Larix olgensis or larch is an economically important coniferous tree species with rapid growth in the early stages, strong adaptability, and a short time to harvest. The genetic improvement of larch has garnered considerable attention in recent years for reclaiming timber forests. However, traditional breeding methods are largely ineffective for achieving rapid genetic improvement of L. olgensis. Studies show that the efficiency of plant regeneration can be improved by optimizing somatic embryogenesis. On this basis, we devised a stable, fast and efficient Agrobacterium-mediated genetic transformation method using suspended embryogenic calluses as explants and β-glucuronidase as the reporter. We evaluated the effects of the Agrobacterium load, co-culture period, and addition of acetosyringone and transformant screening antibiotic on the transformation efficiency. In addition, we tested the pCAMBIA 1300-PtHCA 2-1 promoter-GUS binary expression vector, which contains the GUS gene ORF under the control of Populus trichocarpa high cambial activity PtHCA 2-1 promoter, and observed the tissue-specific expression of the GUS gene in the somatic embryos of transgenic larch. This novel technique can not only accelerate the generation of superior transgenic strains of L. olgensis but also aid in future gene functional studies.
Collapse
|
32
|
Wei M, Liu Q, Wang Z, Yang J, Li W, Chen Y, Lu H, Nie J, Liu B, Lv K, Mao X, Chen S, Sanders J, Wei H, Li C. PuHox52-mediated hierarchical multilayered gene regulatory network promotes adventitious root formation in Populus ussuriensis. THE NEW PHYTOLOGIST 2020; 228:1369-1385. [PMID: 32589766 DOI: 10.1111/nph.16778] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/15/2020] [Indexed: 05/25/2023]
Abstract
Adventitious root (AR) formation is critically important in vegetative propagation through cuttings in some plants, especially woody species. However, the underlying molecular mechanisms remain elusive. Here, we report the identification of a poplar homeobox gene, PuHox52, which was induced rapidly (within 15 min) at the basal ends of stems upon cutting and played a key regulatory role in adventitious rooting. We demonstrated that overexpression of PuHox52 significantly increased the number of ARs while suppression of PuHox52 had the opposite effect. A multilayered hierarchical gene regulatory network (ML-hGRN) mediated by PuHox52 was reverse-engineered and demonstrated to govern AR formation. PuHox52 regulated AR formation through upregulation of nine hub regulators, including a jasmonate signaling pathway gene, PuMYC2, and an auxin signaling pathway gene, PuAGL12. We also identified coherent type 4 feed-forward loops within this ML-hGRN; PuHox52 repressed PuHDA9, which encodes a histone deacetylase, and led to an increase in acetylation and presumably expression of three hub regulators, PuWRKY51, PuLBD21 and PuIAA7. Our results indicate that the ML-hGRN mediated by PuHox52 governs AR formation at the basal ends of stem cuttings from poplar trees.
Collapse
Affiliation(s)
- Ming Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Quangang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhanchao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Wenlong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yingxi Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Han Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jinfu Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510000, China
| | - Baoguang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xuliang Mao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jennifer Sanders
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
33
|
Wang Z, Mao Y, Guo Y, Gao J, Liu X, Li S, Lin YCJ, Chen H, Wang JP, Chiang VL, Li W. MYB Transcription Factor161 Mediates Feedback Regulation of Secondary wall-associated NAC-Domain1 Family Genes for Wood Formation. PLANT PHYSIOLOGY 2020; 184:1389-1406. [PMID: 32943464 PMCID: PMC7608153 DOI: 10.1104/pp.20.01033] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Wood formation is a complex process that involves cell differentiation, cell expansion, secondary wall deposition, and programmed cell death. We constructed a four-layer wood formation transcriptional regulatory network (TRN) in Populus trichocarpa (black cottonwood) that has four Secondary wall-associated NAC-Domain1 (PtrSND1) transcription factor (TF) family members as the top-layer regulators. We characterized the function of a MYB (PtrMYB161) TF in this PtrSND1-TRN, using transgenic P trichocarpa cells and whole plants. PtrMYB161 is a third-layer regulator that directly transactivates five wood formation genes. Overexpression of PtrMYB161 in P. trichocarpa (OE-PtrMYB161) led to reduced wood, altered cell type proportions, and inhibited growth. Integrative analysis of wood cell-based chromatin-binding assays with OE-PtrMYB161 transcriptomics revealed a feedback regulation system in the PtrSND1-TRN, where PtrMYB161 represses all four top-layer regulators and one second-layer regulator, PtrMYB021, possibly affecting many downstream TFs in, and likely beyond, the TRN, to generate the observed phenotypic changes. Our data also suggested that the PtrMYB161's repressor function operates through interaction of the base PtrMYB161 target-binding system with gene-silencing cofactors. PtrMYB161 protein does not contain any known negative regulatory domains. CRISPR-based mutants of PtrMYB161 in P. trichocarpa exhibited phenotypes similar to the wild type, suggesting that PtrMYB161's activator functions are redundant among many TFs. Our work demonstrated that PtrMYB161 binds to multiple sets of target genes, a feature that allows it to function as an activator as well as a repressor. The balance of the two functions may be important to the establishment of regulatory homeostasis for normal growth and development.
Collapse
Affiliation(s)
- Zhifeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yuli Mao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yanjiao Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jinghui Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xinying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ying-Chung Jimmy Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hao Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
34
|
Zhang Y, Liu C, Cheng H, Tian S, Liu Y, Wang S, Zhang H, Saqib M, Wei H, Wei Z. DNA methylation and its effects on gene expression during primary to secondary growth in poplar stems. BMC Genomics 2020; 21:498. [PMID: 32689934 PMCID: PMC7372836 DOI: 10.1186/s12864-020-06902-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background As an important epigenetic mark, 5-methylcytosine (5mC) methylation is involved in many DNA-dependent biological processes and plays a role during development and differentiation of multicellular organisms. However, there is still a lack of knowledge about the dynamic aspects and the roles of global 5mC methylation in wood formation in tree trunks. In this study, we not only scrutinized single-base resolution methylomes of primary stems (PS), transitional stems (TS), and secondary stems (SS) of Populus trichocarpa using a high-throughput bisulfite sequencing technique, but also analyzed the effects of 5mC methylation on the expression of genes involved in wood formation. Results The overall average percentages of CG, CHG, and CHH methylation in poplar stems were ~ 53.6%, ~ 37.7%, and ~ 8.5%, respectively, and the differences of 5mC in genome-wide CG/CHG/CHH contexts among PS, TS, and SS were statistically significant (p < 0.05). The evident differences in CG, CHG, and CHH methylation contexts among 2 kb proximal promoters, gene bodies, and 2 kb downstream regions were observed among PS, TS, and SS. Further analysis revealed a perceptible global correlation between 5mC methylation levels of gene bodies and transcript levels but failed to reveal a correlation between 5mC methylation levels of proximal promoter regions and transcript levels. We identified 653 and 858 DMGs and 4978 and 4780 DEGs in PS vs TS and TS vs SS comparisons, respectively. Only 113 genes of 653 DMGs and 4978 DEGs, and 114 genes of 858 DMGs and 4780 DEG were common. Counterparts of some of these common genes in other species, including Arabidopsis thaliana, are known to be involved in secondary cell wall biosynthesis and hormone signaling. This indicates that methylation may directly modulate wood formation genes and indirectly attune hormone signaling genes, which in turn impact wood formation. Conclusions DNA methylation only marginally affects pathway genes or regulators involved in wood formation, suggesting that further studies of wood formation should lean towards the indirect effects of methylation. The information and data we provide here will be instrumental for understanding the roles of methylation in wood formation in tree species.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Cong Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - He Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Shuanghui Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Shuang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Huaxin Zhang
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Muhammad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Zhigang Wei
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| |
Collapse
|
35
|
Kaur A, Guleria S, Reddy MS, Kumar A. A robust genetic transformation protocol to obtain transgenic shoots of Solanum tuberosum L. cultivar 'Kufri Chipsona 1'. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:367-377. [PMID: 32158141 PMCID: PMC7036391 DOI: 10.1007/s12298-019-00747-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The genetic transformation of plants is an important biotechnological tool used for crop improvement for many decades. The present study was focussed to investigate various factors affecting genetic transformation of potato cultivar 'Kufri Chipsona 1'. It was observed that explants pre-cultured for 2 days on MS2 medium (MS medium containing 10 µM silver nitrate, 10 µM BA, 15 µM GA3), injured with a surgical blade and co-cultivated with Agrobacterium tumefaciens strain EHA105 [O.D600 (0.6)] for 2 days results in maximum transient β-glucuronidase (GUS) expression. The addition of 100 µM acetosyringone in MS2 medium also increased rate of transient GUS expression in both the explants. Clumps of putative transgenic shoots were regenerated using the optimised culture conditions from leaf and internodal explants. The stable integration of T-DNA was established using histochemical staining for GUS and amplification of DNA fragment specific to nptII and uidA genes. Within the clumps, around 67.85% of shoots showed uniform GUS expression in all the tissues and about 32.15% shoots show intermittent GUS expression establishing chimeric nature. Uniform GUS staining of the tissue was used as initial marker of non-chimeric transgenic shoots. Quantitative expression of nptII transgene was found to be directly proportional to uniformity of GUS staining in transgenic shoots. The present investigation indicated that manipulation of culture conditions and the medium composition may help to get transgenic shoots with uniform expression of transgene in all the tissues of potato cultivar 'Kufri Chipsona 1'.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| | - M. Sudhakara Reddy
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| | - Anil Kumar
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| |
Collapse
|
36
|
Fang Q, Wang X, Wang H, Tang X, Liu C, Yin H, Ye S, Jiang Y, Duan Y, Luo K. The poplar R2R3 MYB transcription factor PtrMYB94 coordinates with abscisic acid signaling to improve drought tolerance in plants. TREE PHYSIOLOGY 2020; 40:46-59. [PMID: 31728530 DOI: 10.1093/treephys/tpz113] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 05/07/2023]
Abstract
In plants, R2R3 MYB transcription factors (TFs) consist of one large gene family and are involved in the regulation of many developmental processes and various stresses. However, the functions of most of MYB TFs in woody plants remain unknown. Here, PtrMYB94, an R2R3 MYB TF from Populus trichocarpa, is characterized to be involved in the regulation of drought responses and abscisic acid (ABA) signaling. PtrMYB94 encodes a nuclear-localized R2R3 MYB TF. RT-PCR results showed that the PtrMYB94 transcripts were relatively abundant in leaves and stems, and were induced rapidly in response to dehydration stress. Overexpression of PtrMYB94 improved plant drought responses, suggesting that this MYB TF may functionally regulate poplar adaptability to drought stress. Furthermore, the analysis of transcriptional expression and PtrMYB94 promoter: GUS activity showed that PtrMYB94 responded to ABA induction. PtrMYB94-overexpressing plants exhibited the inhibition of seed germination compared with the wild-type (WT) control under ABA exposure condition. The ABA content was evidently increased in the PtrMYB94-overexpressing plants relative to the WT plants. In addition, transcript levels of several ABA- and drought-responsive genes, such as ABA1 and DREB2B, were up-regulated. Taken together, our results suggest that PtrMYB94 is involved in an ABA-dependent drought stress regulation in Populus.
Collapse
Affiliation(s)
- Qing Fang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China
| | - Xianqiang Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haiyang Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China
| | - Xiaowen Tang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China
| | - Chi Liu
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China
| | - Heng Yin
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China
| | - Shenglong Ye
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuanzhong Jiang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yanjiao Duan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
37
|
Bansod SD, Bawaskar M, Shende S, Gade A, Rai M. Novel nanoplex-mediated plant transformation approach. IET Nanobiotechnol 2019; 13:609-616. [PMID: 31432794 PMCID: PMC8676528 DOI: 10.1049/iet-nbt.2018.5283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/26/2019] [Accepted: 05/17/2019] [Indexed: 11/19/2022] Open
Abstract
Here, a rapid and easy transformation by electroporation technique for gene transfer in plants using cell penetrating amino nanocomplex (nanoplex) has been demonstrated in Nicotiana. Nanoplex was prepared using cell penetrating amino acids (CPAs) such as poly-L-lysine (PLL) and Argenine (Arg), in combination with the gold nanoparticles (AuNPs). PLLs-modified nanoplex with zeta potential of 34.2 ± 1.22 mV charge showed 63.3% efficiency for gene transformation in plant cells as compared to 60% when modified with Arg and the zeta potential was found to be 30.0 ± 0.83 mV; whereas, the transformation efficiency without nanoplex was found to be 6.6%. The findings indicate that the zeta potential of positively charged nanocomplex (AuNPs/CPAs/DNA/CPAs) increases the transformation efficiency because of their ability to protect the DNA from electroporation wave and endogenous enzyme damage. Transformation was confirmed by GUS assay and amplification of npt gene. This technique may open up new possibilities of gene transfer in plants, which will enable to produce large number of transgenic plants.
Collapse
Affiliation(s)
- Sunita D Bansod
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati - 444602, Maharashtra, India
| | - Manisha Bawaskar
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati - 444602, Maharashtra, India
| | - Sudhir Shende
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati - 444602, Maharashtra, India
| | - Aniket Gade
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati - 444602, Maharashtra, India
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati - 444602, Maharashtra, India.
| |
Collapse
|
38
|
Cao S, Guo M, Wang C, Xu W, Shi T, Tong G, Zhen C, Cheng H, Yang C, Elsheery NI, Cheng Y. Genome-wide characterization of aspartic protease (AP) gene family in Populus trichocarpa and identification of the potential PtAPs involved in wood formation. BMC PLANT BIOLOGY 2019; 19:276. [PMID: 31234799 PMCID: PMC6591973 DOI: 10.1186/s12870-019-1865-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/03/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Aspartic protease (AP) is one of four large proteolytic enzyme families that are involved in plant growth and development. Little is known about the AP gene family in tree species, although it has been characterized in Arabidopsis, rice and grape. The AP genes that are involved in tree wood formation remain to be determined. RESULTS A total of 67 AP genes were identified in Populus trichocarpa (PtAP) and classified into three categories (A, B and C). Chromosome mapping analysis revealed that two-thirds of the PtAP genes were located in genome duplication blocks, indicating the expansion of the AP family by segmental duplications in Populus. The microarray data from the Populus eFP browser demonstrated that PtAP genes had diversified tissue expression patterns. Semi-qRT-PCR analysis further determined that more than 10 PtAPs were highly or preferentially expressed in the developing xylem. When the involvement of the PtAPs in wood formation became the focus, many SCW-related cis-elements were found in the promoters of these PtAPs. Based on PtAPpromoter::GUS techniques, the activities of PtAP66 promoters were observed only in fiber cells, not in the vessels of stems as the xylem and leaf veins developed in the transgenic Populus tree, and strong GUS signals were detected in interfascicular fiber cells, roots, anthers and sepals of PtAP17promoter::GUS transgenic plants. Intensive GUS activities in various secondary tissues implied that PtAP66 and PtAP17 could function in wood formation. In addition, most of the PtAP proteins were predicted to contain N- and (or) O-glycosylation sites, and the integration of PNGase F digestion and western blotting revealed that the PtAP17 and PtAP66 proteins were N-glycosylated in Populus. CONCLUSIONS Comprehensive characterization of the PtAP genes suggests their functional diversity during Populus growth and development. Our findings provide an overall understanding of the AP gene family in trees and establish a better foundation to further describe the roles of PtAPs in wood formation.
Collapse
Affiliation(s)
- Shenquan Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Mengjie Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Tianyuan Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Guimin Tong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Cheng Zhen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | | | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| |
Collapse
|
39
|
Genome-Wide Characterization of AspATs in Populus: Gene Expression Variation and Enzyme Activities in Response to Nitrogen Perturbations. FORESTS 2019. [DOI: 10.3390/f10050449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aspartate aminotransferase (AspAT) catalyzes a reversible transamination reaction between glutamate and oxaloacetate to yield aspartate and 2-oxoglutarate, exerting a primary role in amino acid biosynthesis and homeostasis of nitrogen (N) and carbon metabolism within all cellular organisms. While progress in biochemical characterization of AspAT has been made for decades, the molecular and physiological characteristics of different members of the AspAT gene family remain poorly known particularly in forest trees. Here, extensive genome-wide survey of AspAT encoding genes was implemented in black cottonwood (Populus trichocarpa Torr. & A. Gray), a model species of woody plants. Thorough inspection of the phylogenies, gene structures, chromosomal distribution, cis-elements, conserved motifs, and subcellular targeting resulted in the identification of 10 AspAT isogenes (PtAspAT1-10) in the Populus genome. RNA-seq along with quantitative real-time polymerase chain reaction (qRT-PCR) validation revealed that PtAspATs displayed diverse patterns of tissue-specific expression. Spatiotemporal expressions of homologous AspATs in the poplar hybrid clone ‘Nanlin895’ were further evaluated, showing that gene expressions varied depending on source-sink dynamics. The impact on AspAT transcripts upon N starvation and seasonal senescence showed the upregulation of five AspAT in leaves concurrent with drastic downregulation of six or more AspATs in roots. Additionally, marked reductions of many more AspATs transcripts were observed in roots upon N excess. Accordingly, AspAT activities were significantly suppressed upon N starvation by an in-gel assay, prompting the argument that enzyme activity was a more direct indicator of the growth morphology under a N stress regime. Taken together, the expression profiling and enzyme activities upon stress cues provide a theoretical basis for unraveling the physiological significance of specific gene(s) in regulation of N acquisition and remobilization in woody plants.
Collapse
|
40
|
Han JY, Ahn CH, Adhikari PB, Kondeti S, Choi YE. Functional characterization of an oxidosqualene cyclase (PdFRS) encoding a monofunctional friedelin synthase in Populus davidiana. PLANTA 2019; 249:95-111. [PMID: 30145615 DOI: 10.1007/s00425-018-2985-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
An oxidosqualene cyclase (PdFRS) from Populus davidiana was characterized as a monofunctional friedelin synthase by its heterologous expression in yeast and overexpression in plants. Triterpenes are one of the largest classes of plant chemical compounds composed of three terpene units, which form the basic skeleton of all sterols and saponins. Friedelin (friedelan-3-one), a pentacyclic triterpene, occurs in many plant families and is particularly present in rich amounts in cork tissues from trees. The biosynthesis of friedelin occurs through the oxidosqualene cyclase (OSC) enzyme that generates friedelin from 2,3-oxidosqualene after the maximum rearrangement of a triterpene skeleton. Populus davidiana is called Korean aspen and grows in northern East Asia. From 57,322 unique sequences generated from the P. davidiana transcriptome database, one complete coding sequence (PdFRS) was obtained from a contig, which showed 74% identity to Betula platyphylla β-amyrin synthase and 73% identity with friedelin synthase from Maytenus ilicifolia. The open reading frame (ORF) region of the PdFRS sequence was 2280 bp long and composed a 759 amino acid protein with a predicted molecular mass of 87.81 kDa. qPCR analysis revealed that methyl jasmonate treatments strongly upregulated PdFRS gene expression and resulted in enhanced friedelin accumulation in leaves. Heterologous expression of the PdFRS gene in yeast resulted in the production of friedelin triterpene as a single product, which was confirmed by comparison with the mass fragmentation pattern from an authentic friedelin standard by GC/MS analysis. Transgenic P. davidiana overexpressing the PdFRS gene was constructed via Agrobacterium-mediated transformation. Overexpression of PdFRS in transgenic P. davidiana lines resulted in enhanced friedelin production.
Collapse
Affiliation(s)
- Jung Yeon Han
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Chang-Ho Ahn
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Prakash Babu Adhikari
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Subramanyam Kondeti
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
41
|
Su T, Han M, Min J, Zhou H, Zhang Q, Zhao J, Fang Y. Functional Characterization of Invertase Inhibitors PtC/VIF1 and 2 Revealed Their Involvements in the Defense Response to Fungal Pathogen in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2019; 10:1654. [PMID: 31969894 PMCID: PMC6960229 DOI: 10.3389/fpls.2019.01654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/22/2019] [Indexed: 05/05/2023]
Abstract
In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) were considered to be essential coordinators in carbohydrate partitioning, sink strength determination, and stress responses. An increasing body of evidence revealed that the tight regulation of CWI and VI substantially depends on the post-translational mechanisms, which were mediated by small proteinaceous inhibitors (C/VIFs, Inhibitor of β-Fructosidases). As yet, the extensive survey of the molecular basis and biochemical property of C/VIFs remains largely unknown in black cottonwood (Populus trichocarpa Torr. & A. Gray), a model species of woody plants. In the present work, we have initiated a systematic review of the genomic structures, phylogenies, cis-regulatory elements, and conserved motifs as well as the tissue-specific expression, resulting in the identification of 39 genes encoding C/VIF in poplar genome. We characterized two putative invertase inhibitors PtC/VIF1 and 2, showing predominant transcript levels in the roots and highly divergent responses to the selected stress cues including fusarium wilt, drought, ABA, wound, and senescence. In silico prediction of the signal peptide hinted us that they both likely had the apoplastic targets. Based on the experimental visualization via the transient and stable transformation assays, we confirmed that PtC/VIF1 and 2 indeed secreted to the extracellular compartments. Further validation of their recombinant enzymes revealed that they displayed the potent inhibitory affinities on the extracted CWI, supporting the patterns that act as the typical apoplastic invertase inhibitors. To our knowledge, it is the first report on molecular characterization of the functional C/VIF proteins in poplar. Our results indicate that PtC/VIF1 and 2 may exert essential roles in defense- and stress-related responses. Moreover, novel findings of the up- and downregulated C/VIF genes and functional enzyme activities enable us to further unravel the molecular mechanisms in the promotion of woody plant performance and adapted-biotic stress, underlying the homeostatic control of sugar in the apoplast.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- *Correspondence: Mei Han, ;
| | - Jie Min
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Huaiye Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Qi Zhang
- College of Forest, Nanjing Forestry University, Nanjing, China
| | - Jingyi Zhao
- College of Forest, Nanjing Forestry University, Nanjing, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| |
Collapse
|