1
|
Beierlein J, Rozas E, Egorov OA, Klaas M, Yulin A, Suchomel H, Harder TH, Emmerling M, Martín MD, Shelykh IA, Schneider C, Peschel U, Viña L, Höfling S, Klembt S. Propagative Oscillations in Codirectional Polariton Waveguide Couplers. PHYSICAL REVIEW LETTERS 2021; 126:075302. [PMID: 33666454 DOI: 10.1103/physrevlett.126.075302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/08/2021] [Indexed: 05/25/2023]
Abstract
We report on novel exciton-polariton routing devices created to study and purposely guide light-matter particles in their condensate phase. In a codirectional coupling device, two waveguides are connected by a partially etched section that facilitates tunable coupling of the adjacent channels. This evanescent coupling of the two macroscopic wave functions in each waveguide reveals itself in real space oscillations of the condensate. This Josephson-like oscillation has only been observed in coupled polariton traps so far. Here, we report on a similar coupling behavior in a controllable, propagative waveguide-based design. By controlling the gap width, channel length, or propagation energy, the exit port of the polariton flow can be chosen. This codirectional polariton device is a passive and scalable coupler element that can serve in compact, next generation logic architectures.
Collapse
Affiliation(s)
- J Beierlein
- Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - E Rozas
- Departamento de Física de Materiales, Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - O A Egorov
- Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - M Klaas
- Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - A Yulin
- Faculty of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - H Suchomel
- Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - T H Harder
- Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - M Emmerling
- Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - M D Martín
- Departamento de Física de Materiales, Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - I A Shelykh
- Faculty of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
- Science Institute, University of Iceland, IS-107 Reykjavik, Iceland
| | - C Schneider
- Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Institute of Physics, University of Oldenburg, D-26129 Oldenburg, Germany
| | - U Peschel
- Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - L Viña
- Departamento de Física de Materiales, Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - S Höfling
- Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - S Klembt
- Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
2
|
Verzhbitskiy I, Vella D, Watanabe K, Taniguchi T, Eda G. Suppressed Out-of-Plane Polarizability of Free Excitons in Monolayer WSe 2. ACS NANO 2019; 13:3218-3224. [PMID: 30768242 DOI: 10.1021/acsnano.8b08905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Monolayer semiconductors are atomically thin quantum wells with strong confinement of electrons in a two-dimensional (2D) plane. Here, we experimentally study the out-of-plane polarizability of excitons in hBN-encapsulated monolayer WSe2 in strong electric fields of up to 1.6 V/nm (16 MV/cm). We monitor free exciton photoluminescence peaks with increasing electric fields at a constant carrier density, carefully compensating for unintentional photodoping in our double-gated device at 4 K. We show that the Stark shift is smaller than 0.4 meV despite the large electric fields applied, yielding an upper limit of polarizability α z to be ∼10-11 Dm/V. Such a small polarizability, which is nearly two orders of magnitude smaller than the previously reported value for MoS2, indicates strong atomic confinement of electrons in this 2D system and highlights the unusual robustness of free excitons against surface potential fluctuations.
Collapse
Affiliation(s)
- Ivan Verzhbitskiy
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117551 , Singapore
- Centre for Advanced 2D Materials , National University of Singapore , 2 Science Drive 2 , Singapore 117542 , Singapore
| | - Daniele Vella
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117551 , Singapore
- Centre for Advanced 2D Materials , National University of Singapore , 2 Science Drive 2 , Singapore 117542 , Singapore
| | - Kenji Watanabe
- National Institute for Material Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Takashi Taniguchi
- National Institute for Material Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Goki Eda
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117551 , Singapore
- Centre for Advanced 2D Materials , National University of Singapore , 2 Science Drive 2 , Singapore 117542 , Singapore
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
| |
Collapse
|
3
|
Suchomel H, Klembt S, Harder TH, Klaas M, Egorov OA, Winkler K, Emmerling M, Thomale R, Höfling S, Schneider C. Platform for Electrically Pumped Polariton Simulators and Topological Lasers. PHYSICAL REVIEW LETTERS 2018; 121:257402. [PMID: 30608796 DOI: 10.1103/physrevlett.121.257402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 06/09/2023]
Abstract
Two-dimensional electronic materials such as graphene and transition metal dichalgenides feature unique electrical and optical properties due to the conspirative effect of band structure, orbital coupling, and crystal symmetry. Synthetic matter, as accomplished by artificial lattice arrangements of cold atoms, molecules, electron patterning, and optical cavities, has emerged to provide manifold intriguing frameworks to likewise realize such scenarios. Exciton polaritons have recently been added to the list of promising candidates for the emulation of system Hamiltonians on a semiconductor platform, offering versatile tools to engineer the potential landscape and to access the nonlinear electro-optical regime. In this work, we introduce an electronically driven square and honeycomb lattice of exciton polaritons, paving the way towards real world devices based on polariton lattices for on-chip applications. Our platform exhibits laserlike emission from high-symmetry points under direct current injection, hinting at the prospect of electrically driven polariton lasers with possibly topologically nontrivial properties.
Collapse
Affiliation(s)
- Holger Suchomel
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sebastian Klembt
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Tristan H Harder
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Martin Klaas
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Oleg A Egorov
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Karol Winkler
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Monika Emmerling
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ronny Thomale
- Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sven Höfling
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Christian Schneider
- Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|