1
|
Nath P, Alfarsi LH, El-Ansari R, Masisi BK, Erkan B, Fakroun A, Ellis IO, Rakha EA, Green AR. The amino acid transporter SLC7A11 expression in breast cancer. Cancer Biol Ther 2024; 25:2291855. [PMID: 38073087 PMCID: PMC10761065 DOI: 10.1080/15384047.2023.2291855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer (BC), characterized by its diverse molecular profiles and clinical outcomes, presents a significant challenge in the development of effective therapeutic strategies. Metabolic reprogramming, a defining characteristic of cancer, has emerged as a promising target for novel therapies. SLC7A11, an amino acid transporter that facilitates cysteine uptake in exchange for glutamate, plays a crucial role in sustaining the altered metabolism of cancer cells. This study delves into the comprehensive analysis of SLC7A11 at the genomic, transcriptomic, and protein levels in extensive BC datasets to elucidate its potential role in different BC subtypes. SLC7A11 gene copy number and mRNA expression were evaluated using the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort (n = 1,980) and Breast Cancer Gene Expression Miner (n = 4,712). SLC7A11 protein was assessed using immunohistochemistry in a large BC cohort (n = 1,981). Additionally, The Cancer Genome Atlas (TCGA) dataset was used to explore SLC7A11 DNA methylation patterns using MethSurv (n = 782) and association of SLC7A11 mRNA expression with immune infiltrates using TIMER (n = 1,100). High SLC7A11 mRNA and SLC7A11 protein expression were significantly associated with high tumor grade (p ≤ .02), indicating a potential role in cancer progression. Interestingly, SLC7A11 copy number gain was observed in HER2+ tumors (p = .01), suggesting a subtype-specific association. In contrast, SLC7A11 mRNA expression was higher in the basal-like/triple-negative (TN; p < .001) and luminal B tumors (p = .02), highlighting its differential expression across BC subtypes. Notably, high SLC7A11 protein expression was predominantly observed in Estrogen Receptor (ER)-negative and Triple Negative (TN) BC, suggesting a role in these aggressive subtypes. Further analysis revealed that SLC7A11 was positively correlated with other amino acid transporters and enzymes associated with glutamine metabolism, implying a coordinated role in metabolic regulation. Additionally, SLC7A11 gene expression was positively associated with neutrophil and macrophage infiltration, suggesting a potential link between SLC7A11 and tumor immunity. Our findings suggest that SLC7A11 plays a significant role in BC metabolism, demonstrating differential expression across subtypes and associations with poor patient outcomes. Further functional studies are warranted to elucidate the precise mechanisms by which SLC7A11 contributes to BC progression and to explore its potential as a therapeutic target.
Collapse
Affiliation(s)
- Preyanka Nath
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Lutfi H. Alfarsi
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Rokaya El-Ansari
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Brendah K. Masisi
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Busra Erkan
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Ali Fakroun
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Ian O. Ellis
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Emad A. Rakha
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Andrew R. Green
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| |
Collapse
|
2
|
YIN YUQIN, WU YU, HUANG HONGLIANG, DUAN YINGYING, YUAN ZHONGWEN, CAO LIHUI, YING JINJIN, ZHOU YONGHENG, FENG SENLING. The superiority of PMFs on reversing drug resistance of colon cancer and the effect on aerobic glycolysis-ROS-autophagy signaling axis. Oncol Res 2024; 32:1891-1902. [PMID: 39574478 PMCID: PMC11576955 DOI: 10.32604/or.2024.048778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 11/24/2024] Open
Abstract
Background Polymethoxylated flavones (PMFs) are compounds present in citrus peels and other Rutaceae plants, which exhibit diverse biological activities, including robust antitumor and antioxidant effects. However, the mechanism of PMFs in reversing drug resistance to colon cancer remains unknown. In the present study, we aimed to investigate the potential connection between the aerobic glycolysis-ROS-autophagy signaling axis and the reversal of PTX resistance in colon cancer by PMFs. Methods MTT Cell viability assay and colony formation assay were used to investigate the effect of PMFs combined with PTX in reversing HCT8/T cell resistance ex vivo; the mRNA and protein levels of the target were detected by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), quantitative real-time fluorescence polymerase chain reaction (qRT-PCR) and Western blot protein immunoblotting (WB); An HCT8/T cell xenograft model was established to investigate the MDR reversal activity of PMFs in vivo; The extracellular acidification rate (ECAR) and the oxygen consumption rate (OCR) were detected to assess the cellular oxygen consumption rate and glycolytic process. Results HCT8/T cells demonstrated significant resistance to PTX, up-regulating the expression levels of ABCB1 mRNA, P-gp, LC3-I, and LC3-II protein, and increasing intracellular reactive oxygen species (ROS) content. PMFs mainly contain two active ingredients, nobiletin, and tangeretin, which were able to reverse drug resistance in HCT8/T cells in a concentration-dependent manner. PMFs exhibited high tolerance in the HCT8/T nude mouse model while increasing the sensitivity of PTX-resistant cells and suppressing tumor growth significantly. PMFs combined with PTX reduced extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) in HCT8/T cells. Additionally, PMFs reduced intracellular ROS content, down-regulated the expression levels of autophagy-related proteins LC3-I, LC3-II, Beclin1, and ATG7, and significantly reduced the number of autophagosomes in HCT8/T cells. Conclusions The present study demonstrated that PMFs could potentially reverse PTX resistance in colon cancer by regulating the aerobic glycolysis-ROS-autophagy signaling axis, which indicated that PMFs would be potential potentiators for future chemotherapeutic agents in colon cancer.
Collapse
Affiliation(s)
- YUQIN YIN
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - YU WU
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - HONGLIANG HUANG
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - YINGYING DUAN
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - ZHONGWEN YUAN
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - LIHUI CAO
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - JINJIN YING
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - YONGHENG ZHOU
- Department of Pharmacy, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511300, China
| | - SENLING FENG
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
3
|
Li J, Wang X, Min S, Xia J, Li J. Raman spectroscopy combined with convolutional neural network for the sub-types classification of breast cancer and critical feature visualization. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108361. [PMID: 39116820 DOI: 10.1016/j.cmpb.2024.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
PROBLEMS Raman spectroscopy has emerged as an effective technique that can be used for noninvasive breast cancer analysis. However, the current Raman prediction models fail to cover all the molecular sub-types of breast cancer, and lack the visualization of the model. AIMS Using Raman spectroscopy combined with convolutional neural network (CNN) to construct a prediction model for the existing known molecular sub-types of breast cancer, and selected critical peaks through visualization strategies, so as to achieve the purpose of mining specific biomarker information. METHODS Optimizing network parameters with the help of sparrow search algorithm (SSA) for the multiple parameters in the CNN to improve the prediction performance of the model. To avoid the contingency of the results, multiple sets of data were generated through Monte Carlo sampling and used to train the model, thereby improving the credibility of the results. Based on the accurate prediction of the model, the spectral regions that contributed to the classification were visualized using Gradient-weighted Class Activation Mapping (Grad-CAM), achieving the goal of visualizing characteristic peaks. RESULTS Compared with other algorithms, optimized CNN could obtain the highest accuracy and lowest standard error. And there was no significant difference between using full spectra and fingerprint regions (within 2 %), indicating that the fingerprint region provided the most contribution in classifying sub-types. Based on the classification results from the fingerprint region, the model performances about various sub-types were as follows: CNN (95.34 %±2.18 %)>SVM(94.90 %±1.88 %)>PLS-DA(94.52 %±2.22 %)> KNN (80.00 %±5.27 %). The critical features visualized by Grad-CAM could match well with IHC information, allowing for a more distinct differentiation of sub-types in their spatial positions. CONCLUSION Raman spectroscopy combined with CNN could achieve accurate and rapid identification of breast cancer molecular sub-types. Proposed visualization strategy could be proved from biochemistry information and spatial location, demonstrated that the strategy might be used for the mining of biomarkers in future.
Collapse
Affiliation(s)
- Juan Li
- School of Pharmaceutical Sciences and Institute of Materia Medica & Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Xiaoting Wang
- School of Pharmaceutical Sciences and Institute of Materia Medica & Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Shungeng Min
- College of science, China agriculture university, Beijing, 100094, China
| | - Jingjing Xia
- School of Pharmaceutical Sciences and Institute of Materia Medica & Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Jinyao Li
- School of Pharmaceutical Sciences and Institute of Materia Medica & Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
4
|
Cai W, Wu S, Lin Z, Ming X, Yang X, Yang M, Chen X. Hypoxia-induced BAP1 enhances erastin-induced ferroptosis in nasopharyngeal carcinoma by stabilizing H2A. Cancer Cell Int 2024; 24:307. [PMID: 39245739 PMCID: PMC11382407 DOI: 10.1186/s12935-024-03494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Hypoxia plays an important role in the chemotherapy resistance of nasopharyngeal carcinoma (NPC). Ferroptosis is a newly discovered form of programmed cell death and ferroptosis inducers showed promising therapeutic effects in some cancers. However, the sensibility of NPC cells to ferroptosis under the hypoxic microenvironment is still unclear, and this study was designed to clarify it. METHODS NPC cells, treated with erastin, were placed in a normoxia or hypoxic environment (5% CO2, 94% N2 and 1% O2) at 37℃for 24 h. After exposed to hypoxia, ferroptosis-associated phenotypes were detected by CCK8, MDA, GSH, lipid ROS and Fe. The gene expression profiles of head and neck squamous cell carcinoma (HNSCC) tissues were downloaded from the TCGA database to screen construction molecule. BAP1 was screened out and its functions on erastin-induced ferroptosis in NPC cells were detected by knockdown of BAP1. Luciferase reporter assay and co-IP experiment were performed to explore the molecular mechanism. Finally, the tumour xenograft model was applied to further verify these results in vivo. RESULTS CCK8 assay showed that IC50 of NPC cells treated with erastin under hypoxia was significantly lower than that under normoxia. Hypoxia significantly increased the levels of lipid ROS and MDA, and decreased GSH content induced by erastin. A prognostic risk model for HNSCC with six ferroptosis-related genes was constructed and validated based on TCGA database. BAP1 was significantly up-regulated under hypoxia, and luciferase reporter assay showed that HIF-1α was an upstream transcription regulator of BAP1. Knockdown of BAP1 in NPC cells significantly increased the IC50 value of erastin under hypoxia and significantly ameliorated erastin-induced ferroptosis under hypoxia in aspect of lipid ROS, MDA content and GSH. Co-IP results showed that BAP1 mediated deubiquitination of H2A and decreased SLC7A11 expression. Finally, knockdown of BAP1 reduced sensitivity to erastin-induced ferroptosis in a tumour xenograft model. And the level of H2A was significantly decreased in xenograft tumors of BAP1 knockdown cells. CONCLUSION Hypoxia-induced BAP1 enhances erastin-induced ferroptosis in NPC by stabilizing H2A. Ferroptosis inducers targeting BAP1 may be an effective way to improve chemotherapy resistance in NPC, especially in the hypoxic microenvironment.
Collapse
Affiliation(s)
- Weisong Cai
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sa Wu
- Department of Gynaecology II, Maternal and Child Health Hospital of Hubei Province, TongjiMedical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoping Ming
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiuping Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Minlan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Nayak J, P SV, Sahoo SK, Kumar M, Vashistha VK, Kumar R. Computational insight of antioxidant and doxorubicin combination for effective cancer therapy. J Biomol Struct Dyn 2024; 42:7874-7882. [PMID: 37545163 DOI: 10.1080/07391102.2023.2242507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Doxorubicin (DOX) is the most effective antineoplastic agent, destroys cancer cells by interrupting cellular function. However, the serious side effects on the heart limits its utility. To curb these unwanted side effects, nutritionist recommend antioxidants use along with DOX while chemotherapy. But it was not supported by various oncologists as it can alter the toxicity of DOX towards cancer cells. Therefore, here we explored the in silico pharmacokinetics and combination effect of DOX and antioxidants on topoisomerases-II (Top-II) and cyclophilin D (Cyp-D) therapeutic targets involved in cancer proliferation and post-myocardial infarction, respectively. The molecular docking study was conducted on target proteins and DOX including most prescribed antioxidants (melatonin, N-acetylcysteine (NAC), glutathione (GSH), β-carotene and vitamin C). GSH showed effective binding potential for Top-II and Cyp-D active sites, but other considered antioxidants possess low binding affinity. The highest docked conformations were subjected to molecular dynamics (MD) simulations to understand conformer stability of DOX and GSH with Cyp-D and Top-II for 100 ns. The results revealed that ligands pose at Top-II active sites where DOX showed strong binding affinity to DNA binding pocket and GSH to a buried site. The computational data summarised and proposed the GSH and DOX combination as antagonist effects on Top-II. Conversely, the binding compactness of GSH improved due to surface fit at the active pocket of Cyp-D and completely blocking DOX binding affinity, suppress adverse reactions of post-myocardial infarction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyotsnamayee Nayak
- Department of Chemistry, S.V. National Institute of Technology, Gujarat, India
| | - Seshu Vardhan P
- Department of Chemistry, S.V. National Institute of Technology, Gujarat, India
| | - Suban K Sahoo
- Department of Chemistry, S.V. National Institute of Technology, Gujarat, India
| | - Manish Kumar
- Department of Chemistry and Chemical Science, School of Physical and Material Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | | | - Rajender Kumar
- Department of Chemistry and Chemical Science, School of Physical and Material Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| |
Collapse
|
6
|
Szemerédi N, Schelz Z, Horvath DA, Rácz B, Szatmári AG, Muddather HF, Bózsity N, Zupkó I, Spengler G. Impact of V9302, a Competitive Antagonist of Transmembrane Glutamine Flux on Reversal of Resistance in Breast Cancer Cell Lines. Pharmaceutics 2024; 16:877. [PMID: 39065573 PMCID: PMC11280048 DOI: 10.3390/pharmaceutics16070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapy is a known treatment modality that improves the long-term survival of breast cancer patients. However, due to the resistance to numerous anticancer drugs, alternative chemotherapeutic strategies are required. Regarding antimetabolic drugs, several compounds have proven anticancer properties, such as statins. The present study aimed to investigate the in vitro effects of V9302, a competitive antagonist of glutamine flux, on different subtypes of breast cancers (estrogen, progesterone, and HER2 receptor-positive or negative, and Pgp-negative and Pgp-overexpressing). The interactions of V9302 with standard chemotherapeutic drugs (doxorubicin and cisplatin) were also determined by MTT staining on breast cancer cell lines. Furthermore, the influence of V9302 on the cell cycle of MCF-7 and its Pgp-overexpressing counterpart KCR was monitored by flow cytometry. It was shown that V9302 exerted synergistic interactions with doxorubicin in all breast cancer cell lines. In cell cycle analysis, the KCR cell line was more sensitive to V9302. After 48 h, cell proliferation was completely blocked, and elevated G1, suppressed S, and decreased G2/M could be detected. Inhibition of glutamate transport can be assumed to block resistance related to Pgp.
Collapse
Affiliation(s)
- Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (B.R.)
| | - Zsuzsanna Schelz
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.); (N.B.)
| | - Dária Antónia Horvath
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (B.R.)
| | - Bálint Rácz
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (B.R.)
| | - András G. Szatmári
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (B.R.)
| | - Hiba F. Muddather
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.); (N.B.)
| | - Noémi Bózsity
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.); (N.B.)
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.); (N.B.)
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (B.R.)
| |
Collapse
|
7
|
Chen B, Zhou M, Guo L, Sun X, Huang H, Wu K, Chen W, Wu D. A new perspective: deciphering the aberrance and clinical implication of disulfidptosis signatures in clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:10033-10062. [PMID: 38862242 PMCID: PMC11210246 DOI: 10.18632/aging.205916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/03/2024] [Indexed: 06/13/2024]
Abstract
Recent research has discovered disulfidptosis as a form of programmed cell death characterized by disulfide stress. However, its significance in clear cell renal cell carcinoma (ccRCC) remains unclear. To investigate this, data from The Cancer Genome Atlas were collected and used to identify ccRCC subgroups. Unsupervised clustering was employed to determine ccRCC heterogeneity. The mutation landscape and immune microenvironment of the subgroups were analyzed. The Disulfidptosis-Related Score was calculated using the LASSO-penalized Cox regression algorithm. The E-MATB-1980 cohort was used to validate the signature. The role of SLC7A11 in ccRCC metastasis was explored using western blotting and Transwell assays. Disulfidptosis-related genes are commonly downregulated in cancers and are linked to hypermethylation and copy number variation. The study revealed that ccRCC is divided into two sub-clusters: the disulfidptosis-desert sub-cluster, which is associated with a poor prognosis, a higher mutation frequency, and an immunosuppressive microenvironment. A 14-gene prognostic model was developed using differentially expressed genes and was validated in the E-MATB-1980 cohort. The low-risk group demonstrated longer overall and disease-free survival and responded better to targeted immunotherapy. Results from in vitro experiments identified SLC7A11 as a key participant in ccRCC metastasis.
Collapse
Affiliation(s)
- Bohong Chen
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Mingguo Zhou
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Li Guo
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Xinyue Sun
- Department of neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Haoxiang Huang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Dapeng Wu
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| |
Collapse
|
8
|
Hushmandi K, Einollahi B, Saadat SH, Lee EHC, Farani MR, Okina E, Huh YS, Nabavi N, Salimimoghadam S, Kumar AP. Amino acid transporters within the solute carrier superfamily: Underappreciated proteins and novel opportunities for cancer therapy. Mol Metab 2024; 84:101952. [PMID: 38705513 PMCID: PMC11112377 DOI: 10.1016/j.molmet.2024.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Solute carrier (SLC) transporters, a diverse family of membrane proteins, are instrumental in orchestrating the intake and efflux of nutrients including amino acids, vitamins, ions, nutrients, etc, across cell membranes. This dynamic process is critical for sustaining the metabolic demands of cancer cells, promoting their survival, proliferation, and adaptation to the tumor microenvironment (TME). Amino acids are fundamental building blocks of cells and play essential roles in protein synthesis, nutrient sensing, and oncogenic signaling pathways. As key transporters of amino acids, SLCs have emerged as crucial players in maintaining cellular amino acid homeostasis, and their dysregulation is implicated in various cancer types. Thus, understanding the intricate connections between amino acids, SLCs, and cancer is pivotal for unraveling novel therapeutic targets and strategies. SCOPE OF REVIEW In this review, we delve into the significant impact of amino acid carriers of the SLCs family on the growth and progression of cancer and explore the current state of knowledge in this field, shedding light on the molecular mechanisms that underlie these relationships and highlighting potential avenues for future research and clinical interventions. MAJOR CONCLUSIONS Amino acids transportation by SLCs plays a critical role in tumor progression. However, some studies revealed the tumor suppressor function of SLCs. Although several studies evaluated the function of SLC7A11 and SLC1A5, the role of some SLC proteins in cancer is not studied well. To exert their functions, SLCs mediate metabolic rewiring, regulate the maintenance of redox balance, affect main oncogenic pathways, regulate amino acids bioavailability within the TME, and alter the sensitivity of cancer cells to therapeutics. However, different therapeutic methods that prevent the function of SLCs were able to inhibit tumor progression. This comprehensive review provides insights into a rapidly evolving area of cancer biology by focusing on amino acids and their transporters within the SLC superfamily.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Li J, Li PT, Wu W, Ding BN, Wen YG, Cai HL, Liu SX, Hong T, Zhang JF, Zhou JD, Qian LY, Du J. POU2F2-mediated upregulation of lncRNA PTPRG-AS1 inhibits ferroptosis in breast cancer via miR-376c-3p/SLC7A11 axis. Epigenomics 2024; 16:215-231. [PMID: 38318853 DOI: 10.2217/epi-2023-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is a subtype of BC with high rates of mortality. The mechanism of PTPRG-AS1 in ferroptosis of TNBC was investigated. Methods: Chromatin immunoprecipitation and dual-luciferase reporter assays were used to measure intermolecular relationships. MTT and colony formation assays detected cell viability and proliferation. Kits detected Fe2+ and reactive oxygen species levels. The role of PTPRG-AS1 in tumor growth was analyzed in vivo. Results: PTPRG-AS1 was increased in TNBC tissues and cells. PTPRG-AS1 silencing increased the reduction of glutathione and GPX4, increased Fe2+ and reactive oxygen species in erastin-treated cells and inhibited proliferation. POU2F2 transcriptionally upregulated PTPRG-AS1. PTPRG-AS1 targeted miR-376c-3p to upregulate SLC7A11. PTPRG-AS1 knockdown suppressed tumor growth in vivo. Conclusion: POU2F2 transcriptionally activates PTPRG-AS1 to modulate ferroptosis and proliferation by miR-376c-3p/SLC7A11, promoting TNBC.
Collapse
Affiliation(s)
- Jun Li
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Pei-Ting Li
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Wei Wu
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Bo-Ni Ding
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Yan-Guang Wen
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Hai-Lin Cai
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Shuang-Xi Liu
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Tao Hong
- Department of Breast & Thyroid Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi Province, China
| | - Jian-Fei Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital of the University of South China, Hengyang, 421000, Hunan Province, China
| | - Jian-Da Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Li-Yuan Qian
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Juan Du
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| |
Collapse
|
10
|
Murakami H, Hayashi M, Terada S, Ohmichi M. Medroxyprogesterone acetate-resistant endometrial cancer cells are susceptible to ferroptosis inducers. Life Sci 2023; 325:121753. [PMID: 37160245 DOI: 10.1016/j.lfs.2023.121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
AIMS Medroxyprogesterone acetate (MPA) is the most common fertility-sparing treatment in patients with early-stage endometrial cancer. If MPA treatment fails, hysterectomy is recommended. Thus, there is an urgent need for novel treatment approaches for MPA-resistant endometrial cancer patients who wish to preserve their fertility. Ferroptosis is a recently discovered type of regulated cell death caused by the excessive accumulation of reactive oxygen species (ROS), followed by aberrant lipid peroxidation. Recent studies have shown that inducing ferroptosis is a potential therapeutic strategy for cancer. However, the role of ferroptosis in endometrial cancer treatment remains to be discussed. We therefore investigated the effects of ferroptosis inducers on MPA-resistant endometrial cancer cells. MAIN METHODS The levels of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), the main mediators of ferroptosis, were examined. Cell viability was evaluated after treatment with the ferroptosis inducers sulfasalazine, erastin, or RSL3. The degree of intracellular oxidative stress after treatment with these drugs was evaluated by the glutathione level, ROS level, ferrous iron level, lipid peroxidation and changes in mitochondrial morphology. The effect of ferroptosis inducers in vivo was also examined. KEY FINDINGS The expression of SLC7A11 and GPX4 in MPA-resistant ECC-1 cells decreased in comparison to parental ECC-1 cells. Sulfasalazine, erastin, and RSL3 significantly reduced cell viability and increased intracellular oxidative stress in MPA-resistant ECC-1 cells. Ferroptosis inducers also suppressed in vivo tumor growth more effectively in MPA-resistant ECC-1. SIGNIFICANCE Treatment with ferroptosis inducers could be a novel therapeutic approach for MPA-resistant endometrial cancer.
Collapse
Affiliation(s)
- Hikaru Murakami
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| | - Shinichi Terada
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
11
|
Sargazi Z, Yazdani Y, Tahavvori A, Youshanlouei HR, Alivirdiloo V, Beilankouhi EAV, Valilo M. NFR2/ABC transporter axis in drug resistance of breast cancer cells. Mol Biol Rep 2023; 50:5407-5414. [PMID: 37081307 DOI: 10.1007/s11033-023-08384-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023]
Abstract
Breast cancer is one of the most serious malignancies among women, accounting for about 12% of all cancers. The inherent complexity and heterogeneity of breast cancer results in failure to respond to treatment in the advanced stages of the disease. Breast cancer is caused by several genetic and environmental factors. One of the significant factors involved in the development of breast cancer is oxidative stress, which is generally regulated by nuclear factor erythroid 2-related factor 2 (NRF2). The level of NRF2 expression is low in healthy cells, which maintains the balance of the antioxidant system; however, its expression is higher in cancer cells, which have correlation characteristics such as angiogenesis, stem cell formation, drug resistance, and metastasis. Drug resistance increases with the upregulation of NRF2 expression, which contributes to cell protection. NRF2 controls this mechanism by increasing the expression of ATP-binding cassettes (ABCs). Considering the growing number of studies in this field, we aimed to investigate the relationship between NRF2 and ABCs, as well as their role in the development of drug resistance in breast cancer.
Collapse
Affiliation(s)
- Zinat Sargazi
- Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Tahavvori
- Department of internal medicine, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Rahmani Youshanlouei
- Department of internal medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Alivirdiloo
- Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | | | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
12
|
Wang X, Zhao L, Wang C, Wang L, Wu H, Song X, Wang W, Xu H, Dong X. Potent nanoreactor-mediated ferroptosis-based strategy for the reversal of cancer chemoresistance to Sorafenib. Acta Biomater 2023; 159:237-246. [PMID: 36736851 DOI: 10.1016/j.actbio.2023.01.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
The drug resistance of cancer cells is related to a variety of mechanisms, among which the destruction of redox homeostasis is one of the key factors. Ferroptosis, an intracellular iron-dependent form of cell death, is related to the production of oxidative stress. The accumulation of lipid peroxidation (LPO) during ferroptosis disrupts intracellular redox homeostasis, thereby affecting the sensitivity of tumor cells to drugs. In this work, we proposed a ferroptosis strategy based on LPO accumulation, reduced glutathione generation via inhibition of SLC3A2 protein and inactivated glutathione peroxidase 4 (GPX4) to reverse the chemoresistance of cancer cells. The Fenton reaction based on the ferroptosis-inducing nanoreactors (Au/Fe-GA/Sorafenib@PEG) not only generated hydroxyl radicals (·OH) under laser irradiation to realize the accumulation of LPO, but also depleted GSH to increase the accumulation of LPO. Meanwhile, the cystine uptake of cells was inhibited by Sorafenib, resulting in reduced GSH synthesis and inactivated GPX4. In vitro and in vivo experiments demonstrated AFG/SFB@PEG + Laser group could inactivate GPX4 and the enhanced ferroptosis can reverse chemo-resistance caused by continuous upregulation of GPX4 levels in cells through 'self-rescue'. The study proposed the mechanism and feasibility of ferroptosis to reverse drug resistance, providing a promising strategy for chemo-resistant cancer treatment. STATEMENT OF SIGNIFICANCE: Herein, we proposed a ferroptosis strategy based on LPO accumulation, reduced glutathione generation via inhibition of SLC3A2 protein, and inactivated glutathione peroxidase 4 (GPX4) to reverse chemoresistance of cancer cells. The Fenton reaction based on the ferroptosis-inducing nanoreactors (Au/Fe-GA/Sorafenib@PEG) not only generated hydroxyl radicals (·OH) under laser irradiation to realize the accumulation of LPO but also depleted GSH to increase the accumulation of LPO. Meanwhile, the cystine uptake of cells was inhibited by Sorafenib, resulting in reduced GSH synthesis and inactivated GPX4. In vitro and in vivo experiments demonstrated AFG/SFB@PEG + Laser group could inactivate GPX4 and the enhanced ferroptosis can reverse chemo-resistance caused by continuous upregulation of GPX4 levels in cells through 'self-rescue'.
Collapse
Affiliation(s)
- Xiaorui Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Lei Zhao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Chenxi Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Leichen Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Haisi Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210009, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210009, China.
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China; School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
13
|
Lee J, Roh JL. SLC7A11 as a Gateway of Metabolic Perturbation and Ferroptosis Vulnerability in Cancer. Antioxidants (Basel) 2022; 11:antiox11122444. [PMID: 36552652 PMCID: PMC9774303 DOI: 10.3390/antiox11122444] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
SLC7A11 is a cell transmembrane protein composing the light chain of system xc-, transporting extracellular cystine into cells for cysteine production and GSH biosynthesis. SLC7A11 is a critical gateway for redox homeostasis by maintaining the cellular levels of GSH that counter cellular oxidative stress and suppress ferroptosis. SLC7A11 is overexpressed in various human cancers and regulates tumor development, proliferation, metastasis, microenvironment, and treatment resistance. Upregulation of SLC7A11 in cancers is needed to adapt to high oxidative stress microenvironments and maintain cellular redox homeostasis. High basal ROS levels and SLC7A11 dependences in cancer cells render them vulnerable to further oxidative stress. Therefore, cyst(e)ine depletion may be an effective new strategy for cancer treatment. However, the effectiveness of the SLC7A11 inhibitors or cyst(e)inase has been established in many preclinical studies but has not reached the stage of clinical trials for cancer patients. A better understanding of cysteine and SLC7A11 functions regulating and interacting with redox-active proteins and their substrates could be a promising strategy for cancer treatment. Therefore, this review intends to understand the role of cysteine in antioxidant and redox signaling, the regulators of cysteine bioavailability in cancer, the role of SLC7A11 linking cysteine redox signaling in cancer metabolism and targeting SLC7A11 for novel cancer therapeutics.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam 13496, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam 13496, Republic of Korea
- Correspondence: ; Tel.: +82-31-780-2988
| |
Collapse
|
14
|
Zhang YC, Zeng PY, Ma ZQ, Xu ZY, Wang ZK, Guo B, Yang F, Li ZT. A pH-responsive complex based on supramolecular organic framework for drug-resistant breast cancer therapy. Drug Deliv 2022; 29:1-9. [PMID: 34949133 PMCID: PMC8725986 DOI: 10.1080/10717544.2021.2010839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/02/2022] Open
Abstract
Chemotherapy is one of the main ways to treat breast cancer clinically. However, the multidrug resistance to anti-tumor drugs limits their clinical use. To overcome these drawbacks, the development of drug delivery systems (DDSs) has attracted more and more attention in cancer therapy. At present, the preparation and purification process are complicated for many reported DDSs, while the clinic calls for new DDSs that are more convenient for preparation. Here a new pH-responsive supramolecular organic framework drug delivery complex loading doxorubicin (DOX) is fabricated. Anti-tumor activity of the system in vitro was investigated by cell cytotoxicity, uptake assay, and cell apoptosis analysis. The anti-tumor activity in vivo was investigated by inspecting nude mice body weight, tumor volume and weight, also a preliminary mechanism probe was conducted by HE and TUNEL staining. The DOX@SOF displayed high stability, good biocompatibility and pH-regulated drug release. At acid condition, the hydrazone bonds would be broken, which result in the dissociation of SOF, and then the drugs would be released from the system. Furthermore, DOX@SOF enhanced cellular internalization. Both in vitro and in vivo experiments reflected that DOX@SOF could enhance the anti-tumor activity of DOX. for the MCF-7/ADR tumor cells and tumors. This study provides a highly efficient strategy to prepare a stimulus-responsive supramolecular drug delivery complex for the treatment of drug-resistant cancer, the results presented inspiring scientific interests in exploring new drug delivery strategies and reversing multi-drug resistance for clinical chemotherapy.
Collapse
Affiliation(s)
- Yun-Chang Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Pei-Yu Zeng
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhi-Qiang Ma
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zi-Yue Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Ze-Kun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Beibei Guo
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Feng Yang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Hanna M, Seddiek H, Aboulhoda BE, Morcos GNB, Akabawy AMA, Elbaset MA, Ibrahim AA, Khalifa MM, Khalifah IM, Fadel MS, Shoukry T. Synergistic cardioprotective effects of melatonin and deferoxamine through the improvement of ferritinophagy in doxorubicin-induced acute cardiotoxicity. Front Physiol 2022; 13:1050598. [PMID: 36531171 PMCID: PMC9748574 DOI: 10.3389/fphys.2022.1050598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/08/2023] Open
Abstract
Ferritinophagy is one of the most recent molecular mechanisms affecting cardiac function. In addition, it is one of the pathways by which doxorubicin, one of the anticancer drugs commonly used, negatively impacts the cardiac muscle, leading to cardiac function impairment. This side effect limits the use of doxorubicin. Iron chelators play an important role in hindering ferritinophagy. Antioxidants can also impact ferritinophagy by improving oxidative stress. In this study, it was assumed that the antioxidant function of melatonin could promote the action of deferoxamine, an iron chelator, at the level of ferritinophagy. A total of 42 male Wistar rats (150-200 g) were divided into seven groups (n = 6) which consisted of group I: control normal, group II: doxorubicin (Dox), group III: melatonin (Mel), group IV: deferoxamine (Des), group V: Mel + Dox, group VI: Des + Dox, and group VII: Mel + Des + Dox. Groups III, V and VII were orally pretreated with melatonin 20 mg/kg/day for 7 days. Groups IV, VI and VII were treated with deferoxamine at a 250 mg/kg/dose once on D4 before Dox was given. Doxorubicin was given at a 20 mg/kg ip single dose. On the 8th day, the rats were lightly anaesthetized for electrocardiography analysis and echocardiography. Serum samples were collected and then sacrificed for tissue sampling. The following biochemical assessments were carried out: PCR of NCOA4, IREB2, FTH1, SLC7A11, and GPX4; and ELISA for serum cTnI, serum transferrin, tissue GSH, and malondialdehyde. In addition, histopathological assessment of heart injury; immunostaining of caspase-3, Bax, and Bcl2; and physiological function assessment by ECG and ECHO were carried out. Doxorubicin-induced acute significant cardiac injury with increased ferritinophagy and apoptosis responded to single and combined prophylactic treatment, in which the combined treatment showed mostly the best results. In conclusion, using melatonin as an antioxidant with an iron chelator, deferoxamine, could hinder the hazardous cardiotoxic effect of doxorubicin. However, further studies are needed to detect the impact of higher doses of melatonin and deferoxamine with a prolonged treatment period.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| | - Hanan Seddiek
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - George N. B. Morcos
- Department of Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Basic Medical Science, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | | | - Mohamed Mansour Khalifa
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
- Department of Human Physiology, College of Medicine, King Saud University, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
| | - Ibtesam Mahmoud Khalifah
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Sciences, Faculty of Medicine, Fakeeh College for Medical Sciences, Riyadh, Saudi Arabia
| | - Mostafa Said Fadel
- Department of Basic Medical Science, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Tarek Shoukry
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| |
Collapse
|
16
|
Aniogo EC, George BP, Abrahamse H. Characterization of resistant MCF-7 breast cancer cells developed by repeated cycles of photodynamic therapy. Front Pharmacol 2022; 13:964141. [PMID: 36188530 PMCID: PMC9523167 DOI: 10.3389/fphar.2022.964141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer mainly affects women and causes a severe global threat to health. It is often managed and treated with surgery, chemotherapy, immunotherapy, and radiation therapy. Generally, chemotherapy as a treatment option is often opposed by responsive tumor relapse and development of resistance, a significant setback of current treatment. Photodynamic therapy (PDT) offers a promising modality that can treat cancer by combining a photosensitizer and laser irradiation in the presence of oxygen. However, one problem of PDT in treating breast cancer is the apparition of the resistant cell population. Thus, we aimed for stepwise selection and characterization of MCF-7 cells resistant to PDT with a sulfonated zinc phthalocyanine (ZnPcS4) photosensitizer. The wild-type MCF-7 was exposed to successive cycles of ZnPcS4-PDT, and 10resistant populations were finally obtained. In wild-type and parental cells, we analyzed the cell morphology (light microscopy), cell cycle (BrdU staining), cell viability (MTT assay), antioxidant activity (superoxide dismutase measurement), and immunofluorescence expression of resistant p-glycoprotein (P-gp). The results indicate that resistant cells showed a mesenchymal cell phenotype, few differences in antioxidant activity, an increased DNA synthesis, and more expression of P-gp than the wild-type parental cells. These distinctive features of resistant cells can provide insight into the emergence of MCF-7 cell resistance to PDT, which was necessary to design the best therapeutic procedure for improved efficacy.
Collapse
|
17
|
Hong J, Cai X. Construction of a Novel Oxidative Stress Response-Related Gene Signature for Predicting the Prognosis and Therapeutic Responses in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:6201987. [PMID: 36133439 PMCID: PMC9484914 DOI: 10.1155/2022/6201987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with poor outcomes, and the assessment of its prognosis as well as its response to therapy is still challenging. In this study, we aimed to construct an oxidative stress response-related genes-(OSRGs-) based gene signature for predicting prognosis and estimating treatment response in patients with HCC. We integrated the transcriptomic data and clinicopathological information of HCC patients from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. LASSO Cox regression analysis was utilized to establish an integrated multigene signature in the TCGA cohort, and its prediction performance was validated in the ICGC cohort. The CIBERSORT algorithm was employed to evaluate immune cell infiltration. The response rate to immune checkpoint inhibition (ICI) therapy was assessed using a TIDE platform. Drug activity data from the Cancer Genome Project and NCI-60 human cancer cell lines were used to predict sensitivity to chemotherapy. We successfully established a gene signature comprising G6PD, MT3, CBX2, CDKN2B, CCNA2, MAPT, EZH2, and SLC7A11. The risk score of each patient, which was determined by the multigene signature, was identified as an independent prognostic marker. The immune cell infiltration patterns, response rates to ICI therapy, and the estimated sensitivity of 89 chemotherapeutic drugs were associated with risk scores. Individual prognostic genes were also associated with susceptibility to various FDA-approved drugs. Our study indicates that a comprehensive transcriptomic analysis of OSRGs can provide a reliable molecular model to predict prognosis and therapeutic response in patients with HCC.
Collapse
Affiliation(s)
- Junjie Hong
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
18
|
Modi A, Roy D, Sharma S, Vishnoi JR, Pareek P, Elhence P, Sharma P, Purohit P. ABC transporters in breast cancer: their roles in multidrug resistance and beyond. J Drug Target 2022; 30:927-947. [PMID: 35758271 DOI: 10.1080/1061186x.2022.2091578] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
ATP-binding cassette (ABC) transporters are membrane-spanning proteins involved in cholesterol homeostasis, transport of various molecules in and out of cells and organelles, oxidative stress, immune recognition, and drug efflux. They are long implicated in the development of multidrug resistance in cancer chemotherapy. Existing clinical and molecular evidence has also linked ABC transporters with cancer pathogenesis, prognostics, and therapy. In this review, we aim to provide a comprehensive update on all ABC transporters and their roles in drug resistance in breast cancer (BC). For solid tumours such as BC, various ABC transporters are highly expressed in less differentiated subtypes and metastases. ABCA1, ABCB1 and ABCG2 are key players in BC chemoresistance. Restraining these transporters has evolved as a possible mechanism to reverse this phenomenon. Further, ABCB1 and ABCC1 are important in BC prognosis. Newer therapeutic approaches have been developed to target all these molecules to dysregulate their effect, reduce cell viability, induce apoptosis, and increase drug sensitivity. In the future, targeted therapy for specific genetic variations and upstream or downstream molecules can help improve patient prognosis.
Collapse
Affiliation(s)
- Anupama Modi
- Department of Biochemistry, AIIMS, Jodhpur, India
| | - Dipayan Roy
- Department of Biochemistry, AIIMS, Jodhpur, India.,Indian Institute of Technology (IIT) Madras, Chennai, India
| | | | | | - Puneet Pareek
- Department of Radiation Oncology, AIIMS, Jodhpur, India
| | - Poonam Elhence
- Department of Pathology and Laboratory Medicine, AIIMS, Jodhpur, India
| | | | | |
Collapse
|
19
|
The Role of SLC7A11 in Cancer: Friend or Foe? Cancers (Basel) 2022; 14:cancers14133059. [PMID: 35804831 PMCID: PMC9264807 DOI: 10.3390/cancers14133059] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
SLC7A11 controls the uptake of extracellular cystine in exchange for glutamate at a ratio of 1:1, and it is overexpressed in a variety of tumours. Accumulating evidence has shown that the expression of SLC7A11 is fine-tuned at multiple levels, and plays diverse functional and pharmacological roles in tumours, such as cellular redox homeostasis, cell growth and death, and cell metabolism. Many reports have suggested that the inhibition of SLC7A11 expression and activity is favourable for tumour therapy; thus, SLC7A11 is regarded as a potential therapeutic target. However, emerging evidence also suggests that on some occasions, the inhibition of SLC7A11 is beneficial to the survival of cancer cells, and confers the development of drug resistance. In this review, we first briefly introduce the biological properties of SLC7A11, including its structure and physiological functions, and further summarise its regulatory network and potential regulators. Then, focusing on its role in cancer, we describe the relationships of SLC7A11 with tumourigenesis, survival, proliferation, metastasis, and therapeutic resistance in more detail. Finally, since SLC7A11 has been linked to cancer through multiple approaches, we propose that its contribution and regulatory mechanism require further elucidation. Thus, more personalised therapeutic strategies should be adapted when targeting SLC7A11.
Collapse
|
20
|
Chen Y, Qiao S, Liu H, Xing H, Chen P. Structural Characterization and Anti-breast Cancer Activity in vitro of a Novel Polysaccharide From Cymbopogon citratus. Front Nutr 2022; 9:911838. [PMID: 35634368 PMCID: PMC9130703 DOI: 10.3389/fnut.2022.911838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Cymbopogon citratus is an important functional food, widely used for flavoring in Africa and South America. In this study, a novel high-molecular-weight polysaccharide (CCP) from C. citratus was extracted, and its structural characteristics and anti-breast cancer activity in vitro were investigated. CCP contained both α and β configurations and mainly composed of galactose (36.89%), arabinose (23.97%), glucose (18.35%) and rhamnose (9.36%) with an average molecular weight of 1.98 × 106 Da. The main glycosyl residues of CCP detected by methylation analysis were 1,3,6-linked Galp, 1,3-linked Glcp, 1,5-linked Araf , T-Araf , and T-Rhap. In vitro experiments suggested that CCP significantly inhibited the proliferation of MDA-MB-231 cells, decreased the expressions of cyclin D1 and CDK4 and stocked cells at G0/G1 phase. Meanwhile, the typical morphological features of apoptotic cells were also observed. Combining with the consequences of Annexin V-FITC/PI staining, Hoechst 33258 staining and western blot analysis, CCP induced apoptosis of MDA-MB-231 cells by triggering the Fas/FasL-mediated death receptor pathway. Overall, these results provide a theoretical basis for the application of C. citratus polysaccharide as a potential anti-breast cancer agent in functional food and medicine.
Collapse
|
21
|
Liang XL, Ji MM, Liao ZG, Zhao GW, Tang XL, Dong W. Chemosensitizing effect and mechanism of imperatorin on the anti-tumor activity of doxorubicin in tumor cells and transplantation tumor model. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:145-155. [PMID: 35477542 PMCID: PMC9046893 DOI: 10.4196/kjpp.2022.26.3.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 11/07/2021] [Accepted: 02/02/2022] [Indexed: 11/15/2022]
Abstract
Multidrug resistance of tumors has been a severe obstacle to the success of cancer chemotherapy. The study wants to investigate the reversal effects of imperatorin (IMP) on doxorubicin (DOX) resistance in K562/DOX leukemia cells, A2780/Taxol cells and in NOD/SCID mice, to explore the possible molecular mechanisms. K562/DOX and A2780/Taxol cells were treated with various concentrations of DOX and Taol with or without different concentrations of IMP, respectively. K562/DOX xenograft model was used to assess anti-tumor effect of IMP combined with DOX. MTT assay, Rhodamine 123 efflux assay, RT-PCR, and Western blot analysis were determined in vivo and in vitro. Results showed that IMP significantly enhanced the cytotoxicity of DOX and Taxol toward corresponding resistance cells. In vivo results illustrated both the tumor volume and tumor weight were significantly decreased after 2-week treatment with IMP combined with DOX compared to the DOX alone group. Western blotting and RT-PCR analyses indicated that IMP downregulated the expression of P-gp in K562/DOX xenograft tumors in NOD/SCID mice. We also evaluated glycolysis and glutamine metabolism in K562/DOX cells by measuring glucose consumption and lactate production. The results revealed that IMP could significantly reduce the glucose consumption and lactate production of K562/DOX cells. Furthermore, IMP could also remarkably repress the glutamine consumption, α-KG and ATP production of K562/DOX cells. Thus, IMP may sensitize K562/DOX cells to DOX and enhance the anti-tumor effect of DOX in K562/DOX xenograft tumors in NOD/SCID mice. IMP may be an adjuvant therapy to mitigate the multidrug resistance in leukemia chemotherapy.
Collapse
Affiliation(s)
- Xin-li Liang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Miao-miao Ji
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zheng-gen Liao
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Guo-wei Zhao
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xi-lan Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Nanchang 330013, China
| | - Wei Dong
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
22
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:1784-1823. [PMID: 35530281 PMCID: PMC9077082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Jumping translocation breakpoint (JTB) gene acts as a tumor suppressor or an oncogene in different malignancies, including breast cancer (BC), where it was reported as overexpressed. However, the molecular functions, biological processes and underlying mechanisms through which JTB protein causes increased cell growth, proliferation and invasion is still not fully deciphered. Our goal is to identify the functions of JTB protein by cellular proteomics approaches. MCF7 breast cancer cells were transfected with sense orientation of hJTB cDNA in HA, His and FLAG tagged CMV expression vector to overexpress hJTB and the expression levels were confirmed by Western blotting (WB). Proteins extracted from transfected cells were separated by SDS-PAGE and the in-gel digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). By comparing the proteome of cells with upregulated conditions of JTB vs control and identifying the protein dysregulation patterns, we aim to understand the function of this protein and its contribution to tumorigenesis. Gene Set Enrichment Analysis (GSEA) algorithm was performed to investigate the biological processes and pathways that are associated with the JTB protein upregulation. The results demonstrated four significantly enriched gene sets from the following significantly upregulated pathways: mitotic spindle assembly, estrogen response late, epithelial-to-mesenchymal transition (EMT) and estrogen response early. JTB protein itself is involved in mitotic spindle pathway by its role in cell division/cytokinesis, and within estrogen response early and late pathways, contributing to discrimination between luminal and mesenchymal breast cancer. Thus, the overexpressed JTB condition was significantly associated with an increased expression of ACTNs, FLNA, FLNB, EZR, MYOF, COL3A1, COL11A1, HSPA1A, HSP90A, WDR, EPPK1, FASN and FOXA1 proteins related to deregulation of cytoskeletal organization and biogenesis, mitotic spindle organization, ECM remodeling, cellular response to estrogen, proliferation, migration, metastasis, increased lipid biogenesis, endocrine therapy resistance, antiapoptosis and discrimination between different breast cancer subtypes. Other upregulated proteins for overexpressed JTB condition are involved in multiple cellular functions and pathways that become dysregulated, such as tumor microenvironment (TME) acidification, the transmembrane transport pathways, glycolytic flux, iron metabolism and oxidative stress, metabolic reprogramming, nucleocytosolic mRNA transport, transcriptional activation, chromatin remodeling, modulation of cell death pathways, stress responsive pathways, and cancer drug resistance. The downregulated proteins for overexpressed JTB condition are involved in adaptive communication between external and internal environment of cells and maintenance between pro-apoptotic and anti-apoptotic signaling pathways, vesicle trafficking and secretion, DNA lesions repair and suppression of genes involved in tumor progression, proteostasis, redox state regulation, biosynthesis of macromolecules, lipolytic pathway, carbohydrate metabolism, dysregulation of ubiquitin-mediated degradation system, cancer cell immune escape, cell-to-cell and cell-to-ECM interactions, and cytoskeletal behaviour. There were no significantly enriched downregulated pathways.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I Bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
23
|
Circ_0120175 promotes laryngeal squamous cell carcinoma development through up-regulating SLC7A11 by sponging miR-330-3p. J Mol Histol 2022; 53:159-171. [PMID: 35142935 DOI: 10.1007/s10735-022-10061-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/26/2022] [Indexed: 12/24/2022]
Abstract
The aim of our study was to illustrate the role of circular RNA 0120175 (circ_0120175) and its associated mechanism in laryngeal squamous cell carcinoma (LSCC) development. The abundance of circ_0120175, microRNA-330-3p (miR-330-3p) and solute carrier family 7, membrane 11 (SLC7A11) messenger RNA and protein was measured by quantitative real time polymerase chain reaction and Western blot assay. Cell proliferation, apoptosis, migration and invasion were assessed by cell counting kit-8 assay, flow cytometry and transwell migration and invasion assays, respectively. The interaction between miR-330-3p and circ_0120175 or SLC7A11 was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to test the function of circ_0120175 in tumor growth in vivo. Circ_0120175 abundance was aberrantly increased in LSCC tissues and cell lines, and LSCC patients with high level of circ_0120175 were associated with advanced tumor staging, lymph node metastasis and short survival time. Circ_0120175 interference suppressed cell proliferation, migration and invasion and induced cell apoptosis of LSCC cells. Circ_0120175 could sponge and negatively regulate miR-330-3p expression in LSCC cells. The addition of anti-miR-330-3p partly reversed circ_0120175 knockdown-induced effects in LSCC cells. SLC7A11 bound to miR-330-3p. Circ_0120175 enhanced the abundance of SLC7A11 through sponging miR-330-3p in LSCC cells. Circ_0120175 silencing-mediated influences in LSCC cells were partly counteracted by the overexpression of SLC7A11. Circ_0120175 interference notably suppressed xenograft tumor growth in vivo. Circ_0120175 promoted proliferation, migration and invasion while impeded cell apoptosis of LSCC cells through miR-330-3p/SLC7A11 axis, which provided novel therapeutic targets for LSCC.
Collapse
|
24
|
Boyer T, Blaye C, Larmonier N, Domblides C. Influence of the Metabolism on Myeloid Cell Functions in Cancers: Clinical Perspectives. Cells 2022; 11:cells11030554. [PMID: 35159363 PMCID: PMC8834417 DOI: 10.3390/cells11030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor metabolism plays a crucial role in sustaining tumorigenesis. There have been increasing reports regarding the role of tumor metabolism in the control of immune cell functions, generating a potent immunosuppressive contexture that can lead to immune escape. The metabolic reprogramming of tumor cells and the immune escape are two major hallmarks of cancer, with several instances of crosstalk between them. In this paper, we review the effects of tumor metabolism on immune cells, focusing on myeloid cells due to their important role in tumorigenesis and immunosuppression from the early stages of the disease. We also discuss ways to target this specific crosstalk in cancer patients.
Collapse
Affiliation(s)
- Thomas Boyer
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Céline Blaye
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Department of Medical Oncology, Bergonié Institute, 229 cours de l’Argonne, 33076 Bordeaux, France
| | - Nicolas Larmonier
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Charlotte Domblides
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Medical Oncology, Bergonié Institute, 229 cours de l’Argonne, 33076 Bordeaux, France
- Department of Medical Oncology, Hôpital Saint-André, 1 rue Jean Burguet, University Hospital Bordeaux, 33076 Bordeaux, France
- Correspondence:
| |
Collapse
|
25
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Zhang YC, Zeng PY, Ma ZQ, Xu ZY, Wang ZK, Guo B, Yang F, Li ZT. A pH-responsive complex based on supramolecular organic framework for drug-resistant breast cancer therapy. Drug Deliv 2021; 29:128-137. [PMID: 34967270 PMCID: PMC8725931 DOI: 10.1080/10717544.2021.2021325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chemotherapy is one of the main ways to treat breast cancer clinically. However, the multidrug resistance to anti-tumor drugs limits their clinical use. To overcome these drawbacks, development of drug delivery systems (DDSs) has attracted more and more attention in cancer therapy. At present, the preparation and purification process are complicated for many reported DDSs, while clinic calls for new DDSs that are more convenient for preparation. Here, a new pH-responsive supramolecular organic framework drug delivery complex loading doxorubicin (DOX) is fabricated. Anti-tumor activity of the system in vitro was investigated by cell cytotoxicity, uptake assay, and cell apoptosis analysis. The anti-tumor activity in vivo was investigated by inspecting nude mice body weight, tumor volume, and weight, also a preliminary mechanism probe was conducted by HE and TUNEL staining. The DOX@SOF displayed high stability, good biocompatibility, and pH regulated drug release. At acid condition, the hydrazone bonds would be broken, which result in the dissociation of SOF, and then the drugs would be released from the system. Furthermore, DOX@SOF enhanced cellular internalization. Both in vitro and in vivo experiments reflected that DOX@SOF could enhance the anti-tumor activity of DOX for the MCF-7/ADR tumor cells and tumors. This study provides a highly efficient strategy to prepare stimulus-responsive supramolecular drug delivery complex for treatment of drug-resistant cancer, the results presented inspiring scientific interests in exploring new drug delivery strategy and reversing multi-drug resistance for clinical chemotherapy.
Collapse
Affiliation(s)
- Yun-Chang Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Pei-Yu Zeng
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhi-Qiang Ma
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zi-Yue Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Ze-Kun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Beibei Guo
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Feng Yang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Li SJ, Cao B, Lu ZY, Sun RB, Guo SH, Xie Y, Aa JY, Wang GJ. Cystine supplementation rebalances the redox homeostasis of microenvironment in non-small cell lung cancer cells and reverses their resistance to docetaxel. Acta Pharmacol Sin 2021; 42:2132-2143. [PMID: 33658706 PMCID: PMC8632922 DOI: 10.1038/s41401-020-00610-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Continuous docetaxel (DTX) treatment of non-small cell lung cancer induces development of drug resistance, but the mechanism is poorly understood. In this study we performed metabolomics analysis to characterize the metabolic patterns of sensitive and resistant A549 non-small cell lung cancer cells (A549/DTX cells). We showed that the sensitive and resistant A549 cells exhibited distinct metabolic phenotypes: the resistant cells were characterized by an altered microenvironment of redox homeostasis with reduced glutathione and elevated reactive oxygen species (ROS). DTX induction reprogrammed the metabolic phenotype of the sensitive cells, which acquired a phenotype similar to that of the resistant cells: it reduced cystine influx, inhibited glutathione biosynthesis, increased ROS and decreased glutathione/glutathione disulfide (GSH/GSSG); the genes involved in glutathione biosynthesis were dramatically depressed. Addition of the ROS-inducing agent Rosup (25, 50 μg/mL) significantly increased P-glycoprotein expression and reduced intracellular DTX in the sensitive A549 cells, which ultimately acquired a phenotype similar to that of the resistant cells. Supplementation of cystine (1.0 mM) significantly increased GSH synthesis, rebalanced the redox homeostasis of A549/DTX cells, and reversed DTX-induced upregulation of P-glycoprotein, and it markedly improved the effects of DTX and inhibited the growth of A549/DTX in vitro and in vivo. These results suggest that microenvironmental redox homeostasis plays a key role in the acquired resistance of A549 cancer cells to DTX. The enhancement of GSH synthesis by supplementary cystine is a promising strategy to reverse the resistance of tumor cells and has potential for translation in the clinic.
Collapse
Affiliation(s)
- Si-Jia Li
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Bei Cao
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhen-Yao Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Run-Bin Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Su-Han Guo
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ji-Ye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guang-Ji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
28
|
Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D. SLC7A11/ xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett 2021; 522:211-224. [PMID: 34571083 DOI: 10.1016/j.canlet.2021.09.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 01/15/2023]
Abstract
Breast cancer cells evade cell death by overexpressing SLC7A11, which functions by transporting cystine into cells in exchange for intracellular glutamate facilitating glutathione synthesis and reducing reactive oxygen species (ROS)-mediated stress. Using an in silico approach, we predicted an miRNA (miR-5096) that can target and downregulate SLC7A11. We demonstrated SLC7A11 as a target of miR-5096 by 3'UTR luciferase assay and further validated it by identifying reduced mRNA and protein levels of SLC7A11 upon miR-5096 overexpression. miR-5096-induced ferroptotic cell death in human breast cancer cells was confirmed by concurrently increased ROS, OH-, lipid ROS, and iron accumulation levels and decreased GSH and mitochondrial membrane potential (MitoTracker™ Orange) with mitochondrial shrinkage and partial cristae loss (observed by TEM). miR-5096 inhibited colony formation, transwell migration, and breast cancer cell invasion, whereas antimiR-5096 promoted these tumorigenic properties. Ectopic expression of SLC7A11 partly reversed miR-5096-mediated effects on cell survival, ROS, lipid peroxides, iron accumulation, GSH, hydroxyl radicals, mitochondrial membrane potential, and colony formation. miR-5096 modulated the expression of epithelial-mesenchymal transition markers in vitro and inhibited the metastatic potential of MDA-MB-231 cells in a tumor xenograft model of zebrafish larvae. Our results demonstrate that miR-5096 is a tumor-suppressive miRNA in breast cancer cells, and this paper discusses its therapeutic implications.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Priyanshu Sharma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India
| | - Amal Kanti Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
29
|
Ke Y, Chen X, Su Y, Chen C, Lei S, Xia L, Wei D, Zhang H, Dong C, Liu X, Yin F. Low Expression of SLC7A11 Confers Drug Resistance and Worse Survival in Ovarian Cancer via Inhibition of Cell Autophagy as a Competing Endogenous RNA. Front Oncol 2021; 11:744940. [PMID: 34790572 PMCID: PMC8591223 DOI: 10.3389/fonc.2021.744940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 01/17/2023] Open
Abstract
Drug resistance is the main cause of chemotherapy failure in ovarian cancer (OC), and identifying potential druggable targets of autophagy is a novel and promising approach to overcoming drug resistance. In this study, 131 genes associated with autophagy were identified from three autophagy-related databases, and of these, 14 were differentially expressed in 90 drug-resistant OC tissues versus 197 sensitive tissues according to the Cancer Genome Atlas ovarian cancer cohort. Among these 14 genes, SLC7A11 was significantly decreased in two paclitaxel-resistant OC cells (HeyA8-R and SKOV3-R) and in 90 drug-resistant tissues compared with their controls. In vitro overexpression of SLC7A11 significantly increased the sensitivity of HeyA8-R cells to paclitaxel, inhibited colony formation, induced apoptosis, and arrested cell cycle. Further, low SLC7A11 expression was correlated with poor overall survival (OS), progression-free survival (PFS), and post-progression survival (PPS) in 1815 OC patients. Mechanistically, SLC7A11 strongly regulated cell autophagy as a competing endogenous RNA (ceRNA) based on pan-cancer analyses of 32 tumor types. Specifically, as a ceRNA for autophagy genes STX17, RAB33B, and UVRAG, SLC7A11 was strongly and positively co-expressed with these three genes in 20, 12, and 12 different tumors, respectively, in 379 OC tissues and in 90 drug-resistant OC tissues, and the former two were significantly upregulated in SLC7A11-overexpressed HeyA8-R cells. Further, SLC7A11 induced the protein expression of other autophagy genes, such as LC3, Atg16L1, and Atg7, and the expression of the respective proteins was further increased when the cells were treated with paclitaxel. The results strongly suggest that SLC7A11 regulates autophagy via ceRNA interactions with the three abovementioned genes in pan-cancer and in drug-resistant OC. Moreover, low expression of STX17 and UVRAG also significantly predicted low OS, PFS, and PPS. The combination of SLC7A11 with STX17 was more predictive of OS and PFS than either individually, and the combination of SLC7A11 with UVRAG was highly predictive of OS and PPS. The above results indicated that decreased SLC7A11 resulted in drug resistance and effected low rates of survival in OC patients, probably via ceRNA interactions with autophagy genes, and thus the gene could serve as a therapeutic target and potential biomarker in OC.
Collapse
Affiliation(s)
- Yao Ke
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Xiaoying Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Yuting Su
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Cuilan Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Shunmei Lei
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Lianping Xia
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Dan Wei
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Han Zhang
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Caihua Dong
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
30
|
Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021; 232:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.
Collapse
|
31
|
Batool S, Bin-T-Abid D, Batool H, Shahid S, Saleem M, Khan AU, Hamid A, Mahmood MS, Ashraf NM. Development of multi-epitope vaccine constructs for non-small cell lung cancer (NSCLC) against USA human leukocyte antigen background: an immunoinformatic approach toward future vaccine designing. Expert Opin Biol Ther 2021; 21:1525-1533. [PMID: 34547976 DOI: 10.1080/14712598.2021.1981285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The design of peptide-based vaccines for cancer is a promising immunotherapy that can induce a cancer-specific cytotoxic response in tumor cells. METHODS Herein, we used the immunoinformatic approach in designing a multi-epitope vaccine targeting G-protein coupled receptor 87 (GPCR-87), cystine/glutamate transporter (SLC7A11), Immunoglobulin binding protein 1 (IGBP1), and thioredoxin domain-containing protein 5 (TXNDC5), which can potentially contribute to NSCLC. The MHC-I and MHC-II epitopes selected for the fusion construct were evaluated for their antigenic and non-allergenic natures via VaxiJen and AllerTop. RESULTS A total of five epitopes, four class-I (FIFYLKNIV, CRYTSVLFY, RYLKVVKPF, and RQAKIQRYK), and one class-II (NQVRGYPTLLWFRDG), having combined USA population coverage of 100%, were used to make ten possible multi-epitope fusion constructs. In these constructs, PADRE, a universal T-helper epitope, and RSO9, a TLR4 agonist, were fused as adjuvants. The molecular docking analysis revealed that two constructs were showing significant binding affinities toward HLA-A*02:01, the most prevalent HLA allele in USA. Moreover, MD simulations marked one construct as a promising therapeutic candidate. CONCLUSION The multi-epitope vaccine constructs designed using immunogenic, and non-allergenic peptides of NSCLS tumor-associated proteins are likely to pose significant therapeutic efficacies in cancer immunotherapy due to their high binding affinities toward HLA molecules.
Collapse
Affiliation(s)
- Sana Batool
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.,School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Duaa Bin-T-Abid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Hina Batool
- Department of Life Science, School of Science, University of Management Technology, Lahore, Pakistan
| | - Saher Shahid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mahjabeen Saleem
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Azmat Ullah Khan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat Pakistan
| | | | - Malik Siddique Mahmood
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.,Department of Biochemistry, Nur International University, Lahore, Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat Pakistan
| |
Collapse
|
32
|
Tan Z, Ge C, Feng D, Xu C, Cao B, Xie Y, Zhou H, Wang G, Aa J. The Interleukin-6/Signal Transducer and Activator of Transcription-3/Cystathionine γ-Lyase Axis Deciphers the Transformation Between the Sensitive and Resistant Phenotypes of Breast Cancer Cells. Drug Metab Dispos 2021; 49:985-994. [PMID: 34462267 DOI: 10.1124/dmd.121.000571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Drug resistance of cancer cells is associated with redox homeostasis. The mechanism of acquired resistance of cancer cells to antitumor drugs is not well understood. Our previous studies revealed that drug resistance and highly expressed P-glycoprotein (P-gp) of MCF-7 breast cancer cells was dependent on intracellular redox homeostasis and declined capacity for scavenging reactive oxygen species (ROS). Recently, we observed that, unlike nontumorigenic cells MCF-10A, three tumorigenic breast cancer cells (MCF-7S, BT474, MDA-MB-231) reprogrammed their metabolism, highly expressed cystathionine-γ-lyase (CTH), and acquired a particular specialty to use methionine (Met) to synthesize glutathione (GSH) through the transsulfuration pathway. Interestingly, doxorubicin (adriamycin) further reprogrammed metabolism of MCF-7 cells sensitive to adriamycin (MCF-7S) and induced them to be another MCF-7 cell line resistant to adriamycin (MCF-7R) with dramatically downregulated CTH. The two MCF-7 cell lines showed distinctly different phenotypes in terms of intracellular GSH, ROS levels, expression and activity of P-gp and CTH, and drug resistance. We showed that CTH modulation or the methionine supply brought about the interconversion between MCF-7S and MCF-7R. Methionine deprivation or CTH silencing induced a resistant MCF-7R and lowered paclitaxel activity, yet methionine supplementation or CTH overexpression reversed the above effects, induced a sensitive phenotype of MCF-7S, and significantly increased the cytotoxicity of paclitaxel both in vitro and in vivo. Interleukin-6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) initiated CTH expression and activity, and the effect on the resistant phenotype was exclusively dependent on CTH and ROS. This study suggests that the IL-6/STAT3/CTH axis plays a key role in the transformation between sensitive and resistant MCF-7 cells. SIGNIFICANCE STATEMENT: Cystathionine γ-lyase (CTH) plays a key role in transformation between the sensitive and resistant phenotypes of MCF-7 cells and is dependent on the interleukin-6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) signaling axis. Modulation of the transsulfuration pathway on CTH or IL-6/STAT3 or methionine supplementation is beneficial for reversing the resistance of MCF-7 cells, which indicates a clinical translation potential.
Collapse
Affiliation(s)
- Zhaoyi Tan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Chun Ge
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Dong Feng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Chen Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Bei Cao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Honghao Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (Z.T., D.F., C.X., Y.X., G.W.) and Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy (C.G.), China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (C.G.); Nanjing Southern Pharmaceutical Technology Co. Ltd., Nanjing, China (D.F.); Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China (B.C.); and Pharmacogenetics Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China (H.Z.)
| |
Collapse
|
33
|
Wang D, Wei G, Ma J, Cheng S, Jia L, Song X, Zhang M, Ju M, Wang L, Zhao L, Xin S. Identification of the prognostic value of ferroptosis-related gene signature in breast cancer patients. BMC Cancer 2021; 21:645. [PMID: 34059009 PMCID: PMC8165796 DOI: 10.1186/s12885-021-08341-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Background Breast cancer (BRCA) is a malignant tumor with high morbidity and mortality, which is a threat to women’s health worldwide. Ferroptosis is closely related to the occurrence and development of breast cancer. Here, we aimed to establish a ferroptosis-related prognostic gene signature for predicting patients’ survival. Methods Gene expression profile and corresponding clinical information of patients from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. The Least absolute shrinkage and selection operator (LASSO)-penalized Cox regression analysis model was utilized to construct a multigene signature. The Kaplan-Meier (K-M) and Receiver Operating Characteristic (ROC) curves were plotted to validate the predictive effect of the prognostic signature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes, Genomes (KEGG) pathway and single-sample gene set enrichment analysis (ssGSEA) were performed for patients between the high-risk and low-risk groups divided by the median value of risk score. Results We constructed a prognostic signature consisted of nine ferroptosis-related genes (ALOX15, CISD1, CS, GCLC, GPX4, SLC7A11, EMC2, G6PD and ACSF2). The Kaplan-Meier curves validated the fine predictive accuracy of the prognostic signature (p < 0.001). The area under the curve (AUC) of the ROC curves manifested that the ferroptosis-related signature had moderate predictive power. GO and KEGG functional analysis revealed that immune-related responses were largely enriched, and immune cells, including activated dendritic cells (aDCs), dendritic cells (DCs), T-helper 1 (Th1), were higher in high-risk groups (p < 0.001). Oppositely, type I IFN response and type II IFN response were lower in high-risk groups (p < 0.001). Conclusion Our study indicated that the ferroptosis-related prognostic signature gene could serve as a novel biomarker for predicting breast cancer patients’ prognosis. Furthermore, we found that immunotherapy might play a vital role in therapeutic schedule based on the level and difference of immune-related cells and pathways in different risk groups for breast cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08341-2.
Collapse
Affiliation(s)
- Ding Wang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Guodong Wei
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ju Ma
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shuai Cheng
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Longyuan Jia
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Ming Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
34
|
Cao S, Tang J, Huang Y, Li G, Li Z, Cai W, Yuan Y, Liu J, Huang X, Zhang H. The Road of Solid Tumor Survival: From Drug-Induced Endoplasmic Reticulum Stress to Drug Resistance. Front Mol Biosci 2021; 8:620514. [PMID: 33928116 PMCID: PMC8076597 DOI: 10.3389/fmolb.2021.620514] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Endoplasmic reticulum stress (ERS), which refers to a series of adaptive responses to the disruption of endoplasmic reticulum (ER) homeostasis, occurs when cells are treated by drugs or undergo microenvironmental changes that cause the accumulation of unfolded/misfolded proteins. ERS is one of the key responses during the drug treatment of solid tumors. Drugs induce ERS by reactive oxygen species (ROS) accumulation and Ca2+ overload. The unfolded protein response (UPR) is one of ERS. Studies have indicated that the mechanism of ERS-mediated drug resistance is primarily associated with UPR, which has three main sensors (PERK, IRE1α, and ATF6). ERS-mediated drug resistance in solid tumor cells is both intrinsic and extrinsic. Intrinsic ERS in the solid tumor cells, the signal pathway of UPR-mediated drug resistance, includes apoptosis inhibition signal pathway, protective autophagy signal pathway, ABC transporter signal pathway, Wnt/β-Catenin signal pathway, and noncoding RNA. Among them, apoptosis inhibition is one of the major causes of drug resistance. Drugs activate ERS and its downstream antiapoptotic proteins, which leads to drug resistance. Protective autophagy promotes the survival of solid tumor cells by devouring the damaged organelles and other materials and providing new energy for the cells. ERS induces protective autophagy by promoting the expression of autophagy-related genes, such as Beclin-1 and ATG5–ATG12. ABC transporters pump drugs out of the cell, which reduces the drug-induced apoptosis effect and leads to drug resistance. In addition, the Wnt/β-catenin signal pathway is also involved in the drug resistance of solid tumor cells. Furthermore, noncoding RNA regulates the ERS-mediated survival and death of solid tumor cells. Extrinsic ERS in the solid tumor cells, such as ERS in immune cells of the tumor microenvironment (TME), also plays a crucial role in drug resistance by triggering immunosuppression. In immune system cells, ERS in dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) influences the antitumor function of normal T cells, which results in immunosuppression. Meanwhile, ERS in T cells can also cause impaired functioning and apoptosis, leading to immunosuppression. In this review, we highlight the core molecular mechanism of drug-induced ERS involved in drug resistance, thereby providing a new strategy for solid tumor treatment.
Collapse
Affiliation(s)
- Shulong Cao
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jingyi Tang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yichun Huang
- Clinical Medical College, Hubei University of Science and Technology, Xianning, China
| | - Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhuoya Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wenqi Cai
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yuning Yuan
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Junlong Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xuqun Huang
- Edong Healthcare Group, Department of Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| |
Collapse
|
35
|
Wang T, Dong J, Yuan X, Wen H, Wu L, Liu J, Sui H, Deng W. A New Chalcone Derivative C49 Reverses Doxorubicin Resistance in MCF-7/DOX Cells by Inhibiting P-Glycoprotein Expression. Front Pharmacol 2021; 12:653306. [PMID: 33927626 PMCID: PMC8076869 DOI: 10.3389/fphar.2021.653306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: C49 is a chalcone derivative. The aim of the current study is to illuminate the efficacy of C49 in reversing multidrug resistance (MDR) in MCF-7/DOX cells and its underlying molecular mechanism. Methods: The cytotoxic effects of C49 on MCF-7/DOX cells were evaluated by MTT assay using different concentration (0-250 μmol/L) of C49. Cell proliferation was evaluated by colony formation assay. Cell death was examined by morphological analysis using Hoechst 33,258 staining. Flow cytometry and immunofluorescence were utilized to evaluate the intracellular accumulation of doxorubicin (DOX) and cell apoptosis. The differentially expressed genns between MCF-7 and MCF-7/DOX cells were analyzed by GEO database. The expression of PI3K/Akt pathway proteins were assessed by Western blot The activities of C49 combined with DOX was evaluated via xenograft tumor model in female BALB/c nude mice. Results: C49 inhibited the growth of MCF-7 cells (IC50 = 59.82 ± 2.10 μmol/L) and MCF-7/DOX cells (IC50 = 65.69 ± 8.11 μmol/L) with dosage-dependent and enhanced the cellular accumulation of DOX in MCF-7/DOX cells. The combination of C49 and DOX inhibited cell proliferation and promoted cell apoptosis. MCF-7/DOX cells regained drug sensibility with the combination treatment through inhibiting the expression of P-gp, p-PI3K and p-Akt proteins. Meanwhile, C49 significantly increased the anticancer efficacy of DOX in vivo. Conclusion: C49 combined with DOX restored DOX sensitivity in MCF-7/DOX cells through inhibiting P-gp protein.
Collapse
Affiliation(s)
- Ting Wang
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Dong
- Shanghai Bailijia Health Pharmaceutical Technology, Shanghai, China
| | - Xu Yuan
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haotian Wen
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linguangjin Wu
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hua Sui
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanli Deng
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
36
|
L-type amino acid transporter 1 is associated with chemoresistance in breast cancer via the promotion of amino acid metabolism. Sci Rep 2021; 11:589. [PMID: 33436954 PMCID: PMC7803739 DOI: 10.1038/s41598-020-80668-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
18F-FDG PET/CT has been used as an indicator of chemotherapy effects, but cancer cells can remain even when no FDG uptake is detected, indicating the importance of exploring other metabolomic pathways. Therefore, we explored the amino acid metabolism, including L-type amino acid transporter-1 (LAT1), in breast cancer tissues and clarified the role of LAT1 in therapeutic resistance and clinical outcomes of patients. We evaluated LAT1 expression before and after neoadjuvant chemotherapy and examined the correlation of glucose uptake using FDG-PET with the pathological response of patients. It revealed that LAT1 levels correlated with proliferation after chemotherapy, and amino acid and glucose metabolism were closely correlated. In addition, LAT1 was considered to be involved in treatment resistance and sensitivity only in luminal type breast cancer. Results of in vitro analyses revealed that LAT1 promoted amino acid uptake, which contributed to energy production by supplying amino acids to the TCA cycle. However, in MCF-7 cells treated with chemotherapeutic agents, oncometabolites and branched-chain amino acids also played a pivotal role in energy production and drug resistance, despite decreased glucose metabolism. In conclusion, LAT1 was involved in drug resistance and could be a novel therapeutic target against chemotherapy resistance in luminal type breast cancer.
Collapse
|
37
|
Kahya U, Köseer AS, Dubrovska A. Amino Acid Transporters on the Guard of Cell Genome and Epigenome. Cancers (Basel) 2021; 13:E125. [PMID: 33401748 PMCID: PMC7796306 DOI: 10.3390/cancers13010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.
Collapse
Affiliation(s)
- Uğur Kahya
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Ayşe Sedef Köseer
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Wang D, Zhao C, Xu F, Zhang A, Jin M, Zhang K, Liu L, Hua Q, Zhao J, Liu J, Yang H, Huang G. Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2. Theranostics 2021; 11:2860-2875. [PMID: 33456577 PMCID: PMC7806469 DOI: 10.7150/thno.51797] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
Hypoxia is commonly observed in solid tumors and contributes to the resistance of DNA damage drugs. However, the mechanisms behind this resistance are still unclear. In this study, we aimed to explore the effects of hypoxia-induced exosomes on non-small cell lung cancer (NSCLC). Methods: NSCLC cells were subjected to either normoxic or hypoxic conditions to assess cell survival and changes in the expression levels of key proteins. Comparative proteomics were performed to identify exosomal PKM2 in normoxic or hypoxic cisplatin-resistant NSCLC cells-derived exosomes. Functions of hypoxia induced-exosomal PKM2 in promoting cisplatin resistance to NSCLC cells were evaluated both in vitro and in vivo experiments and the molecular mechanisms of hypoxia induced-exosomal PKM2 were demonstrated using flow cytometry, immunoblotting, oxidative stress detection and histological examination. A series of in vitro experiments were performed to evaluate the function of hypoxia-induced exosomes on cancer-associated fibroblasts (CAFs). Results: Hypoxia exacerbated the cisplatin resistance in lung cancer cells due to the increased expression of PKM2 that was observed in the exosomes secreted by hypoxic cisplatin-resistance cells. We identified that hypoxia-induced exosomal PKM2 transmitted cisplatin-resistance to sensitive NSCLC cells in vitro and in vivo. Mechanistically, hypoxia-induced exosomal PKM2 promoted glycolysis in NSCLC cells to produce reductive metabolites, which may neutralize reactive oxygen species (ROS) induced by cisplatin. Additionally, hypoxia-induced exosomal PKM2 inhibited apoptosis in a PKM2-BCL2-dependent manner. Moreover, hypoxia-induced exosomal PKM2 reprogrammed CAFs to create an acidic microenvironment promoting NSCLC cells proliferation and cisplatin resistance. Conclusions: Our findings revealed that hypoxia-induced exosomes transmit cisplatin resistance to sensitive NSCLC cells by delivering PKM2. Exosomal PKM2 may serve as a promising biomarker and therapeutic target for cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Dongliang Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Chaoshuai Zhao
- Department of Dermatology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Fei Xu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Aimi Zhang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Kunchi Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Hua
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jian Zhao
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
39
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
40
|
Lin W, Wang C, Liu G, Bi C, Wang X, Zhou Q, Jin H. SLC7A11/xCT in cancer: biological functions and therapeutic implications. Am J Cancer Res 2020; 10:3106-3126. [PMID: 33163260 PMCID: PMC7642655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023] Open
Abstract
Amino acid transporters mediate substrates across cellular membranes and their fine-tuned regulations are critical to cellular metabolism, growth, and death. As the functional component of system Xc-, which imports extracellular cystine with intracellular glutamate release at a ratio of 1:1, SLC7A11 has diverse functional roles in regulating many pathophysiological processes such as cellular redox homeostasis, ferroptosis, and drug resistance in cancer. Notably, accumulated evidence demonstrated that SLC7A11 is overexpressed in many types of cancers and is associated with patients' poor prognosis. As a result, SLC7A11 becomes a new potential target for cancer therapy. In this review, we first briefly introduce the structure and function of SLC7A11, then discuss its pathological role in cancer. We next summarize current available data of how SLC7A11 is subjected to fine regulations at multiple levels. We further describe the potential inhibitors of the SLC7A11 and their roles in human cancer cells. Finally, we propose novel insights for future perspectives on the modulation of SLC7A11, as well as possible targeted strategies for SLC7A11-based anti-cancer therapies.
Collapse
Affiliation(s)
- Wenyu Lin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhou 310016, Zhejiang, China
| | - Chaoqun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical UniversityDongyang 322100, Zhejiang, China
| | - Guangping Liu
- College of Life Sciences, Yan’an UniversityYan’an 716000, Shaanxi, China
| | - Chao Bi
- Institute of Translational Medicine, Zhejiang University School of MedicineHangzhou 310029, Zhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhou 310016, Zhejiang, China
| | - Qiyin Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhou 310016, Zhejiang, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhou 310016, Zhejiang, China
| |
Collapse
|
41
|
Zhang S, Asghar S, Yu F, Hu Z, Ping Q, Chen Z, Shao F, Xiao Y. The enhancement of N-acetylcysteine on intestinal absorption and oral bioavailability of hydrophobic curcumin. Eur J Pharm Sci 2020; 154:105506. [PMID: 32763460 DOI: 10.1016/j.ejps.2020.105506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022]
Abstract
To solve the low oral bioavailability of curcumin (CUR) due to the limits imposed by gastrointestinal (GI) barrier, we constructed a nano delivery system to evaluate the effect of N-acetyl-L-cysteine (NAC) on intestinal absorption and oral bioavailability of CUR. CUR was first encapsulated in bovine serum albumin nanoparticles (CUR-BSA-NPs), and then was further modified by NAC (CUR-NBSA-NPs). In situ single-pass intestinal perfusion assay demonstrated that CUR-NBSA-NPs displayed excellent permeation and absorption rates in GI tract. Additionally, the distribution study in GI tract revealed that more NBSA-NPs were absorbed by intestinal segments compared to the BSA nanoparticles. Plasma concentration-time curves in rats showed that AUC0-t, Cmax and MRT0-t values of CUR after oral administration of CUR-NBSA-NPs were increased to 3.25-, 4.42-, and 1.43-fold compared with that of CUR suspension. In conclusion, NAC promotes oral absorption of CUR, thereby improving its oral bioavailability.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Feng Yu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ziyi Hu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qineng Ping
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhipeng Chen
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Feng Shao
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yanyu Xiao
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
42
|
Systematic analysis of the ABC transporter family in hepatocellular carcinoma reveals the importance of ABCB6 in regulating ferroptosis. Life Sci 2020; 257:118131. [PMID: 32710948 DOI: 10.1016/j.lfs.2020.118131] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/11/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023]
Abstract
AIMS ATP-binding cassette (ABC) transporters constitute one of the largest families of membrane proteins in most organisms; however, their functions in hepatocellular carcinoma (HCC) remain unclear. MAIN METHODS A set of bioinformatic tools was integrated to analyze the expression of 49 members of the ABC transporter family. The function of members which had prognostic values in HCC was explored by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. KEY FINDINGS ABCA8 and ABCA9 were significantly down-regulated in HCC. Prognostic analysis indicated that HCC patients with low expression of ABCA8 and ABCA9 had significantly shorter survival time. On the contrary, ABCB6 was over-expressed in the disease and high expression of ABCB6 was associated with worse prognosis. Co-expression analysis, and subsequently GO and KEGG analysis indicated that ABCA8 and ABCA9 might participate in the catabolic processes of multiple metabolites, while ABCB6 might regulate ferroptosis. SIGNIFICANCE This study reveals a previously unrecognized function of ABCB6 in HCC, by regulating ferroptosis. Since ABCB6 is over-expressed in HCC and ferroptosis involves in cancer development, ABCB6 might be a promising therapeutic target in the disease.
Collapse
|
43
|
Wuxiao Z, Wang H, Su Q, Zhou H, Hu M, Tao S, Xu L, Chen Y, Hao X. MicroRNA‑145 promotes the apoptosis of leukemic stem cells and enhances drug‑resistant K562/ADM cell sensitivity to adriamycin via the regulation of ABCE1. Int J Mol Med 2020; 46:1289-1300. [PMID: 32945355 PMCID: PMC7447303 DOI: 10.3892/ijmm.2020.4675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
Leukemia is a type of cancer which originates in blood-forming tissues. MicroRNAs (miRNAs or miRs) have been shown to be involved leukemogenesis. In the present study, following the gain- and loss-function of miR-145 and ATP-binding cassette sub-family E member 1 (ABCE1) in K562 cells and K562 adriamycin-resistant cells (K562/ADM cells), the levels of multidrug resistance protein 1 (MRP1) and P-glycoprotein (P-gp) were measured. The viability of the K562 cells and K562/ADM cells treated with various concentrations of ADM, and cell sensitivity to ADM were measured. The apoptosis of stem cells was detected. K562/ADM cells were transfected with miR-145 mimic or with miR-145 mimic together with ABCE1 overexpression plasmid to examine the effects of ABCE1 on the sensitivity of K562/ADM cells to ADM. The association between miR-145 and ABCE1/MRP1 was then verified. The dose- and time-dependent effects of ADM on the K562 cells and K562/ADM cells were examined. The K562/ADM cells exhibited a greater resistance to ADM, higher levels of MRP1 and P-gp, and a lower miR-145 expression. The K562/ADM cells and stem cells in which miR-145 was overexpressed exhibited a suppressed cell proliferation, decreased MRP1 and P-gp levels, and an increased apoptotic rate. However, K562 cells with a low expression of miR-145 exhibited an increased cell proliferation, increased levels of MRP1 and P-gp, and a suppressed apoptotic rate. Compared with the overexpression of miR-145, the combination of miR-145 and ABCE1 decreased the sensitivity of drug-resistant K562/ADM cells to ADM. The above-mentioned effects of miR-145 were achieved by targeting ABCE1. Taken together, the findings of the present study demonstrate that the overexpression of miR-145 promotes leukemic stem cell apoptosis and enhances the sensitivity of K562/ADM cells to ADM by inhibiting ABCE1.
Collapse
Affiliation(s)
- Zhijun Wuxiao
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Hua Wang
- Department of Hematological Oncology, Sun Yat‑sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Qunhao Su
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Haiyan Zhou
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Min Hu
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Shi Tao
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Lu Xu
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Yu Chen
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Xinbao Hao
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
44
|
Panda S, Banerjee N, Chatterjee S. Solute carrier proteins and c-Myc: a strong connection in cancer progression. Drug Discov Today 2020; 25:891-900. [DOI: 10.1016/j.drudis.2020.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 01/06/2023]
|
45
|
Kou L, Jiang X, Huang H, Lin X, Zhang Y, Yao Q, Chen R. The role of transporters in cancer redox homeostasis and cross-talk with nanomedicines. Asian J Pharm Sci 2020; 15:145-157. [PMID: 32373196 PMCID: PMC7193452 DOI: 10.1016/j.ajps.2020.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor cell usually exhibits high levels of reactive oxygen species and adaptive antioxidant system due to the metabolic, genetic, and microenvironment-associated alterations. The altered redox homeostasis can promote tumor progression, development, and treatment resistance. Several membrane transporters are involved in the resetting redox homeostasis and play important roles in tumor progression. Therefore, targeting the involved transporters to disrupt the altered redox balance emerges as a viable strategy for cancer therapy. In addition, nanomedicines have drawn much attention in the past decades. Using nanomedicines to target or reset the redox homeostasis alone or combined with other therapies has brought convincing data in cancer treatment. In this review, we will introduce the altered redox balance in cancer metabolism and involved transporters, and highlight the recent advancements of redox-modulating nanomedicines for cancer treatment.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinlu Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Youting Zhang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325035, China
- Corresponding author. Wenzhou Medical University, University Town, Wenzhou 325035, China. Tel: +86 18958969225
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Corresponding author. Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, China. Tel: +86 13806890233
| |
Collapse
|
46
|
Shen X, Lei J, Du L. miR-31-5p may enhance the efficacy of chemotherapy with Taxol and cisplatin in TNBC. Exp Ther Med 2019; 19:375-383. [PMID: 31853314 DOI: 10.3892/etm.2019.8191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
The limited efficacy of chemotherapy with Taxol (TAX) and cisplatin (DDP) in triple-negative breast cancer (TNBC) has prompted the investigation of combined therapies. Previous studies demonstrated that microRNA (miR)-31-5p is involved in various biological processes. In the present study, it was hypothesized that the overexpression of miR-31-5p may enhance the efficacy of chemotherapy. The expression levels of miR-31-5p in the TNBC cell lines MDA-MB-231 and MDA-MB-468 were measured using reverse transcription-quantitative PCR following transfection with miR-31-5p mimic or inhibitor. A Cell Counting Kit-8 and flow cytometry assays suggested that the overexpression of miR-31-5p inhibited cell proliferation and promoted apoptosis, and these effects were reversed by transfecting a miR-31-5p inhibitor into MDA-MB-231 and MDA-MB-468 cells. Furthermore, the overexpression of miR-31-5p increased the sensitivity of cells to chemotherapy, which exhibited an increase in apoptosis and in the expression level of Bax, and a decrease in the expression level of Bcl-2. Chemotherapy resistance induced by miR-31-5p inhibitor could be reversed by inhibiting the AKT signaling pathway in MDA-MB-231 and MDA-MB-468 cells. In conclusion, the present preclinical results indicated that targeting miR-31-5p may enhance the efficacy of TAX- and DDP-mediated chemotherapy in TNBC.
Collapse
Affiliation(s)
- Xiaowei Shen
- Department of General Surgery, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 200092, P.R. China
| | - Jiaqi Lei
- Department of General Surgery, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 200092, P.R. China
| | - Lei Du
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
47
|
Wang M, Zhai Y, Ye H, Lv Q, Sun B, Luo C, Jiang Q, Zhang H, Xu Y, Jing Y, Huang L, Sun J, He Z. High Co-loading Capacity and Stimuli-Responsive Release Based on Cascade Reaction of Self-Destructive Polymer for Improved Chemo-Photodynamic Therapy. ACS NANO 2019; 13:7010-7023. [PMID: 31188559 DOI: 10.1021/acsnano.9b02096] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photodynamic therapy (PDT) shows a promising synergy with chemotherapy in the therapeutic outcome of malignant cancers. The minimal invasiveness and nonsystemic toxicity are appealing advantages of PDT, but combination with chemotherapy brings in the nonselective toxicity. We designed a polymeric nanoparticle system that contains both a chemotherapeutic agent and a photosensitizer to seek improvement for chemo-photodynamic therapy. First, to address the challenge of efficient co-delivery, polymer-conjugated doxorubicin (PEG-PBC-TKDOX) was synthesized to load photosensitizer chlorin e6 (Ce6). Ce6 is retained with DOX by a π-π stacking interaction, with high loading (41.9 wt %) and the optimal nanoparticle size (50 nm). Second, light given in PDT treatment not only excites Ce6 to produce cytotoxic reactive oxygen species (ROS) but also spatiotemporally activates a cascade reaction to release the loaded drugs. Finally, we report a self-destructive polymeric carrier (PEG-PBC-TKDOX) that depolymerizes its backbone to facilitate drug release upon ROS stimulus. This is achieved by grafting the ROS-sensitive pendant thioketal to aliphatic polycarbonate. When DOX is covalently modified to this polymer via thioketal, target specificity is controlled by light, and off-target delivery toxicity is mostly avoided. An oral squamous cell carcinoma that is clinically relevant to PDT was used as the cancer model. We put forward a polymeric system with improved efficiency for chemo-photodynamic therapy and reduced off-target toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | | | | |
Collapse
|
48
|
Shen BY, Chen C, Xu YF, Shen JJ, Guo HM, Li HF, Li XN, Kang D, Shao YH, Zhu ZP, Yin XX, Xie L, Wang GJ, Liang Y. Is the combinational administration of doxorubicin and glutathione a reasonable proposal? Acta Pharmacol Sin 2019; 40:699-709. [PMID: 30218071 PMCID: PMC6786300 DOI: 10.1038/s41401-018-0158-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/25/2018] [Indexed: 11/08/2022] Open
Abstract
The combinational administration of antioxidants and chemotherapeutic agents during conventional cancer treatment is among one of the most controversial areas in oncology. Although the data on the combinational usage of doxorubicin (DOX) and glutathione (GSH) agents have been explored for over 20 years, the duration, administration route, and authentic rationality have not yet been fully understood yet. In the current study, we systematically investigated the pharmacokinetics (PK) and pharmacodynamics (PD) with both in vivo and in vitro models to elucidate the influence of GSH on the toxicity and efficacy of DOX. We first studied the cardioprotective and hepatoprotective effects of GSH in Balb/c mice, H9c2, and HL7702 cells. We showed that coadministration of exogenous GSH (5, 50, and 500 mg/kg per day, intragastric) significantly attenuated DOX-induced cardiotoxicity and hepatotoxicity by increasing intracellular GSH levels, whereas the elevated GSH concentrations did not affect the exposure of DOX in mouse heart and liver. From PK and PD perspectives, then the influences of GSH on the chemotherapeutic efficacy of DOX were investigated in xenografted nude mice and cancer cell models, including MCF-7, HepG2, and Caco-2 cells, which revealed that administration of exogenous GSH dose-dependently attenuated the anticancer efficacy of DOX in vivo and in vitro, although the elevated GSH levels neither influenced the concentration of DOX in tumors in vivo, nor the uptake of DOX in MCF-7 tumor cells in vitro. Based on the results we suggest that the combined administration of GSH and DOX should be contraindicated during chemotherapy unless DOX has caused serious hepatotoxicity and cardiotoxicity.
Collapse
Affiliation(s)
- Bo-Yu Shen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Chong Chen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Yang-Fan Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Jia-Jia Shen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Hui-Min Guo
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Hao-Feng Li
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Xi-Nuo Li
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Dian Kang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Yu-Hao Shao
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Zhang-Pei Zhu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Xiao-Xi Yin
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Lin Xie
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Guang-Ji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China.
| | - Yan Liang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
49
|
Lv X, Zhu Y, Ghandehari H, Yu A, Wang Y. An ROS-responsive and self-accelerating drug release nanoplatform for overcoming multidrug resistance. Chem Commun (Camb) 2019; 55:3383-3386. [PMID: 30821310 DOI: 10.1039/c9cc00358d] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An 'on-demand' drug release and ROS-responsive nanoparticle was prepared by chemically conjugating hydrophobic α-tocopheryl succinate to hydrophilic poly(ethylene glycol) via a thioketal linker. This nanoparticle encapsulated with doxorubicin and α-tocopheryl succinate exhibited remarkable efficiency in reversing multidrug resistance both in vitro and in vivo.
Collapse
Affiliation(s)
- Xueming Lv
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | | | | | | | |
Collapse
|
50
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|