1
|
Megariti M, Panagou A, Patsis G, Papadakis G, Pantazis AK, Paplomatas EJ, Tzima AK, Markakis EA, Gizeli E. Rapid real-time quantitative colorimetric LAMP methodology for field detection of Verticillium dahliae in crude olive-plant samples. PLANT METHODS 2024; 20:139. [PMID: 39252004 PMCID: PMC11386372 DOI: 10.1186/s13007-024-01251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Verticilium dahliae is the most important wilt pathogen of olive trees with a broad host range causing devastating diseases currently without any effective chemical control. Traditional detection methodologies are based on symptoms-observation or lab-detection using time consuming culturing or molecular techniques. Therefore, there is an increasing need for portable tools that can detect rapidly V. dahliae in the field. RESULTS In this work, we report the development of a novel method for the rapid, reliable and on-site detection of V. dahliae using a newly designed isothermal LAMP assay and crude extracts of olive wood. For the detection of the fungus, LAMP primers were designed targeting the internal transcribed spacer (ITS) region of the rRNA gene. The above assay was combined with a purpose-built prototype portable device which allowed real time quantitative colorimetric detection of V. dahliae in 35 min. The limit of detection of our assay was found to be 0.8 fg/μl reaction and the specificity 100% as indicated by zero cross-reactivity to common pathogens found in olive trees. Moreover, detection of V. dahliae in purified DNA gave a sensitivity of 100% (Ct < 30) and 80% (Ct > 30) while the detection of the fungus in unpurified crude wood extracts showed a sensitivity of 80% when multisampling was implemented. The superiority of the LAMP methodology regarding robustness and sensitivity was demonstrated when only LAMP was able to detect V. dahliae in crude samples from naturally infected trees with very low infection levels, while nested PCR and SYBR qPCR failed to detect the pathogen in an unpurified form. CONCLUSIONS This study describes the development of a new real time LAMP assay, targeting the ITS region of the rRNA gene of V. dahliae in olive trees combined with a 3D-printed portable device for field testing using a tablet. The assay is characterized by high sensitivity and specificity as well as ability to operate using directly crude samples such as woody tissue or petioles. The reported methodology is setting the basis for the development of an on-site detection methodology for V. dahliae in olive trees, but also for other plant pathogens.
Collapse
Affiliation(s)
- Maria Megariti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - Alexandra Panagou
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 118 55, Athens, Greece
| | - Georgios Patsis
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 118 55, Athens, Greece
| | - George Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - Alexandros K Pantazis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - Epaminondas J Paplomatas
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 118 55, Athens, Greece
| | - Aliki K Tzima
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 118 55, Athens, Greece.
| | - Emmanouil A Markakis
- Laboratory of Mycology, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA, 32A Kastorias Street, Mesa Katsabas, 71307, Heraklion, Crete, Greece.
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Stavromenos, 71004, Heraklion, Greece.
| | - Electra Gizeli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.
- Department of Biology, University of Crete, Voutes, 70013, Heraklion, Greece.
| |
Collapse
|
2
|
Søndreli KL, Tabima JF, LeBoldus JM. Rapid New Diagnostic LAMP (Loop-Mediated Isothermal Amplification) Assays to Distinguish Among the Four Lineages of Phytophthora ramorum. PLANT DISEASE 2023; 107:3553-3559. [PMID: 37194212 DOI: 10.1094/pdis-08-22-1965-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sudden oak death (SOD) is caused by Phytophthora ramorum, an invasive oomycete pathogen. This pathogen is of major regulatory concern for nurseries, horticulture, and forestry in the United States and around the world. Three of the 12 identified lineages of P. ramorum currently occur in the United States (NA1, NA2, and EU1) affecting wildland forests and nurseries. Rapid identification and lineage determination is essential to accelerate management decisions, detect introductions of new lineages, and control the spread of SOD. The objective of this study was to develop and validate diagnostic tools to rapidly identify P. ramorum and distinguish among the four common lineages of the pathogen and to accelarate management decision making. The loop-mediated isothermal amplification (LAMP) assays developed here are species specific with no cross reaction to common Phytophthora species found in Oregon, California, and Washington. The lineage-specific assays unambiguously distinguish among the four common clonal lineages. These assays are sensitive and able to detect P. ramorum DNA ranging in concentration from 30 to 0.03 ng/μl depending on the assay. These assays work effectively on a variety of sample types including plant tissue, cultures, and DNA. They have been integrated into the SOD diagnostic process in the forest pathology lab at Oregon State University. To date, 190 samples have been correctly identified from over 200 field samples tested for lineage determination. The development of these assays will help managers in forestry and horticulture identify and rapidly respond to new outbreaks of P. ramorum.
Collapse
Affiliation(s)
- Kelsey L Søndreli
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Javier F Tabima
- Department of Biology, Clark University, The Lasry Center for Bioscience, Worcester, MA 01610
| | - Jared M LeBoldus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
- Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
3
|
Zhang X, Zhao Y, Zeng Y, Zhang C. Evolution of the Probe-Based Loop-Mediated Isothermal Amplification (LAMP) Assays in Pathogen Detection. Diagnostics (Basel) 2023; 13:diagnostics13091530. [PMID: 37174922 PMCID: PMC10177487 DOI: 10.3390/diagnostics13091530] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Loop-mediated isothermal amplification (LAMP), as the rank one alternative to a polymerase chain reaction (PCR), has been widely applied in point-of-care testing (POCT) due to its rapid, simple, and cost-effective characteristics. However, it is difficult to achieve real-time monitoring and multiplex detection with the traditional LAMP method. In addition, these approaches that use turbidimetry, sequence-independent intercalating dyes, or pH-sensitive indicators to indirectly reflect amplification can result in false-positive results if non-specific amplification occurs. To fulfill the needs of specific target detection and one-pot multiplex detection, a variety of probe-based LAMP assays have been developed. This review focuses on the principles of these assays, summarizes their applications in pathogen detection, and discusses their features and advantages over the traditional LAMP methods.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yongjuan Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yi Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
4
|
Liu J, Liang M, Lin T, Zhao Q, Wang H, Yang S, Guo Q, Wang X, Guo H, Cui L, Yan Y, Hieno A, Kageyama K, Suga H, Li M. A LAMP-Based Toolbox Developed for Detecting the Major Pathogens Affecting the Production and Quality of the Chinese Medicinal Crop Aconitum carmichaelii. PLANT DISEASE 2023; 107:658-666. [PMID: 35852903 DOI: 10.1094/pdis-05-22-1092-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aconitum carmichaelii Debeaux is a traditional Chinese medicinal herb that has been utilized for approximately 2,000 years. However, as cultivation has increased, there have been more reports of A. carmichaelii infections caused by four major pathogenic fungal species, Fusarium oxysporum, F. solani, Mucor circinelloides, and Sclerotium rolfsii, resulting in increased disease incidences and limited production and quality. To detect these infections, we developed a LAMP-based toolbox in this study. The cytochrome c oxidase subunit 1 (cox1) gene, translation elongation factor-1α (EF-1α), internal transcribed spacer (ITS) regions of rDNA, and alcohol dehydrogenase 1 (ADH1) gene, respectively, were used to design species-specific LAMP primer sets for F. oxysporum, F. solani, S. rolfsii, and M. circinelloides. The results showed that the LAMP-based toolbox was effective at detecting pathogens in soil and plant materials. We also used this toolbox to investigate pathogen infection in the main planting regions of A. carmichaelii. Before harvesting, F. oxysporum, M. circinelloides, and S. rolfsii were commonly found in the planting fields and in infected A. carmichaelii plants. Therefore, the toolbox we developed will be useful for tracking these infections, as well as for disease control in A. carmichaelii.
Collapse
Affiliation(s)
- Jingzhe Liu
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
| | - Mengyi Liang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Tao Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Qing Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Shunyuan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Qian Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Xinyi Wang
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
| | - Hua Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Langjun Cui
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
| | - Yaping Yan
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
| | - Ayaka Hieno
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan
| | - Koji Kageyama
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan
| | - Haruhisa Suga
- Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Mingzhu Li
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| |
Collapse
|
5
|
Bellah H, Gazeau G, Gélisse S, Amezrou R, Marcel TC, Croll D. A highly multiplexed assay to monitor pathogenicity, fungicide resistance and gene flow in the fungal wheat pathogen Zymoseptoria tritici. PLoS One 2023; 18:e0281181. [PMID: 36745583 PMCID: PMC9901794 DOI: 10.1371/journal.pone.0281181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Crop pathogens pose severe risks to global food production due to the rapid rise of resistance to pesticides and host resistance breakdowns. Predicting future risks requires monitoring tools to identify changes in the genetic composition of pathogen populations. Here we report the design of a microfluidics-based amplicon sequencing assay to multiplex 798 loci targeting virulence and fungicide resistance genes, and randomly selected genome-wide markers for the fungal pathogen Zymoseptoria tritici. The fungus causes one of the most devastating diseases on wheat showing rapid adaptation to fungicides and host resistance. We optimized the primer design by integrating polymorphism data from 632 genomes of the same species. To test the performance of the assay, we genotyped 192 samples in two replicates. Analysis of the short-read sequence data generated by the assay showed a fairly stable success rate across samples to amplify a large number of loci. The performance was consistent between samples originating from pure genomic DNA as well as material extracted directly from infected wheat leaves. In samples with mixed genotypes, we found that the assay recovers variations in allele frequencies. We also explored the potential of the amplicon assay to recover transposable element insertion polymorphism relevant for fungicide resistance. As a proof-of-concept, we show that the assay recovers the pathogen population structure across French wheat fields. Genomic monitoring of crop pathogens contributes to more sustainable crop protection and yields.
Collapse
Affiliation(s)
- Hadjer Bellah
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gwilherm Gazeau
- INRAE, UR BIOGER, Université Paris-Saclay, Thiverval-Grignon, France
| | - Sandrine Gélisse
- INRAE, UR BIOGER, Université Paris-Saclay, Thiverval-Grignon, France
| | - Reda Amezrou
- INRAE, UR BIOGER, Université Paris-Saclay, Thiverval-Grignon, France
| | - Thierry C. Marcel
- INRAE, UR BIOGER, Université Paris-Saclay, Thiverval-Grignon, France
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
6
|
Fu Y, Zhang L, Xing Y, Deng S. Quantitative analysis of DNA methylation using sequence-specific, real-time loop-mediated isothermal amplification. Anal Chim Acta 2022; 1235:340535. [DOI: 10.1016/j.aca.2022.340535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/01/2022]
|
7
|
Dos Santos CA, Silva LDC, Souza Júnior MND, Mendes GDM, Estrela PFN, de Oliveira KG, de Curcio JS, Resende PC, Siqueira MM, Pauvolid-Corrêa A, Duarte GRM, Silveira-Lacerda EDP. Detecting lineage-defining mutations in SARS-CoV-2 using colorimetric RT-LAMP without probes or additional primers. Sci Rep 2022; 12:11500. [PMID: 35798777 PMCID: PMC9261132 DOI: 10.1038/s41598-022-15368-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Despite the advance of vaccination worldwide, epidemic waves caused by more transmissible and immune evasive genetic variants of SARS-CoV-2 have sustained the ongoing pandemic of COVID-19. Monitoring such variants is expensive, as it usually relies on whole-genome sequencing methods. Therefore, it is necessary to develop alternatives that could help identify samples from specific variants. Reverse transcription loop-mediated isothermal amplification is a method that has been increasingly used for nucleic acid amplification, as it is cheaper and easier to perform when compared to other molecular techniques. As a proof of concept that can help distinguish variants, we present an RT-LAMP assay capable of detecting samples carrying a group of mutations that can be related to specific SARS-CoV-2 lineages, here demonstrated for the Variant of Concern Gamma. We tested 60 SARS-CoV-2 RNA samples extracted from swab samples and the reaction showed a sensitivity of 93.33%, a specificity of 88.89% and a kappa value of 0.822 for samples with a Ct ≤ 22.93. The RT-LAMP assay demonstrated to be useful to distinguish VOC Gamma and may be of particular interest as a screening approach for variants in countries with poor sequencing coverage.
Collapse
Affiliation(s)
- Carlos Abelardo Dos Santos
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas I, Universidade Federal de Goiás, Goiânia, Goiás State, 74001-970, Brazil
| | - Lívia do Carmo Silva
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas I, Universidade Federal de Goiás, Goiânia, Goiás State, 74001-970, Brazil
| | | | | | | | | | - Juliana Santana de Curcio
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas I, Universidade Federal de Goiás, Goiânia, Goiás State, 74001-970, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Reference Laboratory for COVID-19 (WHO) of Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles, Reference Laboratory for COVID-19 (WHO) of Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | - Elisângela de Paula Silveira-Lacerda
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas I, Universidade Federal de Goiás, Goiânia, Goiás State, 74001-970, Brazil.
| |
Collapse
|
8
|
Ooi KH, Liu MM, Moo JR, Nimsamer P, Payungporn S, Kaewsapsak P, Tan MH. A Sensitive and Specific Fluorescent RT-LAMP Assay for SARS-CoV-2 Detection in Clinical Samples. ACS Synth Biol 2022; 11:448-463. [PMID: 34981924 DOI: 10.1021/acssynbio.1c00538] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The raging COVID-19 pandemic has created an unprecedented demand for frequent and widespread testing to limit viral transmission. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has emerged as a promising diagnostic platform for rapid detection of SARS-CoV-2, in part because it can be performed with simple instrumentation. However, isothermal amplification methods frequently yield spurious amplicons even in the absence of a template. Consequently, RT-LAMP assays can produce false positive results when they are based on generic intercalating dyes or pH-sensitive indicators. Here, we report the development of a sensitive RT-LAMP assay that leverages on a novel sequence-specific probe to guard against spurious amplicons. We show that our optimized fluorescent assay, termed LANTERN, takes only 30 min to complete and can be applied directly on swab or saliva samples. Furthermore, utilizing clinical RNA samples from 52 patients with COVID-19 infection and 21 healthy individuals, we demonstrate that our diagnostic test exhibits a specificity and positive predictive value of 95% with a sensitivity of 8 copies per reaction. Hence, our new probe-based RT-LAMP assay can serve as an inexpensive method for point-of-need diagnosis of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Kean Hean Ooi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, 138672 Singapore
| | - Mengying Mandy Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, 138672 Singapore
| | - Jia Rong Moo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Kaewsapsak
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Meng How Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, 138672 Singapore
| |
Collapse
|
9
|
Development of PCR-Based Race-Specific Markers for Differentiation of Indian Fusarium oxysporum f. sp. cubense, the Causal Agent of Fusarium Wilt in Banana. J Fungi (Basel) 2022; 8:jof8010053. [PMID: 35049993 PMCID: PMC8782045 DOI: 10.3390/jof8010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc), is the most lethal soil-borne fungal pathogen infecting bananas. Foc race 1 (R1) and 4 (R4) are the two most predominant races affecting the economically important Cavendish group of bananas in India. A total of seven vegetative compatibility groups (VCGs) from three pathogenic races were isolated during our field survey and were found to be highly virulent towards cv. Grande Naine. According to comparative genome analyses, these Indian Foc VCGs were diverse in genomic organization and effector gene profiles. As a result, false-positive results were obtained with currently available molecular markers. In this context, the study has been initiated to develop PCR-based molecular markers for the unambiguous identification of Indian Foc R1 and R4 isolates. Whole-genome sequences of Foc R1 (GCA_011316005.3), Foc TR4 (GCA_014282265.3), and Foc STR4 (GCA_016802205.1), as well as the reference genomes of Foc (ASM799451v1) and F. oxysporum f. sp. lycopersici (Fol; ASM14995v2), were aligned to identify unique variable regions among the Foc races. Using putative chromosome and predicted gene comparison, race-specific unique Foc virulence genes were identified. The putative lineage-specific identified genes encoding products secreted in xylem (SIX) that may be necessary for disease development in the banana. An in silico analysis was performed and primers were designed from a region where sequences were dissimilar with other races to develop a specific marker for Foc R1, R4, TR4, and STR4. These race-specific markers allowed target amplification in the characterized highly virulent Foc isolates, and did not show any cross-amplification to any other Foc races, VCGs or banana pathogens, Fusarium species, and non-pathogenic Fusarium oxysporum isolates. The study demonstrated that the molecular markers developed for all the three Foc races of India could detect the pathogen in planta and up to 0.025 pg µL−1 DNA levels. Thus, the markers developed in this study are novel and could potentially be useful for the accurate diagnosis and detection of the Indian Foc races which are important for the effective management of the disease.
Collapse
|
10
|
Kotera S, Hishiike M, Saito H, Komatsu K, Arie T. Differentiation of the Pea Wilt Pathogen Fusarium oxysporum f. sp. pisi from Other Isolates of Fusarium Species by PCR. Microbes Environ 2022; 37:ME21061. [PMID: 34980803 PMCID: PMC8958301 DOI: 10.1264/jsme2.me21061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Pea wilt disease, caused by the soilborne and seedborne fungal pathogen Fusarium oxysporum f. sp. pisi (Fop), first appeared in Japan in 2002. We herein investigated the molecular characteristics of 16 Fop isolates sampled from multiple locations and at different times in Japan. The 16 isolates were divided into three clades in molecular phylogenic ana-lyses based on both the TEF1α gene and the rDNA-IGS region. All of the Fop isolates harbored a PDA1 gene, which encodes the cytochrome P450 pisatin demethylase (Pda1), and also carried one or both of the SIX6 and SIX13 genes, which encode secreted in xylem (Six) proteins. Other forms of F. oxysporum and other species of Fusarium did not carry these sets of genes. Based on these results, a PCR method was developed to identify Fop and differentiate it from other forms and non-pathogenic isolates of Fusarium spp. We also demonstrated that the PCR method effectively detected Fop in infected pea plants and infested soils.
Collapse
Affiliation(s)
- Shunsuke Kotera
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
| | - Masashi Hishiike
- Wakayama Agricultural Experiment Station, Takao, Kishigawacho, Kinokawa, Wakayama, 640–0423, Japan
| | - Hiroki Saito
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
| | - Ken Komatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
| | - Tsutomu Arie
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
| |
Collapse
|
11
|
Xiao C, Li R. Detection and Control of Fusarium oxysporum from Soft Rot in Dendrobium officinale by Loop-Mediated Isothermal Amplification Assays. BIOLOGY 2021; 10:1136. [PMID: 34827129 PMCID: PMC8615024 DOI: 10.3390/biology10111136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/15/2023]
Abstract
Soft rot causing Fusarium oxysporum is one of the most destructive diseases of Dendrobium officinale Kimura et Migo in China that reduces D. officinale yield and quality. A key challenge for an integrated management strategy for this disease is the rapid and accurate detection of F. oxysporum on D. officinale. Therefore, a new loop-mediated isothermal amplification (LAMP) assay was developed for this purpose. In this study, the primers were selected and designed using the translation elongation factor-1α (TEF-1α) gene region as the target DNA sequence in order to screen the best system of reaction of LAMP to detect F. oxysporum through optimizing different conditions of the LAMP reaction, including time, temperature, concentrations of MgSO4, and concentrations of inner and outer primers. The optimized system was able to efficiently amplify the target gene at 62 °C for 60 min with 1.2 μM internal primers, 0.4 μM external primers, 7 mM Mg2+, and 5 fg/µL minimum detection concentration of DNA for F. oxysporum. The amplified products could be detected with the naked eye after completion of the reaction with SYBR green I. We were better able to control the effect of soft rot in D. officinale using fungicides following a positive test result. Additionally, the control effect of synergism combinations against soft rot was higher than 75%. Thus, LAMP assays could detect F. oxysporum in infected tissues of D. officinale and soils in field, allowing for early diagnosis of the disease.
Collapse
Affiliation(s)
- Caiyun Xiao
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China;
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Rongyu Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China;
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Khafizov KF, Petrov VV, Krasovitov KV, Zolkina MV, Akimkin VG. [Rapid diagnostics of novel coronavirus infection by loop-mediated isothermal amplification]. Vopr Virusol 2021; 66:17-28. [PMID: 33683062 DOI: 10.36233/0507-4088-42] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022]
Abstract
This review presents the basic principles of application of the loop-mediated isothermal amplification (LAMP) reaction for the rapid diagnosis of coronavirus infection caused by SARS-CoV-2. The basic technical details of the method, and the most popular approaches of specific and non-specific detection of amplification products are briefly described. We also discuss the first published works on the use of the method for the detection of the nucleic acid of the SARS-CoV-2 virus, including those being developed in the Russian Federation. For commercially available and published LAMP-based assays, the main analytical characteristics of the tests are listed, which are often comparable to those based on the method of reverse transcription polymerase chain reaction (RT-PCR), and in some cases are even superior. The advantages and limitations of this promising methodology in comparison to other methods of molecular diagnostics, primarily RT-PCR, are discussed, as well as the prospects for the development of technology for the detection of other infectious agents.
Collapse
Affiliation(s)
- K F Khafizov
- FSBI Central Research Institute for Epidemiology of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - V V Petrov
- FSBI Central Research Institute for Epidemiology of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - K V Krasovitov
- FSBI Central Research Institute for Epidemiology of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - M V Zolkina
- FSBI Central Research Institute for Epidemiology of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - V G Akimkin
- FSBI Central Research Institute for Epidemiology of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| |
Collapse
|
13
|
Varona M, Anderson JL. Advances in Mutation Detection Using Loop-Mediated Isothermal Amplification. ACS OMEGA 2021; 6:3463-3469. [PMID: 33585732 PMCID: PMC7876693 DOI: 10.1021/acsomega.0c06093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/21/2021] [Indexed: 05/25/2023]
Abstract
Detection of mutations and single-nucleotide polymorphisms is highly important for diagnostic applications. Loop-mediated isothermal amplification (LAMP) is a powerful technique for the rapid and sensitive detection of nucleic acids. However, LAMP traditionally does not possess the ability to resolve single-nucleotide differences within the target sequence. Because of its speed and isothermal nature, LAMP is ideally suited for point-of-care applications in resource-limited settings. Recently, different approaches have been developed and applied to enable single-nucleotide differentiation within target sequences. This Mini-Review highlights advancements in mutation detection using LAMP. Methods involving primer design and modification to enable sequence differentiation are discussed. In addition, the development of probe-based detection methods for mutation detection are also covered.
Collapse
|
14
|
Hariharan G, Prasannath K. Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Front Cell Infect Microbiol 2021; 10:600234. [PMID: 33505921 PMCID: PMC7829251 DOI: 10.3389/fcimb.2020.600234] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Phytopathogenic fungal species can cause enormous losses in quantity and quality of crop yields and this is a major economic issue in the global agricultural sector. Precise and rapid detection and identification of plant infecting fungi are essential to facilitate effective management of disease. DNA-based methods have become popular methods for accurate plant disease diagnostics. Recent developments in standard and variant polymerase chain reaction (PCR) assays including nested, multiplex, quantitative, bio and magnetic-capture hybridization PCR techniques, post and isothermal amplification methods, DNA and RNA based probe development, and next-generation sequencing provide novel tools in molecular diagnostics in fungal detection and differentiation fields. These molecular based detection techniques are effective in detecting symptomatic and asymptomatic diseases of both culturable and unculturable fungal pathogens in sole and co-infections. Even though the molecular diagnostic approaches have expanded substantially in the recent past, there is a long way to go in the development and application of molecular diagnostics in plant diseases. Molecular techniques used in plant disease diagnostics need to be more reliable, faster, and easier than conventional methods. Now the challenges are with scientists to develop practical techniques to be used for molecular diagnostics of plant diseases. Recent advancement in the improvement and application of molecular methods for diagnosing the widespread and emerging plant pathogenic fungi are discussed in this review.
Collapse
Affiliation(s)
- Ganeshamoorthy Hariharan
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| | - Kandeeparoopan Prasannath
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| |
Collapse
|
15
|
Duan Q, Li X, He X, Shen X, Cao Y, Zhang R, Bai X, Zhang J, Ma X. A duplex probe-directed recombinase amplification assay for detection of single nucleotide polymorphisms on 8q24 associated with prostate cancer. ACTA ACUST UNITED AC 2020; 54:e9549. [PMID: 33263645 PMCID: PMC7695445 DOI: 10.1590/1414-431x20209549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Single nucleotide polymorphisms (SNPs) have important application value in the research of population genetics, hereditary diseases, tumors, and drug development. Conventional methods for detecting SNPs are typically based on PCR or DNA sequencing, which is time-consuming, costly, and requires complex instrumentation. In this study, we present a duplex probe-directed recombinase amplification (duplex-PDRA) assay that can perform real-time detection of two SNPs (rs6983267 and rs1447295) in four reactions in two tubes at 39°C within 30 min. The sensitivity of duplex-PDRA was 2×103-104 copies per reaction and no cross-reactivity was observed. A total of 382 clinical samples (179 prostate cancer patients and 203 controls) from northern China were collected and tested by duplex-PDRA assay and direct sequencing. The genotyping results were completely identical. In addition, the association analysis of two SNPs with prostate cancer risk and bone metastasis was conducted. We found that the TT genotype of rs6983267 (OR: 0.42; 95%CI: 0.23-0.78; P=0.005) decreased the risk of prostate cancer, while the CA genotype of rs1447295 (OR: 1.89; 95%CI: 1.20-2.96; P=0.005) increased the risk of prostate cancer. However, no association between the two SNPs (rs6983267 and rs1447295) and bone metastasis in prostate cancer was found in this study (P>0.05). In conclusion, the duplex-PDRA assay is an effective method for the simultaneous detection of two SNPs and shows great potential for widespread use in research and clinical settings.
Collapse
Affiliation(s)
- Qingxia Duan
- Hebei Medical University, Shijiazhuang, Hebei, China.,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Xinna Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China.,Yangzhou Center for Disease Control and Prevention, Yangzhou, Jiangsu, China
| | - Xiaozhou He
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Xinxin Shen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Yu Cao
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ruiqing Zhang
- Hebei Medical University, Shijiazhuang, Hebei, China.,NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Xueding Bai
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Jinyan Zhang
- Hebei Medical University Fourth Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Xuejun Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| |
Collapse
|
16
|
Arie T. A new era in plant pathology in Japan: incorporation of the Phytopathological Society of Japan and research reform directed by genomic studies. JOURNAL OF GENERAL PLANT PATHOLOGY : JGPP 2020; 86:519-522. [PMID: 33071559 PMCID: PMC7549334 DOI: 10.1007/s10327-020-00957-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Tsutomu Arie
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509 Japan
| |
Collapse
|
17
|
Hieno A, Li M, Afandi A, Otsubo K, Suga H, Kageyama K. Detection of the Genus Phytophthora and the Species Phytophthora nicotianae by LAMP with a QProbe. PLANT DISEASE 2020; 104:2469-2480. [PMID: 32628090 DOI: 10.1094/pdis-12-19-2523-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora is an oomycete genus with worldwide distribution, and many of its species cause destructive diseases. In Japan, Phytophthora species are listed as quarantine organisms with the exception of Phytophthora nicotianae. For effective quarantine control, we designed a Phytophthora genus-specific loop-mediated isothermal amplification (LAMP) primer set and a P. nicotianae species-specific quenching probe (QProbe) to establish a simultaneous LAMP-based detection method. We confirmed the specificity of the genus-specific primers, and all 161 taxa were detected. No other species in the closely related genera Pythium and Phytopythium gave positive results with the exception of two species, Phytopythium delawarense and Phytopythium fagopyri. These two species gave inconsistent results. We used annealing curve analysis with the QProbe to demonstrate that P. nicotianae could be distinguished from other species. DNA from inoculated and naturally infected plants was extracted using a time-saving extraction kit and subjected to the simultaneous detection method. We confirmed that all Phytophthora DNAs in the plant samples were detected, and P. nicotianae was specifically identified. This simultaneous detection method will make quarantine inspections faster and easier.
Collapse
Affiliation(s)
- Ayaka Hieno
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu-city, Gifu, 501-1193, Japan
| | - Mingzhu Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Auliana Afandi
- Biotechnology Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kayoko Otsubo
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu-city, Gifu, 501-1193, Japan
| | - Haruhisa Suga
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu-city, Gifu, 501-1193, Japan
| | - Koji Kageyama
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu-city, Gifu, 501-1193, Japan
| |
Collapse
|
18
|
Rolando JC, Jue E, Barlow JT, Ismagilov RF. Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification. Nucleic Acids Res 2020; 48:e42. [PMID: 32103255 PMCID: PMC7144905 DOI: 10.1093/nar/gkaa099] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
Isothermal amplification assays, such as loop-mediated isothermal amplification (LAMP), show great utility for the development of rapid diagnostics for infectious diseases because they have high sensitivity, pathogen-specificity and potential for implementation at the point of care. However, elimination of non-specific amplification remains a key challenge for the optimization of LAMP assays. Here, using chlamydia DNA as a clinically relevant target and high-throughput sequencing as an analytical tool, we investigate a potential mechanism of non-specific amplification. We then develop a real-time digital LAMP (dLAMP) with high-resolution melting temperature (HRM) analysis and use this single-molecule approach to analyze approximately 1.2 million amplification events. We show that single-molecule HRM provides insight into specific and non-specific amplification in LAMP that are difficult to deduce from bulk measurements. We use real-time dLAMP with HRM to evaluate differences between polymerase enzymes, the impact of assay parameters (e.g. time, rate or florescence intensity), and the effect background human DNA. By differentiating true and false positives, HRM enables determination of the optimal assay and analysis parameters that leads to the lowest limit of detection (LOD) in a digital isothermal amplification assay.
Collapse
Affiliation(s)
- Justin C Rolando
- Division of Chemistry and Chemical Engineering, California Institute of Technology 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Erik Jue
- Division of Biology and Biological Engineering, California Institute of Technology 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Jacob T Barlow
- Division of Biology and Biological Engineering, California Institute of Technology 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology 1200 E. California Boulevard, Pasadena, CA 91125, USA
- Division of Biology and Biological Engineering, California Institute of Technology 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
19
|
Arie T. Fusarium diseases of cultivated plants, control, diagnosis, and molecular and genetic studies. JOURNAL OF PESTICIDE SCIENCE 2019; 44:275-281. [PMID: 31777447 PMCID: PMC6861427 DOI: 10.1584/jpestics.j19-03] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2019] [Indexed: 05/20/2023]
Abstract
Fusarium diseases are significant hindrances to food plant production and are very difficult to control, especially soilborne diseases caused by F. oxysporum. First I outline the Fusarium diseases and introduce examples of the recent outbreak of Fusarium diseases in Japan. Then I summarize my studies on (1) the control of Fusarium diseases by biological agents and by inducing resistance to diseases in plants, (2) the specific detection of forms and races in F. oxysporum using immunological measures and molecular measures based on phylogeny and pathogenicity-determining genes, and (3) molecular and genetic studies on Fusarium diseases, including evolutionary, genetic, and genomic analyses of the emergence and divergence of forms and races in F. oxysporum.
Collapse
Affiliation(s)
- Tsutomu Arie
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu 183–8509, Japan
| |
Collapse
|
20
|
He Z, Su Y, Li S, Long P, Zhang P, Chen Z. Development and Evaluation of Isothermal Amplification Methods for Rapid Detection of Lethal Amanita Species. Front Microbiol 2019; 10:1523. [PMID: 31338080 PMCID: PMC6626908 DOI: 10.3389/fmicb.2019.01523] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/18/2019] [Indexed: 12/04/2022] Open
Abstract
In the present work, loop-mediated isothermal amplification (LAMP) and hyperbranched rolling circle amplification (HRCA) methods were developed to detect and distinguish different lethal Amanita species. Specific LAMP primers and HRCA padlock probes for species-specific identification and a set of universal LAMP primers for lethal Amanita species were designed and tested. The results indicated that the LAMP-based assay was able to discriminate introclade lethal Amanita species but was not able to discriminate intraclade species perfectly, while the HRCA-based assay could discriminate whether introclade or intraclade species. The universal LAMP primers were positive for 10 lethal species of Amanita section Phalloideae and negative for 16 species of Amanita outside section Phalloideae. The detection limits of LMAP and HRCA were 10 and 1 pg of genomic DNA per reaction, respectively. In conclusion, the two methods could be rapid, specific, sensitive and low-cost tools for the identification of lethal Amanita species.
Collapse
Affiliation(s)
- Zhengmi He
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuting Su
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Sainan Li
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Pan Long
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ping Zhang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zuohong Chen
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
21
|
Tsujimura K, Bannai H, Nemoto M, Kokado H. Loop-mediated isothermal amplification-fluorescent loop primer assay for the genotyping of a single nucleotide polymorphism at position 2254 in the viral DNA polymerase gene of equid alphaherpesvirus 1. J Vet Diagn Invest 2019; 31:640-644. [PMID: 31170890 DOI: 10.1177/1040638719856404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We developed a loop-mediated isothermal amplification (LAMP)-fluorescent loop primer (FLP) assay for genotyping the A/G2254 single nucleotide polymorphism (SNP) in the viral DNA polymerase gene of species Equid alphaherpesvirus 1 (EHV-1), which is associated with the neuropathogenic potential of this virus. In addition to the use of regular LAMP primers to amplify the target region, a 5'-FAM-labeled backward loop primer (FLB) and 3'-dabcyl-labeled quencher probe (QP) were designed for annealing curve analysis of the amplification product. The QP, which contacts the FLB, is located at the SNP site and has the A2254 allele. LAMP reactions were performed at 63°C for 40 min, and the subsequent annealing curve analyses were accomplished within 20 min. The LAMP-FLP assay could clearly differentiate A2254 and G2254 genotypes according to the difference in the annealing temperature of the QP between the 2 genotypes. Good agreement between the LAMP-FLP and the real-time PCR for genotyping of this SNP was observed in the detection of EHV-1 in equine clinical samples. The newly developed assay is a simple and rapid method for detecting and differentiating EHV-1 strains with A2254 and G2254 polymorphisms and would be suitable for clinical use.
Collapse
Affiliation(s)
- Koji Tsujimura
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan (Tsujimura, Bannai, Nemoto).,Japan Farriery Association, Minato-ku, Tokyo, Japan (Kokado)
| | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan (Tsujimura, Bannai, Nemoto).,Japan Farriery Association, Minato-ku, Tokyo, Japan (Kokado)
| | - Manabu Nemoto
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan (Tsujimura, Bannai, Nemoto).,Japan Farriery Association, Minato-ku, Tokyo, Japan (Kokado)
| | - Hiroshi Kokado
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan (Tsujimura, Bannai, Nemoto).,Japan Farriery Association, Minato-ku, Tokyo, Japan (Kokado)
| |
Collapse
|
22
|
Carvalhais LC, Henderson J, Rincon-Florez VA, O’Dwyer C, Czislowski E, Aitken EAB, Drenth A. Molecular Diagnostics of Banana Fusarium Wilt Targeting Secreted-in-Xylem Genes. FRONTIERS IN PLANT SCIENCE 2019; 10:547. [PMID: 31214206 PMCID: PMC6554419 DOI: 10.3389/fpls.2019.00547] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/10/2019] [Indexed: 06/01/2023]
Abstract
Fusarium wilt is currently spreading in banana growing regions around the world leading to substantial losses. The disease is caused by the fungus Fusarium oxysporum f. sp. cubense (Foc), which is further classified into distinct races according to the banana varieties that they infect. Cavendish banana is resistant to Foc race 1, to which the popular Gros Michel subgroup succumbed last century. Cavendish effectively saved the banana industry, and became the most cultivated commercial subgroup worldwide. However, Foc tropical race 4 (TR4) subsequently emerged in Southeast Asia, causing significant yield losses due to its high level of aggressiveness to cultivars of Cavendish, and other commonly grown cultivars. Preventing further spread is crucially important in the absence of effective control methods or resistant market-acceptable banana cultivars. Implementation of quarantine and containment measures depends on early detection of the pathogen through reliable diagnostics. In this study, we tested the hypothesis that secreted in xylem (SIX) genes, which currently comprise the only known family of effectors in F. oxysporum, contain polymorphisms to allow the design of molecular diagnostic assays that distinguish races and relevant VCGs of Foc. We present specific and reproducible diagnostic assays based on conventional PCR targeting SIX genes, using as templates DNA extracted from pure Foc cultures. Sets of primers specifically amplify regions of: SIX6 in Foc race 1, SIX1 gene in TR4, SIX8 in subtropical race 4, SIX9/SIX10 in Foc VCG 0121, and SIX13 in Foc VCG 0122. These assays include simplex and duplex PCRs, with additional restriction digestion steps applied to amplification products of genes SIX1 and SIX13. Assay validations were conducted to a high international standard including the use of 250 Fusarium spp. isolates representing 16 distinct Fusarium species, 59 isolates of F. oxysporum, and 21 different vegetative compatibility groups (VCGs). Tested parameters included inter and intraspecific analytical specificity, sensitivity, robustness, repeatability, and reproducibility. The resulting suite of assays is able to reliably and accurately detect R1, STR4, and TR4 as well as two VCGs (0121 and 0122) causing Fusarium wilt in bananas.
Collapse
Affiliation(s)
- Lilia C. Carvalhais
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, Ecosciences Precinct, The University of Queensland, Brisbane, QLD, Australia
| | - Juliane Henderson
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, Ecosciences Precinct, The University of Queensland, Brisbane, QLD, Australia
| | - Vivian A. Rincon-Florez
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, Ecosciences Precinct, The University of Queensland, Brisbane, QLD, Australia
| | - Cecilia O’Dwyer
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, Ecosciences Precinct, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth Czislowski
- School of Agriculture and Food Sciences, The University of Queenslandxy3Saint Lucia, QLD, Australia
| | - Elizabeth A. B. Aitken
- School of Agriculture and Food Sciences, The University of Queenslandxy3Saint Lucia, QLD, Australia
| | - André Drenth
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, Ecosciences Precinct, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Takayama I, Nakauchi M, Takahashi H, Oba K, Semba S, Kaida A, Kubo H, Saito S, Nagata S, Odagiri T, Kageyama T. Development of real-time fluorescent reverse transcription loop-mediated isothermal amplification assay with quenching primer for influenza virus and respiratory syncytial virus. J Virol Methods 2019; 267:53-58. [PMID: 30831121 PMCID: PMC7113748 DOI: 10.1016/j.jviromet.2019.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Influenza virus and respiratory syncytial virus cause acute upper and lower respiratory tract infections, especially in children and the elderly. Early treatment for these infections is thought to be important, so simple and sensitive detection methods are needed for use at clinical sites. Therefore, in this study, real-time reverse transcription loop-mediated isothermal amplification assays with quenching primer for influenza virus and respiratory syncytial virus were developed. Evaluation of a total of 113 clinical specimens compared to real-time RT-PCR assays showed that the novel assays could distinguish between the types and subtypes of influenza virus and respiratory syncytial virus and had 100% diagnostic specificity. The diagnostic sensitivity of each assay exceeded 85.0% and the assays showed sufficient clinical accuracy. Furthermore, positive results could be obtained in around 15 min using the novel assays in cases with high concentrations of virus. The developed assays should be useful for identifying influenza virus and respiratory syncytial virus cases not only in experimental laboratories but also in hospital and quarantine laboratories.
Collapse
Affiliation(s)
- Ikuyo Takayama
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Mina Nakauchi
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hitoshi Takahashi
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Kunihiro Oba
- Department of Pediatrics, Showa General Hospital, 8-1-1 Hanakoganei, Kodaira-shi, Tokyo 187-0002, Japan
| | - Shohei Semba
- Eiken Chemical Co. Ltd., 4-19-9 Taito, Taito-ku, Tokyo 110-8408, Japan
| | - Atsushi Kaida
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Hideyuki Kubo
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Shinji Saito
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Shiho Nagata
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| |
Collapse
|
24
|
Malpartida-Cardenas K, Rodriguez-Manzano J, Yu LS, Delves MJ, Nguon C, Chotivanich K, Baum J, Georgiou P. Allele-Specific Isothermal Amplification Method Using Unmodified Self-Stabilizing Competitive Primers. Anal Chem 2018; 90:11972-11980. [PMID: 30226760 PMCID: PMC6195307 DOI: 10.1021/acs.analchem.8b02416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022]
Abstract
Rapid and specific detection of single nucleotide polymorphisms (SNPs) related to drug resistance in infectious diseases is crucial for accurate prognostics, therapeutics and disease management at point-of-care. Here, we present a novel amplification method and provide universal guidelines for the detection of SNPs at isothermal conditions. This method, called USS-sbLAMP, consists of SNP-based loop-mediated isothermal amplification (sbLAMP) primers and unmodified self-stabilizing (USS) competitive primers that robustly delay or prevent unspecific amplification. Both sets of primers are incorporated into the same reaction mixture, but always targeting different alleles; one set specific to the wild type allele and the other to the mutant allele. The mechanism of action relies on thermodynamically favored hybridization of totally complementary primers, enabling allele-specific amplification. We successfully validate our method by detecting SNPs, C580Y and Y493H, in the Plasmodium falciparum kelch 13 gene that are responsible for resistance to artemisinin-based combination therapies currently used globally in the treatment of malaria. USS-sbLAMP primers can efficiently discriminate between SNPs with high sensitivity (limit of detection of 5 × 101 copies per reaction), efficiency, specificity and rapidness (<35 min) with the capability of quantitative measurements for point-of-care diagnosis, treatment guidance, and epidemiological reporting of drug-resistance.
Collapse
Affiliation(s)
- Kenny Malpartida-Cardenas
- Centre
for Bio-Inspired Technology, Department of Electrical and Electronic
Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jesus Rodriguez-Manzano
- Centre
for Bio-Inspired Technology, Department of Electrical and Electronic
Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Ling-Shan Yu
- Centre
for Bio-Inspired Technology, Department of Electrical and Electronic
Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Michael J. Delves
- Department
of Life Sciences, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom
| | - Chea Nguon
- National
Centre for Parasitology, Entomology and
Malaria Control, Phnom Penh 12302, Cambodia
| | - Kesinee Chotivanich
- Department
of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jake Baum
- Department
of Life Sciences, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom
| | - Pantelis Georgiou
- Centre
for Bio-Inspired Technology, Department of Electrical and Electronic
Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
25
|
Loop-mediated isothermal amplification for visual detection of Vibrio parahaemolyticus using gold nanoparticles. Mikrochim Acta 2017; 185:35. [DOI: 10.1007/s00604-017-2594-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
|
26
|
Carlos FF, Veigas B, Matias AS, Doria G, Flores O, Baptista PV. Allele specific LAMP- gold nanoparticle for characterization of single nucleotide polymorphisms. ACTA ACUST UNITED AC 2017; 16:21-25. [PMID: 29124021 PMCID: PMC5671399 DOI: 10.1016/j.btre.2017.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/27/2022]
Abstract
Allele-specific isothermal amplification method (AS-LAMP) for SNP characterization. Use of ssDNA-functionalized gold nanoparticles (AuNPs) for SNP full discrimination. A simple and low-cost strategy to provide fast results in medium throughput settings. AS-LAMP amplification products can be easily interpreted in less than 15 min.
Due to their relevance as disease biomarkers and for diagnostics, screening of single nucleotide polymorphism (SNPs) requires simple and straightforward strategies capable to provide results in medium throughput settings. Suitable approaches relying on isothermal amplification techniques have been evolving to substitute the cumbersome and highly specialized PCR amplification detection schemes. Nonetheless, identification of an individual’s genotype still requires sophisticated equipment and laborious methods. Here, we present a low-cost and reliable approach based on the allele specific loop-mediated isothermal amplification (AS-LAMP) coupled to ssDNA functionalized gold nanoparticle (Au-nanoprobe) colorimetric sequence discrimination. The Au-nanoprobe integration allows for the colorimetric detection of AS-LAMP amplification product that can be easily interpreted in less than 15 min. We targeted a clinical relevant SNP responsible for lactose intolerance (-13910C/T dbSNP rs#: 4988235) to demonstrate its proof of concept and full potential of this novel approach.
Collapse
Affiliation(s)
- Fábio Ferreira Carlos
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Bruno Veigas
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- i3N/CENIMAT, Departamento de Ciências de Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana S. Matias
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Gonçalo Doria
- STABVIDA, Investigação e Serviços em Ciências Biológicas, Lda. Madan Parque, 2825-182 Caparica, Portugal
| | - Orfeu Flores
- STABVIDA, Investigação e Serviços em Ciências Biológicas, Lda. Madan Parque, 2825-182 Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- Corresponding author.
| |
Collapse
|