1
|
di Domenico K, Lacchetti I, Cafiero G, Mancini A, Carere M, Mancini L. Reviewing the use of zebrafish for the detection of neurotoxicity induced by chemical mixtures through the analysis of behaviour. CHEMOSPHERE 2024; 359:142246. [PMID: 38710414 DOI: 10.1016/j.chemosphere.2024.142246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The knowledge and assessment of mixtures of chemical pollutants in the aquatic environment is a complex issue that is often challenging to address. In this review, we focused on the use of zebrafish (Danio rerio), a vertebrate widely used in biomedical research, as a model for detecting the effects of chemical mixtures with a focus on behaviour. Our aim was to summarize the current status of the ecotoxicological research in this sector. Specifically, we limited our research to the period between January 2012 and September 2023, including only those works aimed at detecting neurotoxicity through behavioural endpoints, utilizing zebrafish at one or more developmental stages, from egg to adult. Additionally, we gathered the findings for every group of chemicals involved and summarised data from all the works we included. At the end of the screening process 101 papers were considered eligible for inclusion. Results show a growing interest in zebrafish at all life stages for this kind of research in the last decade. Also, a wide variety of different assays, involving different senses, was used in the works we surveyed, with exposures ranging from acute to chronic. In conclusion, the results of this study show the versatility of zebrafish as a model for the detection of mixture toxicity although, for what concerns behavioural analysis, the lack of standardisation of methods and endpoints might still be limiting.
Collapse
Affiliation(s)
- Kevin di Domenico
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Ines Lacchetti
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Giulia Cafiero
- Environmental Risk Assessment, Wageningen Environmental Research, Wageningen, the Netherlands
| | - Aurora Mancini
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Mario Carere
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Laura Mancini
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
2
|
Jin B, Xie L, Zhan D, Zhou L, Feng Z, He J, Qin J, Zhao C, Luo L, Li L. Nrf2 dictates the neuronal survival and differentiation of embryonic zebrafish harboring compromised alanyl-tRNA synthetase. Development 2022; 149:276217. [DOI: 10.1242/dev.200342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
tRNA synthetase deficiency leads to unfolded protein responses in neuronal disorders; however, its function in embryonic neurogenesis remains unclear. This study identified an aars1cq71/cq71 mutant zebrafish allele that showed increased neuronal apoptosis and compromised neurogenesis. aars1 transcripts were highly expressed in primary neural progenitor cells, and their aberration resulted in protein overloading and activated Perk. nfe2l2b, a paralog of mammalian Nfe2l2, which encodes Nrf2, is a pivotal executor of Perk signaling that regulates neuronal phenotypes in aars1cq71/cq71 mutants. Interference of nfe2l2b in nfe2l2bΔ1/Δ1 mutants did not affect global larval development. However, aars1cq71/cq71;nfe2l2bΔ1/Δ1 mutant embryos exhibited increased neuronal cell survival and neurogenesis compared with their aars1cq71/cq71 siblings. nfe2l2b was harnessed by Perk at two levels. Its transcript was regulated by Chop, an implementer of Perk. It was also phosphorylated by Perk. Both pathways synergistically assured the nuclear functions of nfe2l2b to control cell survival by targeting p53. Our study extends the understanding of tRNA synthetase in neurogenesis and implies that Nrf2 is a cue to mitigate neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Binbin Jin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Liqin Xie
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Dan Zhan
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Luping Zhou
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Zhi Feng
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Jiangyong He
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Jie Qin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Congjian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Biomedical Engineering and informatics, Chongqing University of Posts and Telecommunications 2 , Chongqing 40065 , China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Li Li
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences 3 , Chongqing 400714 , China
| |
Collapse
|
3
|
Koning HK, Ahemaiti A, Boije H. A deep-dive into fictive locomotion - a strategy to probe cellular activity during speed transitions in fictively swimming zebrafish larvae. Biol Open 2022; 11:274799. [PMID: 35188534 PMCID: PMC8966775 DOI: 10.1242/bio.059167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Fictive locomotion is frequently used to study locomotor output in paralyzed animals. We have evaluated the character of swim episodes elicited by different strategies in zebrafish. Motor output was measured on both sides of a body segment using electrodes and a pipeline for synchronizing stimulation and recording, denoising data and peak-finding was developed. The optomotor response generated swims most equivalent to spontaneous activity, while electrical stimulation and NMDA application caused various artefacts. Our optimal settings, optomotor stimulation using 5-day-old larvae, were combined with calcium imaging and optogenetics to validate the setup's utility. Expression of GCaMP5G by the mnx1 promoter allowed correlation of calcium traces of dozens of motor neurons to the fictive locomotor output. Activation of motor neurons through channelrhodopsin produced aberrant locomotor episodes. This strategy can be used to investigate novel neuronal populations in a high-throughput manner to reveal their role in shaping motor output. This article has an associated First Person interview with the first author of the paper. Summary: This approach combines fictive locomotion, elicited through the optomotor response, and calcium imaging or optogenetics, to investigate the role of neuronal populations in shaping motor output.
Collapse
Affiliation(s)
- Harmen Kornelis Koning
- Department of Immunology, Genetics and Pathology, Uppsala University, S-751 08, Uppsala, Sweden
| | - Aikeremu Ahemaiti
- Department of Immunology, Genetics and Pathology, Uppsala University, S-751 08, Uppsala, Sweden
| | - Henrik Boije
- Department of Immunology, Genetics and Pathology, Uppsala University, S-751 08, Uppsala, Sweden
| |
Collapse
|
4
|
Benvenutti R, Gallas-Lopes M, Marcon M, Reschke CR, Herrmann AP, Piato A. Glutamate Nmda Receptor Antagonists With Relevance To Schizophrenia: A Review Of Zebrafish Behavioral Studies. Curr Neuropharmacol 2021; 20:494-509. [PMID: 33588731 PMCID: PMC9608229 DOI: 10.2174/1570159x19666210215121428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 11/22/2022] Open
Abstract
Schizophrenia pathophysiology is associated with hypofunction of glutamate NMDA receptors (NMDAR) in GABAergic interneurons and dopaminergic hyperactivation in subcortical brain areas. The administration of NMDAR antagonists is used as an animal model that replicates behavioral phenotypes relevant to the positive, negative, and cognitive symptoms of schizophrenia. Such models overwhelmingly rely on rodents, which may lead to species-specific biases and poor translatability. Zebrafish, however, is increasingly used as a model organism to study evolutionarily conserved aspects of behavior. We thus aimed to review and integrate the major findings reported in the zebrafish literature regarding the behavioral effects of NMDAR antagonists with relevance to schizophrenia. We identified 44 research articles that met our inclusion criteria from 590 studies retrieved from MEDLINE (PubMed) and Web of Science databases. Dizocilpine (MK-801) and ketamine were employed in 29 and 10 studies, respectively. The use of other NMDAR antagonists, such as phencyclidine (PCP), APV, memantine, and tiletamine, was described in 6 studies. Frequently reported findings are the social interaction and memory deficits induced by MK-801 and circling behavior induced by ketamine. However, mixed results were described for several locomotor and exploratory parameters in the novel tank and open tank tests. The present review integrates the most relevant results while discussing variation in experimental design and methodological procedures. We conclude that zebrafish is a suitable model organism to study drug-induced behavioral phenotypes relevant to schizophrenia. However, more studies are necessary to further characterize the major differences in behavior as compared to mammals.
Collapse
Affiliation(s)
- Radharani Benvenutti
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| | - Matheus Gallas-Lopes
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| | - Matheus Marcon
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| | - Cristina R Reschke
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin. Ireland
| | - Ana Paula Herrmann
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| | - Angelo Piato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS. Brazil
| |
Collapse
|
5
|
Anneser L, Alcantara IC, Gemmer A, Mirkes K, Ryu S, Schuman EM. The neuropeptide Pth2 dynamically senses others via mechanosensation. Nature 2020; 588:653-657. [PMID: 33268890 DOI: 10.1038/s41586-020-2988-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Species that depend on membership in social groups for survival exhibit changes in neuronal gene expression and behaviour when they face restricted social interactions or isolation1-3. Here we show that, across the lifespan of zebrafish (Danio rerio), social isolation specifically decreased the level of transcription of pth2, the gene that encodes the vertebrate-specific neuropeptide Pth2. However, 30 minutes of exposure to conspecifics was sufficient to initiate a significant rescue of pth2 transcript levels in previously isolated zebrafish. Transcription of pth2 exhibited bidirectional dynamics; following the acute isolation of socially reared fish, a rapid reduction in the levels of pth2 was observed. The expression of pth2 tracked not only the presence of other fish but also the density of the group. The sensory modality that controls the expression of pth2 was neither visual nor chemosensory in origin but instead was mechanical, induced by the movements of neighbouring fish. Chemical ablation of the mechanosensitive neuromast cells within the lateral line of fish prevented the rescue of pth2 levels that was induced by the social environment. In addition, mechanical perturbation of the water at frequencies similar to the movements of the zebrafish tail was sufficient to rescue the levels of pth2 in previously isolated fish. These data indicate a previously underappreciated role for the relatively unexplored neuropeptide Pth2 in both tracking and responding to the population density of the social environment of an animal.
Collapse
Affiliation(s)
- Lukas Anneser
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Ivan C Alcantara
- Max Planck Institute for Brain Research, Frankfurt, Germany.,Brown University, Providence, RI, USA
| | - Anja Gemmer
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | | | - Soojin Ryu
- Johannes Gutenberg University Medical Center, Mainz, Germany.,Living Systems Institute, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
6
|
Campos-Rodriguez C, Fredrick E, Ramirez-San Juan E, Olsson R. Enantiomeric N-substituted phthalimides with excitatory amino acids protect zebrafish larvae against PTZ-induced seizures. Eur J Pharmacol 2020; 888:173489. [DOI: 10.1016/j.ejphar.2020.173489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
|
7
|
Pedersen AF, Meyer DN, Petriv AMV, Soto AL, Shields JN, Akemann C, Baker BB, Tsou WL, Zhang Y, Baker TR. Nanoplastics impact the zebrafish (Danio rerio) transcriptome: Associated developmental and neurobehavioral consequences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115090. [PMID: 32693326 PMCID: PMC7492438 DOI: 10.1016/j.envpol.2020.115090] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 05/20/2023]
Abstract
Microplastics (MPs) are a ubiquitous pollutant detected not only in marine and freshwater bodies, but also in tap and bottled water worldwide. While MPs have been extensively studied, the toxicity of their smaller counterpart, nanoplastics (NPs), is not well documented. Despite likely large-scale human and animal exposure to NPs, the associated health risks remain unclear, especially during early developmental stages. To address this, we investigated the health impacts of exposures to both 50 and 200 nm polystyrene NPs in larval zebrafish. From 6 to 120 h post-fertilization (hpf), developing zebrafish were exposed to a range of fluorescent NPs (10-10,000 parts per billion). Dose-dependent increases in accumulation were identified in exposed larval fish, potentially coinciding with an altered behavioral response as evidenced through swimming hyperactivity. Notably, exposures did not impact mortality, hatching rate, or deformities; however, transcriptomic analysis suggests neurodegeneration and motor dysfunction at both high and low concentrations. Furthermore, results of this study suggest that NPs can accumulate in the tissues of larval zebrafish, alter their transcriptome, and affect behavior and physiology, potentially decreasing organismal fitness in contaminated ecosystems. The uniquely broad scale of this study during a critical window of development provides crucial multidimensional characterization of NP impacts on human and animal health.
Collapse
Affiliation(s)
- Adam F Pedersen
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Danielle N Meyer
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA; Department of Pharmacology - School of Medicine, Wayne State University, 540 E Canfield, Detroit, MI, 28201, USA
| | - Anna-Maria V Petriv
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Abraham L Soto
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Jeremiah N Shields
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA; Department of Pharmacology - School of Medicine, Wayne State University, 540 E Canfield, Detroit, MI, 28201, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Wei-Ling Tsou
- Department of Pharmacology - School of Medicine, Wayne State University, 540 E Canfield, Detroit, MI, 28201, USA
| | - Yongli Zhang
- College of Engineering, Wayne State University, 5050 Anthony Wayne Dr, Detroit, MI, 28201, USA
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA; Department of Pharmacology - School of Medicine, Wayne State University, 540 E Canfield, Detroit, MI, 28201, USA.
| |
Collapse
|
8
|
Sjöbom J, Tamtè M, Halje P, Brys I, Petersson P. Cortical and striatal circuits together encode transitions in natural behavior. SCIENCE ADVANCES 2020; 6:eabc1173. [PMID: 33036974 PMCID: PMC11209674 DOI: 10.1126/sciadv.abc1173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
In natural behavior, we fluidly change from one type of activity to another in a sequence of motor actions. Corticostriatal circuits are thought to have a particularly important role in the construction of action sequences, but neuronal coding of a sequential behavior consisting of different motor programs has not been investigated at the circuit level in corticostriatal networks, making the exact nature of this involvement elusive. Here, we show, by analyzing spontaneous self-grooming in rats, that neuronal modulation in motor cortex and dorsal striatum is strongly related to transitions between behaviors. Our data suggest that longer action sequences in rodent grooming behavior emerge from stepwise control of individual behavioral transitions, where future actions are encoded differently depending on current motor state. This state-dependent motor coding was found to differentiate between rare behavioral transitions and as opposed to more habitual sequencing of actions.
Collapse
Affiliation(s)
- Joel Sjöbom
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Martin Tamtè
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Pär Halje
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Ivani Brys
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden.
| | - Per Petersson
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden.
- Department of Integrative Medical Biology, Umeå University, Sweden
| |
Collapse
|
9
|
Cenci MA, Björklund A. Animal models for preclinical Parkinson's research: An update and critical appraisal. PROGRESS IN BRAIN RESEARCH 2020; 252:27-59. [PMID: 32247366 DOI: 10.1016/bs.pbr.2020.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal models of Parkinson's disease (PD) are essential to investigate pathogenic pathways at the whole-organism level. Moreover, they are necessary for a preclinical investigation of potential new therapies. Different pathological features of PD can be induced in a variety of invertebrate and vertebrate species using toxins, drugs, or genetic perturbations. Each model has a particular utility and range of applicability. Invertebrate PD models are particularly useful for high throughput-screening applications, whereas mammalian models are needed to explore complex motor and non-motor features of the human disease. Here, we provide a comprehensive review and critical appraisal of the most commonly used mammalian models of PD, which are produced in rats and mice. A substantial loss of nigrostriatal dopamine neurons is necessary for the animal to exhibit a hypokinetic motor phenotype responsive to dopaminergic agents, thus resembling clinical PD. This level of dopaminergic neurodegeneration can be induced using specific neurotoxins, environmental toxicants, or proteasome inhibitors. Alternatively, nigrostriatal dopamine degeneration can be induced via overexpression of α-synuclein using viral vectors or transgenic techniques. In addition, protein aggregation pathology can be triggered by inoculating preformed fibrils of α-synuclein in the substantia nigra or the striatum. Thanks to the conceptual and technical progress made in the past few years a vast repertoire of well-characterized animal models are currently available to address different aspects of PD in the laboratory.
Collapse
Affiliation(s)
- M Angela Cenci
- Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden.
| | - Anders Björklund
- Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Park M, Lee Y, Khan A, Aleta P, Cho Y, Park H, Park YH, Kim S. Metabolite tracking to elucidate the effects of environmental pollutants. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:112-124. [PMID: 31128390 DOI: 10.1016/j.jhazmat.2019.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/30/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to determine whether behavioral tests and metabolic profiling of organisms can be promising alternatives for assessing the health of aquatic systems. Water samples from four potential pollution sources in South Korea were collected for toxicity evaluation. First, conventional acute toxicity test in Daphnia magna and behavioral test in zebrafish was conducted to assess water quality. Second, metabolomic analysis was performed on zebrafish exposed to water samples and on environmental fish collected from the same source. Acute toxicity test in D. magna showed that none of the water samples exerted significant adverse effects. However, activity of zebrafish larvae exposed to samples from the zinc smelter (ZS) and industrial complex (IND) sites decreased compared to those exposed to samples from the reference site (RS). Metabolomic analysis using the Manhattan plot and Partial Least Square (PLS)/Orthogonal PLS Discriminant Analysis (OPLS-DA) showed differences in metabolic profiles between RS and ZS, and between IND and abandoned mine site (M). Interestingly, applying the same metabolomic analysis to environmental fish revealed patterns similar to those for zebrafish, despite the uncontrollable variables involved in environmental sampling. This study shows that metabolomics is a promising tool in assessing the health of aquatic environments.
Collapse
Affiliation(s)
- Minseung Park
- Bio Monitoring Laboratory, Program in Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Yeseung Lee
- Metabolomics Laboratory, College of Pharmacy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Adnan Khan
- Metabolomics Laboratory, College of Pharmacy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Prince Aleta
- Bio Monitoring Laboratory, Program in Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Yunchul Cho
- Department of Environmental Engineering, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 300-716, Republic of Korea
| | | | - Youngja Hwang Park
- Metabolomics Laboratory, College of Pharmacy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea.
| | - Sungpyo Kim
- Bio Monitoring Laboratory, Program in Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea.
| |
Collapse
|
11
|
Abnormal repetitive behaviors in zebrafish and their relevance to human brain disorders. Behav Brain Res 2019; 367:101-110. [PMID: 30926483 DOI: 10.1016/j.bbr.2019.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/01/2023]
Abstract
Abnormal repetitive behaviors (ARBs) are a prominent symptom of numerous human brain disorders and are commonly seen in rodent models as well. While rodent studies of ARBs continue to dominate the field, mounting evidence suggests that zebrafish (Danio rerio) also display ARB-like phenotypes and may therefore be a novel model organism for ARB research. In addition to clear practical research advantages as a model species, zebrafish share high genetic and physiological homology to humans and rodents, including multiple ARB-related genes and robust behaviors relevant to ARB. Here, we discuss a wide spectrum of stereotypic repetitive behaviors in zebrafish, data on their genetic and pharmacological modulation, and the overall translational relevance of fish ARBs to modeling human brain disorders. Overall, the zebrafish is rapidly emerging as a new promising model to study ARBs and their underlying mechanisms.
Collapse
|
12
|
Basnet RM, Zizioli D, Taweedet S, Finazzi D, Memo M. Zebrafish Larvae as a Behavioral Model in Neuropharmacology. Biomedicines 2019; 7:biomedicines7010023. [PMID: 30917585 PMCID: PMC6465999 DOI: 10.3390/biomedicines7010023] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
Zebrafish larvae show a clear and distinct pattern of swimming in response to light and dark conditions, following the development of a swim bladder at 4 days post fertilization. This swimming behavior is increasingly employed in the screening of neuroactive drugs. The recent emergence of high-throughput techniques for the automatic tracking of zebrafish larvae has further allowed an objective and efficient way of finding subtle behavioral changes that could go unnoticed during manual observations. This review highlights the use of zebrafish larvae as a high-throughput behavioral model for the screening of neuroactive compounds. We describe, in brief, the behavior repertoire of zebrafish larvae. Then, we focus on the utilization of light-dark locomotion test in identifying and screening of neuroactive compounds.
Collapse
Affiliation(s)
- Ram Manohar Basnet
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Somrat Taweedet
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Dario Finazzi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
- Clinical Chemistry Laboratory, ASST-Spedali Civili di Brescia, 25123 Brescia, Italy.
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
13
|
Cao F, Souders CL, Li P, Pang S, Qiu L, Martyniuk CJ. Developmental toxicity of the triazole fungicide cyproconazole in embryo-larval stages of zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4913-4923. [PMID: 30569354 DOI: 10.1007/s11356-018-3957-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Cyproconazole is a triazole fungicide used to protect a diverse range of fruits, vegetables, and grain crops. As such, it has the potential to enter aquatic environments and affect non-target organisms. The objective of this study was to assess the acute toxicity of the triazole fungicide cyproconazole to zebrafish embryos by assessing mortality, developmental defects, morphological abnormality, oxidative respiration, and locomotor activity following a 96-h exposure. Zebrafish embryos at 6-h post-fertilization (hpf) were exposed to either a solvent control (0.1% DMSO, v/v), or one dose of 10, 25, 50, 100, 250, and 500 μM cyproconazole for 96 h. Data indicated that cyproconazole exhibited low toxicity to zebrafish embryos, with a 96-h LC50 value of 90.6 μM (~ 26.4 mg/L). Zebrafish embryos/larvae displayed a significant decrease in spontaneous movement, hatching rate, and heartbeats/20 s with 50, 100, and 250 μM cyproconazole exposure. Malformations (i.e., pericardial edema, yolk sac edema, tail deformation, and spine deformation) were also detected in zebrafish exposed to ≥ 50 μM cyproconazole, with significant increases in cumulative deformity rate at 48, 72, and 96 hpf. In addition, a 20-30% decrease in basal and oligomycin-induced ATP respiration was observed after 24-h exposure to 500 μM cyproconazole in embryos. To determine if cyproconazole affected locomotor activity, a dark photokinesis assay was conducted in larvae following 7-day exposure to 1, 10, and 25 μM cyproconazole in two independent trials. Activity in the dark period was decreased for zebrafish exposed to 25 μM cyproconazole in the first trial, and hypoactivity was also observed in zebrafish exposed to 1 μM cyproconazole in a second trial, suggesting that cyproconazole can affect locomotor activity. These data improve understanding of the toxicity of cyproconazole in developing zebrafish and contribute to environmental risk assessments for the triazole fungicides on aquatic organisms. We report that, based on the overall endpoints assessed, cyproconazole exhibits low risk for developing fish embryos, as many effects were observed above environmentally-relevant levels.
Collapse
Affiliation(s)
- Fangjie Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Pengfei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Lihong Qiu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
14
|
Leuthold D, Klüver N, Altenburger R, Busch W. Can Environmentally Relevant Neuroactive Chemicals Specifically Be Detected with the Locomotor Response Test in Zebrafish Embryos? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:482-493. [PMID: 30516976 DOI: 10.1021/acs.est.8b04327] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemicals considered as neuroactive (such as certain pesticides, pharmaceuticals, and industrial chemicals) are among the largest groups of bioactive substances recently detected in European rivers. However, the determination of nervous-system-specific effects has been limited using in vitro tests or conventional end points including lethality. Thus, neurobehavioral tests using in vivo models (e.g., zebrafish embryo) have been proposed as complementary approaches. To investigate the specificity and sensitivity of a light-dark transition locomotor response (LMR) test in 4 to 5 days post fertilization zebrafish with respect to different modes of action (MoAs), we analyzed a set of 18 environmentally relevant compounds with various anticipated MoAs. We found that exposure-induced behavioral alterations were reproducible and dependent on concentration and time. Comparative and quantitative analyses of the obtained locomotor patterns revealed that behavioral effects were not restricted to compounds primarily known to target the nervous system. A clear distinction of MoAs based on locomotor patterns was not possible for most compounds. Furthermore, chemicals with an anticipated same MoA did not necessarily provoke similar behavioral phenotypes. Finally, we determined an increased sensitivity (≥10-fold) compared to observed mortality in the LMR assay for five of eight neuroactive chemicals as opposed to non-neuroactive compounds.
Collapse
|
15
|
Biological impacts of organophosphates chlorpyrifos and diazinon on development, mitochondrial bioenergetics, and locomotor activity in zebrafish (Danio rerio). Neurotoxicol Teratol 2018; 70:18-27. [DOI: 10.1016/j.ntt.2018.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
|
16
|
Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci 2018. [DOI: 10.1016/j.lfs.2018.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|