1
|
Yang YF, Cheng SY, Wang YL, Yue ZP, Yu YX, Chen YZ, Wang WK, Xu ZR, Qi ZQ, Liu Y. Accumulated inflammation and fibrosis participate in atrazine induced ovary toxicity in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124672. [PMID: 39103034 DOI: 10.1016/j.envpol.2024.124672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Atrazine is a widely used herbicide in agricultural production. Previous studies have shown that atrazine affects hormone secretion and oocyte maturation in female reproduction. However, the specific mechanism by which atrazine affects ovarian function remains unclear. In this study, using a mouse gastric lavage model, we report that four weeks of atrazine exposure affects body growth, interferes with the estrous cycle, and increases the number of atretic follicles in mice. The expression levels of follicle development related factors StAR, BMP15, and AMH decreased. Metabolomic analysis revealed that atrazine activates an inflammatory response in ovarian tissue. Further studies confirmed that the expression levels of TNF-α, IL-6, and NF-κB increased in the ovaries of mice exposed to atrazine. Additionally, α-smooth muscle actin (α-SMA) accumulated in ovarian tissue, and transforming growth factor-β (TGF-β) signaling was activated, indicating the occurrence of tissue fibrosis. Moreover, mice exposed to atrazine produced fewer oocytes and exhibited reduced embryonic development. Furthermore, mice exposed to atrazine exhibited altered gut microbiota abundance and a disrupted colon barrier. Collectively, these findings suggest that atrazine exposure induces ovarian inflammation and fibrosis, disrupts ovarian homeostasis, and impairs follicle maturation, ultimately reducing oocyte quality.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Si-Yao Cheng
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ya-Long Wang
- Center for Reproductive Medicine, Maternity and Child Health Care Hospital in Xiangtan, Xiangtan, Hunan, 411100, China
| | - Zhao-Ping Yue
- Center for Reproductive Medicine, Maternity and Child Health Care Hospital in Xiangtan, Xiangtan, Hunan, 411100, China
| | - Yu-Xi Yu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yan-Zhu Chen
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wen-Ke Wang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
2
|
Aguzie IO, Oriaku CU, Agbo FI, Ukwueze VO, Asogwa CN, Ikele CB, Aguzie IJ, Ossai NI, Eyo JE, Nwani CD. Single and mixture exposure to atrazine and ciprofloxacin on Clarias gariepinus antioxidant defense status, hepatic condition and immune response. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104523. [PMID: 39089401 DOI: 10.1016/j.etap.2024.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Atrazine (ATRA) and ciprofloxacin (CPRO) are widely detected, persistent and co-existing aquatic pollutants. This study investigated effects of 14-day single and joint ATRA and CPRO exposure on juvenile Clarias gariepinus. Standard bioassay methods were used to determine responses of oxidative stress, hepatic condition, and immunological biomarkers on days 7 and 14. Seven groups were used: Control, CPROEC, CPROSubl, ATRAEC, ATRASubl, CPROEC+ATRAEC, and CPROSubl+ATRASubl. The test substances caused decreased activity of superoxide dismutase, catalase, and glutathione peroxidase. Lipid peroxidation was elevated, especially in CPRO-ATRA mixtures. Serum aminotransferases (ALT, and AST), and alkaline phosphatase activity increased significantly. Total protein, albumin, total immunoglobulin, and respiratory burst decreased significantly. Therefore, single and joint exposure to CPRO and ATRA poses adverse consequences on aquatic life.
Collapse
Affiliation(s)
- Ifeanyi O Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria.
| | | | - Faith I Agbo
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Vera O Ukwueze
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Chinweike N Asogwa
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Chika B Ikele
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Ijeoma J Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Nelson I Ossai
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Joseph E Eyo
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Christopher D Nwani
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| |
Collapse
|
3
|
Zhao H, Qian H, Cui J, Ge Z, Shi J, Huo Y, Zhang Y, Ye L. Endocrine toxicity of atrazine and its underlying mechanisms. Toxicology 2024; 505:153846. [PMID: 38815618 DOI: 10.1016/j.tox.2024.153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Atrazine (ATR) is one of the most widely utilized herbicides globally and is prevalent in the environment due to its extensive use and long half-life. It can infiltrate the human body through drinking water, ingestion, and dermal contact, and has been recognized as an environmental endocrine disruptor. This study aims to comprehensively outline the detrimental impacts of ATR on the endocrine system. Previous research indicates that ATR is harmful to various bodily systems, including the reproductive system, nervous system, adrenal glands, and thyroi d gland. The toxic effects of ATR on the endocrine system and its underlying molecular mechanisms are summarized as follows: influencing the expression of kisspeptin in the HPG axis, consequently affecting steroid synthesis; disrupting DNA synthesis and meiosis, as well as modifying DNA methylation levels, leading to reproductive and developmental toxicity; impacting dopamine by altering Nurr1, VMAT2, and DAT expression, consequently affecting dopamine synthesis and transporter expression, and influencing other neurotransmitters, resulting in neurotoxicity; and changing adipose tissue synthesis and metabolism by reducing basal metabolism, impairing cellular oxidative phosphorylation, and inducing insulin resistance. Additionally, a compilation of natural products used to mitigate the toxic effects of ATR has been provided, encompassing melatonin, curcumin, quercetin, lycopene, flavonoids, vitamin C, vitamin E, and other natural remedies. It is important to note that existing research predominantly relies on in vitro and ex vivo experiments, with limited population-based empirical evidence available.
Collapse
Affiliation(s)
- Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhili Ge
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jingjing Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yingchao Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Abarikwu SO, Ezim OE, Ikeji CN, Farombi EO. Atrazine: cytotoxicity, oxidative stress, apoptosis, testicular effects and chemopreventive Interventions. FRONTIERS IN TOXICOLOGY 2023; 5:1246708. [PMID: 37876981 PMCID: PMC10590919 DOI: 10.3389/ftox.2023.1246708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Atrazine (ATZ) is an environmental pollutant that interferes with several aspects of mammalian cellular processes including germ cell development, immunological, reproductive and neurological functions. At the level of human exposure, ATZ reduces sperm count and contribute to infertility in men. ATZ also induces morphological changes similar to apoptosis and initiates mitochondria-dependent cell death in several experimental models. When in vitro experimental models are exposed to ATZ, they are faced with increased levels of reactive oxygen species (ROS), cytotoxicity and decreased growth rate at dosages that may vary with cell types. This results in differing cytotoxic responses that are influenced by the nature of target cells, assay types and concentrations of ATZ. However, oxidative stress could play salient role in the observed cellular and genetic toxicity and apoptosis-like effects which could be abrogated by antioxidant vitamins and flavonoids, including vitamin E, quercetin, kolaviron, myricetin and bioactive extractives with antioxidant effects. This review focuses on the differential responses of cell types to ATZ toxicity, testicular effects of ATZ in both in vitro and in vivo models and chemopreventive strategies, so as to highlight the current state of the art on the toxicological outcomes of ATZ exposure in several experimental model systems.
Collapse
Affiliation(s)
- Sunny O. Abarikwu
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Ogechukwu E. Ezim
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Cynthia N. Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Yao X, Liu W, Xie Y, Xi M, Xiao L. Fertility loss: negative effects of environmental toxicants on oogenesis. Front Physiol 2023; 14:1219045. [PMID: 37601637 PMCID: PMC10436557 DOI: 10.3389/fphys.2023.1219045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
There has been a global decline in fertility rates, with ovulatory disorders emerging as the leading cause, contributing to a global lifetime infertility prevalence of 17.5%. Formation of the primordial follicle pool during early and further development of oocytes after puberty is crucial in determining female fertility and reproductive quality. However, the increasing exposure to environmental toxins (through occupational exposure and ubiquitous chemicals) in daily life is a growing concern; these toxins have been identified as significant risk factors for oogenesis in women. In light of this concern, this review aims to enhance our understanding of female reproductive system diseases and their implications. Specifically, we summarized and categorized the environmental toxins that can affect oogenesis. Here, we provide an overview of oogenesis, highlighting specific stages that may be susceptible to the influence of environmental toxins. Furthermore, we discuss the genetic and molecular mechanisms by which various environmental toxins, including metals, cigarette smoke, and agricultural and industrial toxins, affect female oogenesis. Raising awareness about the potential risks associated with toxin exposure is crucial. However, further research is needed to fully comprehend the mechanisms underlying these effects, including the identification of biomarkers to assess exposure levels and predict reproductive outcomes. By providing a comprehensive overview, this review aims to contribute to a better understanding of the impact of environmental toxins on female oogenesis and guide future research in this field.
Collapse
Affiliation(s)
- Xiaoxi Yao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Weijing Liu
- Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yidong Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Mingrong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Das S, Sakr H, Al-Huseini I, Jetti R, Al-Qasmi S, Sugavasi R, Sirasanagandla SR. Atrazine Toxicity: The Possible Role of Natural Products for Effective Treatment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2278. [PMID: 37375903 DOI: 10.3390/plants12122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
There are various herbicides which were used in the agriculture industry. Atrazine (ATZ) is a chlorinated triazine herbicide that consists of a ring structure, known as the triazine ring, along with a chlorine atom and five nitrogen atoms. ATZ is a water-soluble herbicide, which makes it capable of easily infiltrating into majority of the aquatic ecosystems. There are reports of toxic effects of ATZ on different systems of the body but, unfortunately, majority of these scientific reports were documented in animals. The herbicide was reported to enter the body through various routes. The toxicity of the herbicide can cause deleterious effects on the respiratory, reproductive, endocrine, central nervous system, gastrointestinal, and urinary systems of the human body. Alarmingly, few studies in industrial workers showed ATZ exposure leading to cancer. We embarked on the present review to discuss the mechanism of action of ATZ toxicity for which there is no specific antidote or drug. Evidence-based published literature on the effective use of natural products such as lycopene, curcumin, Panax ginseng, Spirulina platensis, Fucoidans, vitamin C, soyabeans, quercetin, L-carnitine, Telfairia occidentalis, vitamin E, Garcinia kola, melatonin, selenium, Isatis indigotica, polyphenols, Acacia nilotica, and Zingiber officinale were discussed in detail. In the absence of any particular allopathic drug, the present review may open the doors for future drug design involving the natural products and their active compounds.
Collapse
Affiliation(s)
- Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Sara Al-Qasmi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raju Sugavasi
- Department of Anatomy, Fathima Institute of Medical Sciences, Kadapa 516003, India
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
7
|
Abdallah S, Jampy A, Moison D, Wieckowski M, Messiaen S, Martini E, Campalans A, Radicella JP, Rouiller-Fabre V, Livera G, Guerquin MJ. Foetal exposure to the bisphenols BADGE and BPAF impairs meiosis through DNA oxidation in mouse ovaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120791. [PMID: 36464114 DOI: 10.1016/j.envpol.2022.120791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Many endocrine disruptors have been proven to impair the meiotic process which is required for the production of healthy gametes. Bisphenol A is emblematic of such disruptors, as it impairs meiotic prophase I and causes oocyte aneuploidy following in utero exposure. However, the mechanisms underlying these deleterious effects remain poorly understood. Furthermore, the increasing use of BPA alternatives raises concerns for public health. Here, we investigated the effects of foetal exposure to two BPA alternatives, bisphenol A Diglycidyl Ether (BADGE) and bisphenol AF (BPAF), on oogenesis in mice. These compounds delay meiosis initiation, increase the number of MLH1 foci per cell and induce oocyte aneuploidy. We further demonstrate that these defects are accompanied by changes in gene expression in foetal premeiotic germ cells and aberrant mRNA splicing of meiotic genes. We observed an increase in DNA oxidation after exposure to BPA alternatives. Specific induction of oxidative DNA damage during foetal germ cell differentiation causes similar defects during oogenesis, as observed in 8-oxoguanine DNA Glycosylase (OGG1)-deficient mice or after in utero exposure to potassium bromate (KBrO3), an inducer of oxidative DNA damage. The supplementation of BPA alternatives with N-acetylcysteine (NAC) counteracts the effects of bisphenols on meiosis. Together, our results propose oxidative DNA lesion as an event that negatively impacts female meiosis with major consequences on oocyte quality. This could be a common mechanism of action for numerous environmental pro-oxidant pollutants, and its discovery, could lead to reconsider the adverse effect of bisphenol mixtures that are simultaneously present in our environment.
Collapse
Affiliation(s)
- Sonia Abdallah
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Amandine Jampy
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Delphine Moison
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Margaux Wieckowski
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Sébastien Messiaen
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Emmanuelle Martini
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Anna Campalans
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France
| | - Juan Pablo Radicella
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France
| | - Virginie Rouiller-Fabre
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Gabriel Livera
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Marie-Justine Guerquin
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France.
| |
Collapse
|
8
|
Carriquiriborde P, Fernandino JI, López CG, Benito EDS, Gutierrez-Villagomez JM, Cristos D, Trudeau VL, Somoza GM. Atrazine alters early sexual development of the South American silverside, Odontesthes bonariensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106366. [PMID: 36459853 DOI: 10.1016/j.aquatox.2022.106366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a frequent contaminant in freshwater ecosystems within agricultural regions. The capacity of this herbicide to interfere with the vertebrate endocrine system is broadly recognized, but the mechanisms and responses usually differ among species. In this study, ATZ effects on hypothalamus-pituitary-gonadal (HPG) axis key genes expression and early gonadal development were evaluated in Odontesthes bonariensis larvae waterborne exposed during the gonadal differentiation period. Fish were treated to 0, 0.7, 7.0, and 70 µg ATZ/L at 25 °C from the 2nd to 6th week after hatching (wah), and a group was kept in clean water until the 12th wah. Parallelly, a group was submitted to 0.05 µg/L of ethinylestradiol (EE2) as a positive estrogenic control. From each treatment, eight larvae were sampled at 6 wah for gene expression analysis and twelve larvae at 12 wah for phenotypic sex histological determination. The expression of gnrh1, lhb, fshb, and cyp19a1b was assessed in the head, and the ones of amha, 11βhsd2, and cyp19a1a in the trunk. Fish growth was significantly higher in fish exposed to 7 and 70 µg ATZ/L in the 6 wah, but the effect vanished at the 12 wah. The expression of lhb was upregulated in both sex larvae exposed from 7 µg ATZ/L. However, a dimorphic effect was induced on cyp19a1a expression at 70 µg ATZ/L, up or downregulating mRNA transcription in males and females, respectively. Delayed ovarian development and increased number of testicular germ cells were histologically observed from 7 to 70 µg ATZ/L, respectively, and a sex inversion (genotypic male to phenotypic female) was found in one larva at 70 µg ATZ/L. The lhb expression was also upregulated by EE2, but the cyp19a1a expression was not affected, and a complete male-to-female reversal was induced. Further, EE2 upregulated gnrh1 in females and cyp19a1b in both sexes, but it did not alter any assessed gene in the trunk. In conclusion, ATZ disrupted HPG axis physiology and normal gonadal development in O. bonariensis larvae at environmentally relevant concentrations. The responses to ATZ only partially overlapped and were less active when compared to the model estrogenic compound EE2.
Collapse
Affiliation(s)
- Pedro Carriquiriborde
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Carina G López
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Eduardo de San Benito
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | | | - Diego Cristos
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación de Agroindustria (CIA-INTA), Castelar, Buenos Aires Argentina
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, K1S 6N5, Canada
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina.
| |
Collapse
|
9
|
Schmidt S. Aged before Their Time: Atrazine and Diminished Egg Quality in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:124001. [PMID: 36520536 PMCID: PMC9754090 DOI: 10.1289/ehp12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
|
10
|
Yun Y, Lee S, So C, Manhas R, Kim C, Wibowo T, Hori M, Hunter N. Oocyte Development and Quality in Young and Old Mice following Exposure to Atrazine. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:117007. [PMID: 36367780 PMCID: PMC9651182 DOI: 10.1289/ehp11343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Egg development has unique features that render it vulnerable to environmental perturbation. The herbicide atrazine is an endocrine disruptor shown to have detrimental effects on reproduction across several vertebrate species. OBJECTIVES This study was designed to determine whether exposure to low levels of atrazine impairs meiosis in female mammals, using a mouse model; in particular, the study's researchers sought to determine whether and how the fidelity of oocyte chromosome segregation may be affected and whether aging-related aneuploidy is exacerbated. METHODS Female C57BL/6J mice were exposed to two levels of atrazine in drinking water: The higher level equaled aqueous saturation, and the lower level corresponded to detected environmental contamination. To model developmental exposure, atrazine was ingested by pregnant females at 0.5 d post coitum and continued until pups were weaned at 21 d postpartum. For adult exposure, 2-month-old females ingested atrazine for 3 months. Following exposure, various indicators of oocyte development and quality were determined, including: a) chromosome synapsis and crossing over in fetal oocytes using immunofluorescence staining of prophase-I chromosome preparations; b) sizes of follicle pools in sectioned ovaries; c) efficiencies of in vitro fertilization and early embryogenesis; d) chromosome alignment and segregation in cultured oocytes; e) chromosomal errors in metaphase-I and -II (MI and MII) preparations; and f) sister-chromatid cohesion via immunofluorescence intensity of cohesin subunit REC8 on MI-chromosome preparations, and measurement of interkinetochore distances in MII preparations. RESULTS Mice exposed to atrazine during development showed slightly higher levels of defects in chromosome synapsis, but sizes of initial follicle pools were indistinguishable from controls. However, although more eggs were ovulated, oocyte quality was lower. At the chromosome level, frequencies of spindle misalignment and numerical and structural abnormalities were greater at both meiotic divisions. In vitro fertilization was less efficient, and there were more apoptotic cells in blastocysts derived from eggs of atrazine-exposed females. Similar levels of chromosomal defects were seen in oocytes following both developmental and adult exposure regimens, suggesting quiescent primordial follicles may be a consequential target of atrazine. An important finding was that defects were observed long after exposure was terminated. Moreover, chromosomally abnormal eggs were very frequent in older mice, implying that atrazine exposure during development exacerbates effects of maternal aging on oocyte quality. Indeed, analogous to the effects of maternal age, weaker cohesion between sister chromatids was observed in oocytes from atrazine-exposed animals. CONCLUSION Low-level atrazine exposure caused persistent changes to the female mammalian germline in mice, with potential consequences for reproductive lifespan and congenital disease. https://doi.org/10.1289/EHP11343.
Collapse
Affiliation(s)
- Yan Yun
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA
| | - Sunkyung Lee
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Christina So
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Rushali Manhas
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Carol Kim
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Tabitha Wibowo
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Michael Hori
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Neil Hunter
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| |
Collapse
|
11
|
Ouattara BS, Puvvula J, Abadi A, Munde S, Kolok AS, Bartelt‐Hunt S, Bell JE, Wichman CS, Rogan E. Geospatial Distribution of Age-Adjusted Incidence of the Three Major Types of Pediatric Cancers and Waterborne Agrichemicals in Nebraska. GEOHEALTH 2022; 6:e2021GH000419. [PMID: 35372745 PMCID: PMC8859510 DOI: 10.1029/2021gh000419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 01/12/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
This study was conducted to examine, at the county level, the relationship between pediatric cancer incidence rate and atrazine and nitrate mean concentrations in surface and groundwater. A negative binomial regression analysis was performed to investigate the association between central nervous system (CNS) tumors, leukemia, lymphoma, and atrazine and nitrate mean concentrations in groundwater. The age-adjusted brain and other CNS cancer incidence was higher than the national average in 63% of the Nebraska counties. After controlling for the counties socio-economic status and nitrate concentrations in groundwater, counties with groundwater atrazine concentrations above 0.0002 µg/L had a higher incidence rate for pediatric cancers (brain and other CNS, leukemia, and lymphoma) compared to counties with groundwater atrazine concentrations in the reference group (0.0000-0.0002 µg/L). Additionally, compared to counties with groundwater nitrate concentrations between 0 and 2 mg/L (reference group), counties with groundwater nitrate concentrations between 2.1 and 5 mg/L (group 2) had a higher incidence rate for pediatric brain and other CNS cancers (IRR = 8.39; 95% CI: 8.24-8.54), leukemia (IRR = 7.35; 95% CI: 7.22-7.48), and lymphoma (IRR = 5.59; CI: 5.48-5.69) after adjusting for atrazine groundwater concentration and the county socio-economic status. While these findings do not indicate a causal relationship, because other contaminants or cancer risk factors have not been accounted for, they suggest that atrazine and nitrate may pose a risk relative to the genesis of pediatric brain and CNS cancers, leukemia, and lymphoma.
Collapse
Affiliation(s)
- Balkissa S. Ouattara
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Jagadeesh Puvvula
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Azar Abadi
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Siddhi Munde
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Alan S. Kolok
- Idaho Water Resources Research InstituteUniversity of IdahoMoscowIDUSA
| | - Shannon Bartelt‐Hunt
- Department of Civil and Environmental EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnOmahaNEUSA
| | - Jesse E. Bell
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Christopher S. Wichman
- Department of BiostatisticsCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Eleanor Rogan
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
12
|
Belmonte-Tebar A, San Martin Perez E, Nam Cha S, Soler Valls AJ, Singh ND, de la Casa-Esperon E. Diet effects on mouse meiotic recombination: a warning for recombination studies. Genetics 2022; 220:iyab190. [PMID: 34791205 PMCID: PMC8733447 DOI: 10.1093/genetics/iyab190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Meiotic recombination is a critical process for sexually reproducing organisms. This exchange of genetic information between homologous chromosomes during meiosis is important not only because it generates genetic diversity, but also because it is often required for proper chromosome segregation. Consequently, the frequency and distribution of crossovers are tightly controlled to ensure fertility and offspring viability. However, in many systems, it has been shown that environmental factors can alter the frequency of crossover events. Two studies in flies and yeast point to nutritional status affecting the frequency of crossing over. However, this question remains unexplored in mammals. Here, we test how crossover frequency varies in response to diet in Mus musculus males. We use immunohistochemistry to estimate crossover frequency in multiple genotypes under two diet treatments. Our results indicate that while crossover frequency was unaffected by diet in some strains, other strains were sensitive even to small composition changes between two common laboratory chows. Therefore, recombination is both resistant and sensitive to certain dietary changes in a strain-dependent manner and, hence, this response is genetically determined. Our study is the first to report a nutrition effect on genome-wide levels of recombination. Moreover, our work highlights the importance of controlling diet in recombination studies and may point to diet as a potential source of variability among studies, which is relevant for reproducibility.
Collapse
Affiliation(s)
- Angela Belmonte-Tebar
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Estefania San Martin Perez
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Syonghyun Nam Cha
- Pathology Department and Biobank of Albacete, University Hospital Complex of Albacete, Albacete 02006, Spain
| | | | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Elena de la Casa-Esperon
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Pharmacy, University of Castilla-La Mancha, Albacete 02071, Spain
| |
Collapse
|
13
|
Gao JG, Jiang Y, Zheng JT, Nie LW. Pubertal exposure to acrylamide disrupts spermatogenesis by interfering with meiotic progression in male mice. Toxicol Lett 2022; 358:80-87. [DOI: 10.1016/j.toxlet.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
14
|
Toxic effects of methomyl on mouse oocytes and its possible mechanisms. ZYGOTE 2021; 30:358-364. [PMID: 34676817 DOI: 10.1017/s0967199421000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Methomyl is a broad-spectrum carbamate insecticide that has a variety of toxic effects on humans and animals. However, there have been no studies on the toxicity of methomyl in female mammalian oocytes. This study investigated the toxic effects of environmental oestrogen methomyl exposure on mouse oocyte maturation and its possible mechanisms. Our results indicated that methomyl exposure inhibited polar body extrusion in mouse oocytes. Compared with that in the control group, in the methomyl treatment group, superoxide anion free radicals in oocytes were significantly increased. In addition, the mitochondrial membrane potential of metaphase II stage oocytes in the methomyl treatment group was significantly decreased, resulting in reduced mouse oocyte quality. After 8.5 h of exposure to methomyl, metaphase I stage mouse oocytes displayed an abnormal spindle morphology. mRNA expression of the pro-apoptotic genes Bax and Caspase-3 in methomyl-treated oocytes increased, which confirmed the apoptosis. Collectively, our results indicated that mouse oocyte maturation is defective after methomyl treatment at least through disruption of spindle morphology, mitochondrial function and by induction of oxidative stress.
Collapse
|
15
|
Exposure to Atrazine through gestation and lactation period led to impaired sexual maturation and subfertility in F1 male rats with congenital deformities in F2 progeny. Food Chem Toxicol 2021; 157:112586. [PMID: 34600026 DOI: 10.1016/j.fct.2021.112586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022]
Abstract
Several scientific reports suggest perturbed reproductive and developmental defects associated with environmental exposure to Atrazine (ATR). ATR has been associated with altered endocrine and reproductive functioning in-vivo exposed during the critical window of development. Thus, the present study investigates the effect of ATR exposure on F1-F2 male progeny exposed through gestation and lactation. F0 dams administered with ATR at doses 2, 10, 70, and 100 mg/kg b. wt/day from gestation day 6 to postnatal day 21. The F1 male rats were monitored for sexual maturation and subjected to fertility assessment on PND75. Delayed testicular descent was observed in 10, 70, and 100 mg/kg b. wt/day ATR dose with significantly lower serum testosterone, sperm count, and motility with testicular defects in F1 male. Expression of Androgen receptor (AR), Estrogen receptors (ER α and ER β), StAR, Aromatase, and INSL-3 were upregulated at all doses indicating estrogenic/anti-androgenic activity of ATR. Fertility assessment revealed subfertility in F1 males with high (%) pre- and post-implantation loss at 10, 70, and 100 mg/kg b. wt/day dose as compared to control. Further, F2 fetuses exhibited congenital disabilities viz. decreased weight, crown-rump length, and anogenital distance with several other morphological deformities. To conclude, ATR exerted estrogenic and/or anti-androgenic activity with fetotoxic effects through the male germline.
Collapse
|
16
|
Sadeghnia H, Shahba S, Ebrahimzadeh-Bideskan A, Mohammadi S, Malvandi AM, Mohammadipour A. Atrazine neural and reproductive toxicity. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1966637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hamidreza Sadeghnia
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Shabnam Mohammadi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Zhu S, Zhang T, Wang Y, Zhou X, Wang S, Wang Z. Meta-analysis and experimental validation identified atrazine as a toxicant in the male reproductive system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37482-37497. [PMID: 33715114 DOI: 10.1007/s11356-021-13396-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Atrazine (ATZ), as a widely used triazine herbicide, is an environmental endocrine disruptor (EDC) that can cause many health problems. Therefore, we conducted this study based on the evidence of rats and mice to figure out the characteristics of ATZ damage to the reproductive system and further evaluate its health effects on the human. PRISMA's guidelines were followed according to the principles recommended by the Cochrane Handbook for Systematic Review. Health assessment was performed using the OHAT approach. Our new data were obtained from randomized controlled trials in rats designed in accordance with toxicological guidelines. Exposure to ATZ was significantly associated with decreased testosterone production (SMD = - 0.90, 95% CI - 1.27 to - 0.53), and reduced absolute weights of testis (SMD = - 0.41, 95% CI - 0.61 to - 0.22) and other reproductive organs. The damaging effect of sperm quality was also observed clearly, which included reduction of sperm count both in epididymis (SMD = - 2.32, 95% CI - 2.83 to - 1.81) and testis (SMD = - 1.01, 95% CI - 1.37 to - 0.64), decrease in sperm motility (SMD = - 8.86, 95% CI - 10.88 to - 6.83), and increase in sperm abnormality. Subgroup analysis revealed consistency across different species, life stage, and dosage. In addition, we found that ATZ exposure at a daily dose of 120 mg/kg during adolescence could cause decrease in weight gain and histological damage to the testis. The gene expression levels of Nrf2/HO-1 and Bcl-2/caspase signaling pathways in testis tissues were changed significantly. The results of this SR indicated that exposure to ATZ was associated with impairment of male reproductive system in rodents regardless of species, exposure life stage, and dosage. It is believed that ATZ exposure may have similar effects on male reproductive system of human beings. Pathways related to oxidative stress and apoptosis may be the mechanism leading to testicular damage in rats treated with ATZ.
Collapse
Affiliation(s)
- Shenhao Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing, 210000, China
| | - Tongtong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing, 210000, China
| | - Yuhao Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing, 210000, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing, 210000, China
| | - Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing, 210000, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing, 210000, China.
| |
Collapse
|
18
|
Femina Carolin C, Kumar PS, Joshiba GJ, Madhesh P, Ramamurthy R. Sustainable strategy for the enhancement of hazardous aromatic amine degradation using lipopeptide biosurfactant isolated from Brevibacterium casei. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124943. [PMID: 33385730 DOI: 10.1016/j.jhazmat.2020.124943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
The application of biosurfactants for the degradation of various toxic compounds has received much attention among researchers worldwide. A stimulated degrading method was carried out in this research to determine the efficiency of surfactant on the biodegradation of aromatic amine 4-Aminobiphenyl (4-ABP). The biosurfactant mediated process is an alternative strategy for chemical surfactants because chemical surfactants are toxic and nonbiodegradable. The bacterium was isolated through the enrichment process and identified using 16S rRNA sequencing method. The molecular characterization showed that the isolate belongs to Brevibacterium casei-4AB. Biosurfactant produced in this study was examined through screening activities like oil spreading, emulsification activity and surface tension measurement. Instrumental characterization like Fourier Transform Infrared Spectrophotometer (FT-IR) results suggested that there is a presence of NH group, aliphatic hydrocarbons, ester groups, amide and alkenes and further Gas chromatography- Mass Spectrometry (GC-MS) results confirmed the presence of fatty acids such as Hexadecanoic and Octadecadienoic acid which showed that the produced surfactant is lipopeptide. Protein content and lipid content in the biosurfactant was found to be 18 ± 0.8% and 30 ± 0.1%. The degraded metabolites of 4-ABP were analyzed through the GC-MS process which revealed the presence of metabolites such as 5-Amino-2-methoxy phenol.
Collapse
Affiliation(s)
- C Femina Carolin
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India.
| | - G Janet Joshiba
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India
| | - Pavithra Madhesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India
| | - Racchana Ramamurthy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603110, India; Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands
| |
Collapse
|
19
|
Sanger TJ. Integrative developmental biology in the age of anthropogenic change. Evol Dev 2021; 23:320-332. [PMID: 33848387 DOI: 10.1111/ede.12377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Humans are changing and challenging nature in many ways. Conservation Biology seeks to limit human impacts on nature and preserve biological diversity. Traditionally, Developmental Biology and Conservation Biology have had nonoverlapping objectives, operating in distinct spheres of biological science. However, this chasm can and should be filled to help combat the emerging challenges of the 21st century. The means by which to accomplish this goal were already established within the conceptual framework of evo- and eco-devo and can be further expanded to address the ways that anthropogenic disturbance affect embryonic development. Herein, I describe ways that these approaches can be used to advance the study of reptilian embryos. More specifically, I explore the ways that a developmental perspective can advance ongoing studies of embryonic physiology in the context of global warming and chemical pollution, both of which are known stressors of reptilian embryos. I emphasize ways that these developmental perspectives can inform conservation biologists trying to develop management practices that will address the complexity of challenges facing reptilian embryos.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Legoff L, D'Cruz SC, Bouchekhchoukha K, Monfort C, Jaulin C, Multigner L, Smagulova F. In utero exposure to chlordecone affects histone modifications and activates LINE-1 in cord blood. Life Sci Alliance 2021; 4:4/6/e202000944. [PMID: 33837044 PMCID: PMC8091598 DOI: 10.26508/lsa.202000944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/06/2023] Open
Abstract
In utero exposure to chlordecone affects chromatin and leads to activation of retroelements. This study shows the changes induced by chlordecone in human umbilical cord blood and blood-derived cell line. Environmental factors can induce detrimental consequences into adulthood life. In this study, we examined the epigenetic effects induced by in utero chlordecone (CD) exposure on human male cord blood as well as in blood-derived Ke-37 cell line. Genome-wide analysis of histone H3K4me3 distribution revealed that genes related to chromosome segregation, chromatin organization, and cell cycle have altered occupancy in their promoters. The affected regions were enriched in ESR1, SP family, and IKZF1 binding motifs. We also observed a global reduction in H3K9me3, markedly in repeated sequences of the genome. Decrease in H3K9me3 after CD exposure correlates with decreased methylation in LINE-1 promoters and telomere length extension. These observations on human cord blood were assessed in the Ke-37 human cell line. H3K4me3 and the expression of genes related to immune response, DNA repair, and chromatin organization, which were affected in human cord blood were also altered in CD-exposed Ke-37 cells. Our data suggest that developmental exposure to CD leads to profound changes in histone modification patterns and affects the processes controlled by them in human cord blood.
Collapse
Affiliation(s)
- Louis Legoff
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Shereen Cynthia D'Cruz
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Katia Bouchekhchoukha
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Christine Monfort
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Christian Jaulin
- Institut de Génétique et Développement de Rennes, Epigenetics and Cancer Group, UMR 6290 CNRS, Université Rennes 1, Rennes Cedex, France
| | - Luc Multigner
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Fatima Smagulova
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| |
Collapse
|
21
|
Yun Y, Ito M, Sandhu S, Hunter N. Cytological Monitoring of Meiotic Crossovers in Spermatocytes and Oocytes. Methods Mol Biol 2021; 2153:267-286. [PMID: 32840786 DOI: 10.1007/978-1-0716-0644-5_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crossing-over between homologous chromosomes is essential for accurate chromosome segregation at anaphase-I of meiosis. Defective crossing-over is associated with infertility, pregnancy miscarriage, and congenital disease. This chapter presents optimized protocols for the analysis of meiotic crossovers at the cytological level in spermatocytes and oocytes from mouse. The first approach employs immunocytology to detect MLH1, a DNA mismatch-repair protein that specifically marks crossover sites in the pachytene stage of meiotic prophase-I. These immunocytological methods have general utility for the analysis of other recombination steps, such as initiation and DNA strand exchange. The second approach visualizes chiasmata, the points of physical exchange between homologous chromosomes that are present during the diakinesis and metaphase-I stages. Both approaches are readily adaptable to the analysis of crossing over in other vertebrate species.
Collapse
Affiliation(s)
- Yan Yun
- Howard Hughes Medical Institute, Department of Microbiology and Molecular Genetics, Davis, University of California, Davis, CA, USA
| | - Masaru Ito
- Howard Hughes Medical Institute, Department of Microbiology and Molecular Genetics, Davis, University of California, Davis, CA, USA
| | - Sumit Sandhu
- Howard Hughes Medical Institute, Department of Microbiology and Molecular Genetics, Davis, University of California, Davis, CA, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology and Molecular Genetics, Davis, University of California, Davis, CA, USA.
| |
Collapse
|
22
|
Putative adverse outcome pathways for female reproductive disorders to improve testing and regulation of chemicals. Arch Toxicol 2020; 94:3359-3379. [PMID: 32638039 PMCID: PMC7502037 DOI: 10.1007/s00204-020-02834-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Modern living challenges female reproductive health. We are witnessing a rise in reproductive disorders and drop in birth rates across the world. The reasons for these manifestations are multifaceted and most likely include continuous exposure to an ever-increasing number of chemicals. The cause–effect relationships between chemical exposure and female reproductive disorders, however, have proven problematic to determine. This has made it difficult to assess the risks chemical exposures pose to a woman’s reproductive development and function. To address this challenge, this review uses the adverse outcome pathway (AOP) concept to summarize current knowledge about how chemical exposure can affect female reproductive health. We have a special focus on effects on the ovaries, since they are essential for lifelong reproductive health in women, being the source of both oocytes and several reproductive hormones, including sex steroids. The AOP framework is widely accepted as a new tool for toxicological safety assessment that enables better use of mechanistic knowledge for regulatory purposes. AOPs equip assessors and regulators with a pragmatic network of linear cause–effect relationships, enabling the use of a wider range of test method data in chemical risk assessment and regulation. Based on current knowledge, we propose ten putative AOPs relevant for female reproductive disorders that can be further elaborated and potentially be included in the AOPwiki. This effort is an important step towards better safeguarding the reproductive health of all girls and women.
Collapse
|
23
|
Cleary JA, Tillitt DE, Vom Saal FS, Nicks DK, Claunch RA, Bhandari RK. Atrazine induced transgenerational reproductive effects in medaka (Oryzias latipes). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:639-650. [PMID: 31108297 DOI: 10.1016/j.envpol.2019.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Atrazine is presently one of the most abundantly used herbicides in the United States, and a common contaminant of natural water bodies and drinking waters in high-use areas. Dysregulation of reproductive processes has been demonstrated in atrazine exposed fish, including alteration of key endocrine pathways on hypothalamic-pituitary-gonadal (HPG) axis. However, the potential for atrazine-induced transgenerational inheritance of reproductive effects in fish has not been investigated. The present study examined the effects of early developmental atrazine exposure on transgenerational reproductive dysregulation in Japanese medaka (Oryzias latipes). F0 medaka were exposed to atrazine (ATZ, 5 or 50 μg/L), 17α-ethinylestradiol (EE2, 0.002 or 0.05 μg/L), or solvent control during the first twelve days of development with no subsequent exposure over three generations. This exposure overlapped with the critical developmental window for embryonic germ cell development, gonadogenesis, and sex determination. Exposed males and females of the F0 generation were bred to produce an F1 generation, and this was continued until the F2 generation. Sperm count and motility were not affected in F0 males; however, both parameters were significantly reduced in the males from F2 Low EE2 (0.002 μg/L), Low ATZ (5 μg/L), and High ATZ (50 μg/L) lineages. Fecundity was unaffected by atrazine or EE2 in F0 through F2 generations; however, fertilization rate was decreased in low atrazine and EE2 exposure lineages in the F2 generation. There were significant transgenerational differences in expression of the genes involved in steroidogenesis and DNA methylation. These results suggest that although early life exposure to atrazine did not cause significant phenotypes in the directly exposed F0 generation, subsequent generations of fish were at greater risk of reproductive dysfunction.
Collapse
Affiliation(s)
- Jacob A Cleary
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Donald E Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Frederick S Vom Saal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Diane K Nicks
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Rachel A Claunch
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
24
|
Henderson AJ, Finger BJ, Scott AW, Harvey AJ, Green MP. Acute in vitro exposure to environmentally relevant atrazine levels perturbs bovine preimplantation embryo metabolism and cell number. Reprod Toxicol 2019; 87:87-96. [PMID: 31129258 DOI: 10.1016/j.reprotox.2019.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 11/20/2022]
Abstract
Atrazine is a widely used herbicide known to negatively alter endocrine systems and perturb metabolism. Preimplantation exposure to pesticides may adversely affect long-term health, however few studies examine the effect of environmental levels and whether specific periods of development are particularly sensitive. In this study, the effect of acute, preimplantation atrazine exposure (days 3.5-7.5 post-fertilization) at levels detected and deemed safe in drinking water (0.02 and 20 μg/L respectively) on in vitro bovine embryo development, quality, metabolism, and gene expression was investigated. Atrazine exposure had no effect on development or quality, but significantly reduced blastocyst total cell numbers, attributable to a decrease in trophectoderm cells. Notably, atrazine (20 μg/L) markedly increased carbohydrate metabolism. Therefore, short-term exposure to environmentally relevant atrazine concentrations perturbs bovine preimplantation embryo metabolism and cell number, highlighting a potential mechanism by which atrazine can mediate embryo viability and health.
Collapse
Affiliation(s)
- Ashleigh J Henderson
- School of BioSciences, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Bethany J Finger
- School of BioSciences, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Alexander W Scott
- School of BioSciences, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Alexandra J Harvey
- School of BioSciences, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Mark P Green
- School of BioSciences, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
25
|
Comparative analysis of atrazine molecularly imprinted polymers using acetonitrile and toluene as solvents. J Appl Polym Sci 2018. [DOI: 10.1002/app.47190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Fuchs LK, Jenkins G, Phillips DW. Anthropogenic Impacts on Meiosis in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1429. [PMID: 30323826 PMCID: PMC6172301 DOI: 10.3389/fpls.2018.01429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 05/18/2023]
Abstract
As the human population grows and continues to encroach on the natural environment, organisms that form part of such ecosystems are becoming increasingly exposed to exogenous anthropogenic factors capable of changing their meiotic landscape. Meiotic recombination generates much of the genetic variation in sexually reproducing species and is known to be a highly conserved pathway. Environmental stresses, such as variations in temperature, have long been known to change the pattern of recombination in both model and crop plants, but there are other factors capable of causing genome damage, infertility and meiotic abnormalities. Our agrarian expansion and our increasing usage of agrochemicals unintentionally affect plants via groundwater contamination or spray drift; our industrial developments release heavy metals into the environment; pathogens are spread by climate change and a globally mobile population; imperfect waste treatment plants are unable to remove chemical and pharmaceutical residues from sewage leading to the release of xenobiotics, all with potentially deleterious meiotic effects. In this review, we discuss the major classes of exogenous anthropogenic factors known to affect meiosis in plants, namely environmental stresses, agricultural inputs, heavy metals, pharmaceuticals and pathogens. The possible evolutionary fate of plants thrust into their new anthropogenically imposed environments are also considered.
Collapse
Affiliation(s)
| | | | - Dylan W. Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|