1
|
Singh R, Rathore AS, Dilnashin H, Keshri PK, Gupta NK, Prakash SAS, Zahra W, Singh S, Singh SP. HAT and HDAC: Enzyme with Contradictory Action in Neurodegenerative Diseases. Mol Neurobiol 2024; 61:9110-9124. [PMID: 38587698 DOI: 10.1007/s12035-024-04115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
In view of the increasing risk of neurodegenerative diseases, epigenetics plays a fundamental role in the field of neuroscience. Several modifications have been studied including DNA methylation, histone acetylation, histone phosphorylation, etc. Histone acetylation and deacetylation regulate gene expression, and the regular activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs) provides regulatory stages for gene expression and cell cycle. Imbalanced homeostasis in these enzymes causes a detrimental effect on neurophysiological function. Intriguingly, epigenetic remodelling via histone acetylation in certain brain areas has been found to play a key role in the neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. It has been demonstrated that a number of HATs have a role in crucial brain processes such regulating neuronal plasticity and memory formation. The most recent therapeutic methods involve the use of small molecules known as histone deacetylase (HDAC) inhibitors that antagonize HDAC activity thereby increase acetylation levels in order to prevent the loss of HAT function in neurodegenerative disorders. The target specificity of the HDAC inhibitors now in use raises concerns about their applicability, despite the fact that this strategy has demonstrated promising therapeutic outcomes. The aim of this review is to summarize the cross-linking between histone modification and its regulation in the pathogenesis of neurological disorders. Furthermore, these findings also support the notion of new pharmacotherapies that target particular areas of the brain using histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Nitesh Kumar Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Singh Ankit Satya Prakash
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Shekhar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India.
| |
Collapse
|
2
|
Bhat AA, Moglad E, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Pant K, Singh TG, Dureja H, Singh SK, Dua K, Gupta G, Subramaniyan V. Therapeutic approaches targeting aging and cellular senescence in Huntington's disease. CNS Neurosci Ther 2024; 30:e70053. [PMID: 39428700 PMCID: PMC11491556 DOI: 10.1111/cns.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease that is manifested by a gradual loss of physical, cognitive, and mental abilities. As the disease advances, age has a major impact on the pathogenic signature of mutant huntingtin (mHTT) protein aggregation. This review aims to explore the intricate relationship between aging, mHTT toxicity, and cellular senescence in HD. Scientific data on the interplay between aging, mHTT, and cellular senescence in HD were collected from several academic databases, including PubMed, Google Scholar, Google, and ScienceDirect. The search terms employed were "AGING," "HUNTINGTON'S DISEASE," "MUTANT HUNTINGTIN," and "CELLULAR SENESCENCE." Additionally, to gather information on the molecular mechanisms and potential therapeutic targets, the search was extended to include relevant terms such as "DNA DAMAGE," "OXIDATIVE STRESS," and "AUTOPHAGY." According to research, aging leads to worsening HD pathophysiology through some processes. As a result of the mHTT accumulation, cellular senescence is promoted, which causes DNA damage, oxidative stress, decreased autophagy, and increased inflammatory responses. Pro-inflammatory cytokines and other substances are released by senescent cells, which may worsen the neuronal damage and the course of the disease. It has been shown that treatments directed at these pathways reduce some of the HD symptoms and enhance longevity in experimental animals, pointing to a new possibility of treating the condition. Through their amplification of the harmful effects of mHTT, aging and cellular senescence play crucial roles in the development of HD. Comprehending these interplays creates novel opportunities for therapeutic measures targeted at alleviating cellular aging and enhancing HD patients' quality of life.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, India
| | | | - Harish Dureja
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
- Centre of Medical and Bio‐Allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash UniversityBandar SunwaySelangor Darul EhsanMalaysia
- Department of Medical SciencesSchool of Medical and Life Sciences Sunway UniversityBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
3
|
Calis S, Gevaert K. The role of Nα-terminal acetylation in protein conformation. FEBS J 2024. [PMID: 38923676 DOI: 10.1111/febs.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.
Collapse
Affiliation(s)
- Sam Calis
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| |
Collapse
|
4
|
Yu Q, Wang Z, Tu Y, Cao Y, Zhu H, Shao J, Zhuang R, Zhou Y, Zhang J. Proteasome activation: A novel strategy for targeting undruggable intrinsically disordered proteins. Bioorg Chem 2024; 145:107217. [PMID: 38368657 DOI: 10.1016/j.bioorg.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Intrinsically disordered proteins (IDPs) are characterized by their inability to adopt well-defined tertiary structures under physiological conditions. Nonetheless, they often play pivotal roles in the progression of various diseases, including cancer, neurodegenerative disorders, and cardiovascular ailments. Owing to their inherent dynamism, conventional drug design approaches based on structural considerations encounter substantial challenges when applied to IDPs. Consequently, the pursuit of therapeutic interventions directed towards IDPs presents a complex endeavor. While there are indeed existing methodologies for targeting IDPs, they are encumbered by noteworthy constrains. Hence, there exists an imminent imperative to investigate more efficacious and universally applicable strategies for modulating IDPs. Here, we present an overview of the latest advancements in the research pertaining to IDPs, along with the indirect regulation approach involving the modulation of IDP degradation through proteasome. By comprehending these advancements in research, novel insights can be generated to facilitate the development of new drugs targeted at addressing the accumulation of IDPs in diverse pathological conditions.
Collapse
Affiliation(s)
- Qian Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Zheng Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yutong Tu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China.
| | - Yubo Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
5
|
Cariulo C, Martufi P, Verani M, Toledo-Sherman L, Lee R, Dominguez C, Petricca L, Caricasole A. IKBKB reduces huntingtin aggregation by phosphorylating serine 13 via a non-canonical IKK pathway. Life Sci Alliance 2023; 6:e202302006. [PMID: 37553253 PMCID: PMC10410066 DOI: 10.26508/lsa.202302006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
N-terminal phosphorylation at residues T3 and S13 is believed to have important beneficial implications for the biological and pathological properties of mutant huntingtin, where inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB) was identified as a candidate regulator of huntingtin N-terminal phosphorylation. The paucity of mechanistic information on IKK pathways, together with the lack of sensitive methods to quantify endogenous huntingtin phosphorylation, prevented detailed study of the role of IKBKB in Huntington's disease. Using novel ultrasensitive assays, we demonstrate that IKBKB can regulate endogenous S13 huntingtin phosphorylation in a manner, dependent on its kinase activity and known regulators. We found that the ability of IKBKB to phosphorylate endogenous huntingtin S13 is mediated through a non-canonical interferon regulatory factor3-mediated IKK pathway, distinct from the established involvement of IKBKB in mutant huntingtin's pathological mechanisms mediated via the canonical pathway. Furthermore, increased huntingtin S13 phosphorylation by IKBKB resulted in decreased aggregation of mutant huntingtin in cells, again dependent on its kinase activity. These findings point to a non-canonical IKK pathway linking S13 huntingtin phosphorylation to the pathological properties of mutant huntingtin aggregation, thought to be significant to Huntington's disease.
Collapse
Affiliation(s)
- Cristina Cariulo
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| | - Paola Martufi
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| | - Margherita Verani
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| | - Leticia Toledo-Sherman
- Rainwatercf.org Tau Consortium, Rainwater Charitable Foundation, Fort Worth, TX, USA
- UCLA, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ramee Lee
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | | | - Lara Petricca
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| | - Andrea Caricasole
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| |
Collapse
|
6
|
Wilbertz JH, Frappier J, Muller S, Gratzer S, Englaro W, Stanek LM, Calamini B. Time-resolved FRET screening identifies small molecular modifiers of mutant Huntingtin conformational inflexibility in patient-derived cells. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:219-228. [PMID: 35058188 DOI: 10.1016/j.slasd.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is the most common monogenic neurodegenerative disease and is fatal. CAG repeat expansions in mutant Huntingtin (mHTT) exon 1 encode for polyglutamine (polyQ) stretches and influence age of onset and disease severity, depending on their length. mHTT is more structured compared to wild-type (wt) HTT, resulting in a decreased N-terminal conformational flexibility. mHTT inflexibility may contribute to both gain of function toxicity, due to increased mHTT aggregation propensity, but also to loss of function phenotypes, due to decreased interactions with binding partners. High-throughput-screening techniques to identify mHTT flexibility states and potential flexibility modifying small molecules are currently lacking. Here, we propose a novel approach for identifying small molecules that restore mHTT's conformational flexibility in human patient fibroblasts. We have applied a well-established antibody-based time-resolved Förster resonance energy transfer (TR-FRET) immunoassay, which measures endogenous HTT flexibility using two validated HTT-specific antibodies, to a high-throughput screening platform. By performing a small-scale compound screen, we identified several small molecules that can partially rescue mHTT inflexibility, presumably by altering HTT post-translational modifications. Thus, we demonstrated that the HTT TR-FRET immunoassay can be miniaturized and applied to a compound screening workflow in patient cells. This automated assay can now be used in large screening campaigns to identify previously unknown HD drugs and drug targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Lisa M Stanek
- Sanofi Rare and Neurological Diseases, Framingham, MA, United States
| | | |
Collapse
|
7
|
Sen S, Lagas S, Roy A, Kumar H. Cytoskeleton saga: Its regulation in normal physiology and modulation in neurodegenerative disorders. Eur J Pharmacol 2022; 925:175001. [PMID: 35525310 DOI: 10.1016/j.ejphar.2022.175001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Cells are fundamental units of life. To ensure the maintenance of homeostasis, integrity of structural and functional counterparts is needed to be essentially balanced. The cytoskeleton plays a vital role in regulating the cellular morphology, signalling and other factors involved in pathological conditions. Microtubules, actin (microfilaments), intermediate filaments (IF) and their interactions are required for these activities. Various proteins associated with these components are primary requirements for directing their functions. Disruption of this organization due to faulty genetics, oxidative stress or impaired transport mechanisms are the major causes of dysregulated signalling cascades leading to various pathological conditions like Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD) or amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP) or any traumatic injury like spinal cord injury (SCI). Novel or conventional therapeutic approaches may be specific or non-specific, targeting either three basic components of the cytoskeleton or various cascades that serve as a cue to numerous pathways like ROCK signalling or the GSK-3β pathway. An enormous number of drugs have been redirected for modulating the cytoskeletal dynamics and thereby may pave the way for inhibiting the progression of these diseases and their complications.
Collapse
Affiliation(s)
- Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Sheetal Lagas
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
8
|
Fischer DF, Dijkstra S, Lo K, Suijker J, Correia ACP, Naud P, Poirier M, Tessari MA, Boogaard I, Flynn G, Visser M, Lamers MBAC, McAllister G, Munoz-Sanjuan I, Macdonald D. Development of mAb-based polyglutamine-dependent and polyglutamine length-independent huntingtin quantification assays with cross-site validation. PLoS One 2022; 17:e0266812. [PMID: 35395060 PMCID: PMC8992994 DOI: 10.1371/journal.pone.0266812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Huntington's disease (HD) is caused by an expansion of the CAG trinucleotide repeat domain in the huntingtin gene that results in expression of a mutant huntingtin protein (mHTT) containing an expanded polyglutamine tract in the amino terminus. A number of therapeutic approaches that aim to reduce mHTT expression either locally in the CNS or systemically are in clinical development. We have previously described sensitive and selective assays that measure human HTT proteins either in a polyglutamine-independent (detecting both mutant expanded and non-expanded proteins) or in a polyglutamine length-dependent manner (detecting the disease-causing polyglutamine repeats) on the electrochemiluminescence Meso Scale Discovery detection platform. These original assays relied upon polyclonal antibodies. To ensure an accessible and sustainable resource for the HD field, we developed similar assays employing monoclonal antibodies. We demonstrate that these assays have equivalent sensitivity compared to our previous assays through the evaluation of cellular and animal model systems, as well as HD patient biosamples. We also demonstrate cross-site validation of these assays, allowing direct comparison of studies performed in geographically distinct laboratories.
Collapse
Affiliation(s)
- David F. Fischer
- Charles River, Chesterford Research Park, Saffron Walden, United Kingdom
| | | | | | | | | | - Patricia Naud
- Charles River, Shrewsbury, MA, United States of America
| | | | | | | | | | | | | | - George McAllister
- Charles River, Chesterford Research Park, Saffron Walden, United Kingdom
- CHDI Management/CHDI Foundation, Los Angeles, CA, United States of America
| | | | - Douglas Macdonald
- CHDI Management/CHDI Foundation, Los Angeles, CA, United States of America
| |
Collapse
|
9
|
Srinivasan E, Ram V, Rajasekaran R. A review on Huntington protein Insight into protein aggregation and therapeutic interventions. Curr Drug Metab 2022; 23:260-282. [PMID: 35319359 DOI: 10.2174/1389200223666220321103942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
Abstract
Huntington disease (HD) is a distressing, innate neurodegenerative disease that descends from CAG repeat expansion in the huntingtin gene causing behavioral changes, motor dysfunction, and dementia in children and adults. Mutation in huntingtin (HTT) protein has been suggested to cause neuron loss in the cortex and striatum through various mechanisms including abnormal regulation of transcription, proteasomal dysfunction, post-translational modification, and other events, regulating toxicity. Pathogenesis of HD involves cleavage of the huntingtin protein followed by the neuronal accumulation of its aggregated form. Several research groups made possible efforts to reduce huntingtin gene expression, protein accumulation, and protein aggregation using inhibitors and molecular chaperones as developing drugs against HD. Herein, we review the mechanism proposed towards the formation of HTT protein aggregation and the impact of therapeutic strategies for the treatment of HD.
Collapse
Affiliation(s)
- E Srinivasan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602105, Tamil Nadu, India
| | - Vavish Ram
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
| |
Collapse
|
10
|
Bakku RK, Gupta R, Min CW, Kim ST, Takahashi G, Shibato J, Shioda S, Takenoya F, Agrawal GK, Rakwal R. Unravelling the Helianthus tuberosus L. (Jerusalem Artichoke, Kiku-Imo) Tuber Proteome by Label-Free Quantitative Proteomics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031111. [PMID: 35164374 PMCID: PMC8840128 DOI: 10.3390/molecules27031111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/09/2023]
Abstract
The present research investigates the tuber proteome of the ‘medicinal’ plant Jerusalem artichoke (abbreviated as JA) (Helianthus tuberosus L.) using a high-throughput proteomics technique. Although JA has been historically known to the Native Americans, it was introduced to Europe in the late 19th century and later spread to Japan (referred to as ‘kiku-imo’) as a folk remedy for diabetes. Genboku Takahashi research group has been working on the cultivation and utilization of kiku-imo tuber as a traditional/alternative medicine in daily life and researched on the lowering of blood sugar level, HbA1c, etc., in human subjects (unpublished data). Understanding the protein components of the tuber may shed light on its healing properties, especially related to diabetes. Using three commercially processed JA tuber products (dried powder and dried chips) we performed total protein extraction on the powdered samples using a label-free quantitate proteomic approach (mass spectrometry) and catalogued for the first time a comprehensive protein list for the JA tuber. A total of 2967 protein groups were identified, statistically analyzed, and further categorized into different protein classes using bioinformatics techniques. We discussed the association of these proteins to health and disease regulatory metabolism. Data are available via ProteomeXchange with identifier PXD030744.
Collapse
Affiliation(s)
- Ranjith Kumar Bakku
- Faculty of Engineering Information and Systems, University of Tsukuba, 1-1-1 Tenodai, Tsukuba 305-8572, Japan;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea;
| | - Cheol-Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Sun-Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
- Correspondence: (S.-T.K.); or (R.R.); Tel.: +81-90-1853-7875 (R.R.)
| | - Genboku Takahashi
- Zen-Yoga Institute, 3916 Okusa, Nakagawa-mura, Kamiina-gun, Nagano 399-3801, Japan;
| | - Junko Shibato
- Department of Functional Morphology, Shonan University Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan; (J.S.); (S.S.)
| | - Seiji Shioda
- Department of Functional Morphology, Shonan University Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan; (J.S.); (S.S.)
| | - Fumiko Takenoya
- Department of Physiology and Molecular Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan;
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal;
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal;
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Japan
- Correspondence: (S.-T.K.); or (R.R.); Tel.: +81-90-1853-7875 (R.R.)
| |
Collapse
|
11
|
Chemical-Mediated Targeted Protein Degradation in Neurodegenerative Diseases. Life (Basel) 2021; 11:life11070607. [PMID: 34202541 PMCID: PMC8305580 DOI: 10.3390/life11070607] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease, are a class of diseases that lead to dysfunction of cognition and mobility. Aggregates of misfolded proteins such as β-amyloid, tau, α-synuclein, and polyglutamates are known to be among the main causes of neurodegenerative diseases; however, they are considered to be some of the most challenging drug targets because they cannot be modulated by conventional small-molecule agents. Recently, the degradation of target proteins by small molecules has emerged as a new therapeutic modality and has garnered the interest of the researchers in the pharmaceutical industry. Bifunctional molecules that recruit target proteins to a cellular protein degradation machinery, such as the ubiquitin–proteasome system and autophagy–lysosome pathway, have been designed. The representative targeted protein degradation technologies include molecular glues, proteolysis-targeting chimeras, hydrophobic tagging, autophagy-targeting chimeras, and autophagosome-tethering compounds. Although these modalities have been shown to degrade many disease-related proteins, such technologies are expected to be potentially important for neurogenerative diseases caused by protein aggregation. Herein, we review the recent progress in chemical-mediated targeted protein degradation toward the discovery of drugs for neurogenerative diseases.
Collapse
|
12
|
Axenhus M, Winblad B, Tjernberg LO, Schedin-Weiss S. Huntingtin Levels are Elevated in Hippocampal Post-Mortem Samples of Alzheimer's Disease Brain. Curr Alzheimer Res 2021; 17:858-867. [PMID: 33272184 DOI: 10.2174/1567205017666201203125622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND We have recently identified Huntingtin (Htt), the pathogenic protein in Huntington's disease, as a mediator of Alzheimer's disease (AD) pathology in an amyloid precursor protein (APP) knock-in mouse model of AD. That finding prompted us to examine if Htt is accumulated in the brains of AD patients and in which cell type Htt is present in the AD brain. OBJECTIVE To investigate whether location and levels of Htt are affected in hippocampus and frontal cortex in AD. METHODS Brains from AD patients (n=11) and controls (n=11) were stained for Htt using immunohistochemistry and signal intensity of Htt was quantified and localized in subregions and neurons. Confocal microscopy was used to characterize neuronal Htt localisation and its relationship with tau tangles and astrocytes. RESULTS Htt levels were increased in neuronal cells in the granular layer of the dentate gyrus, in CA1 and CA3 in hippocampus and in layer III of the frontal cortex. Htt was found in the soma, perinuclear space, thin neurites and nucleus of pyramidal neurons. Htt was present in neurons containing tau tangles but did not colocalize with astrocytes. CONCLUSION Htt accumulates in pyramidal neuron-rich areas including hippocampal subregions associated with memory and frontal cortex layer III. The accumulation of Htt in AD shows distinct cellular and morphological patterns and is not present in astrocytes. Clearly, further research is warranted to elucidate the role of Htt as a mediator of AD pathology and the potential use of Htt as a target in future therapeutic strategies.
Collapse
Affiliation(s)
- Michael Axenhus
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
13
|
Chiki A, Ricci J, Hegde R, Abriata LA, Reif A, Boudeffa D, Lashuel HA. Site-Specific Phosphorylation of Huntingtin Exon 1 Recombinant Proteins Enabled by the Discovery of Novel Kinases. Chembiochem 2021; 22:217-231. [PMID: 32805086 PMCID: PMC8698011 DOI: 10.1002/cbic.202000508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Post-translational modifications (PTMs) within the first 17 amino acids (Nt17) of exon 1 of the Huntingtin protein (Httex1) play important roles in modulating its cellular properties and functions in health and disease. In particular, phosphorylation of threonine and serine residues (T3, S13, and/or S16) has been shown to inhibit Htt aggregation in vitro and inclusion formation in cellular and animal models of Huntington's disease (HD). In this paper, we describe a new and simple methodology for producing milligram quantities of highly pure wild-type or mutant Httex1 proteins that are site-specifically phosphorylated at T3 or at both S13 and S16. This advance was enabled by 1) the discovery and validation of novel kinases that efficiently phosphorylate Httex1 at S13 and S16 (TBK1), at T3 (GCK) or T3 and S13 (TNIK and HGK), and 2) the development of an efficient methodology for producing recombinant native Httex1 proteins by using a SUMO-fusion expression and purification strategy.[26] As a proof of concept, we demonstrate how this method can be applied to produce Httex1 proteins that are both site-specifically phosphorylated and fluorescently or isotopically labeled. Together, these advances should increase access to these valuable tools and expand the range of methods and experimental approaches that can be used to elucidate the mechanisms by which phosphorylation influences Httex1 or HTT structure, aggregation, interactome, and function(s) in health and disease.
Collapse
Affiliation(s)
- Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Station 191015LausanneSwitzerland
| | - Jonathan Ricci
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Station 191015LausanneSwitzerland
| | - Ramanath Hegde
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Station 191015LausanneSwitzerland
| | - Luciano A. Abriata
- Protein Production and Structure Core Facility and Laboratory for Biomolecular ModelingEcole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB)1015LausanneSwitzerland
| | - Andreas Reif
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Station 191015LausanneSwitzerland
| | - Driss Boudeffa
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Station 191015LausanneSwitzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Station 191015LausanneSwitzerland
| |
Collapse
|
14
|
Analysis of mutant and total huntingtin expression in Huntington's disease murine models. Sci Rep 2020; 10:22137. [PMID: 33335120 PMCID: PMC7746729 DOI: 10.1038/s41598-020-78790-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
Huntington’s disease (HD) is a monogenetic neurodegenerative disorder that is caused by the expansion of a polyglutamine region within the huntingtin (HTT) protein, but there is still an incomplete understanding of the molecular mechanisms that drive pathology. Expression of the mutant form of HTT is a key aspect of diseased tissues, and the most promising therapeutic approaches aim to lower expanded HTT levels. Consequently, the investigation of HTT expression in time and in multiple tissues, with assays that accurately quantify expanded and non-expanded HTT, are required to delineate HTT homeostasis and to best design and interpret pharmacodynamic readouts for HTT lowering therapeutics. Here we evaluate mutant polyglutamine-expanded (mHTT) and polyglutamine-independent HTT specific immunoassays for validation in human HD and control fibroblasts and use to elucidate the CSF/brain and peripheral tissue expression of HTT in preclinical HD models.
Collapse
|
15
|
Groover SE, Beasley M, Ramamurthy V, Legleiter J. Phosphomimetic Mutations Impact Huntingtin Aggregation in the Presence of a Variety of Lipid Systems. Biochemistry 2020; 59:4681-4693. [PMID: 33256402 DOI: 10.1021/acs.biochem.0c00788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of a polyglutamine (polyQ) tract in the first exon of the htt protein (htt). PolyQ expansion triggers the aggregation of htt into a variety of structures, including oligomers and fibrils. This aggregation is impacted by the first 17 N-terminal amino acids (Nt17) of htt that directly precedes the polyQ domain. Beyond impacting aggregation, Nt17 associates with lipid membranes by forming an amphipathic α-helix. Post-translational modifications within Nt17 are known to modify HD pathology, and in particular, phosphorylation at T3, S13, and/or S16 retards fibrillization and ameliorates the phenotype in HD models. Due to Nt17's propensity to interact with lipid membranes, the impact of introducing phosphomimetic mutations (T3D, S13D, and S16D) into htt-exon1 on aggregation in the presence of a variety of model lipid membranes (total brain lipid extract, 1-palmitoyl-2-oleoyl-glycero-3-phosphatidylcholine, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-1'-rac-glycerol) was investigated. Phosphomimetic mutations altered htt's interaction with and aggregation in the presence of lipids; however, this was dependent on the lipid system.
Collapse
Affiliation(s)
- Sharon E Groover
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Maryssa Beasley
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Visvanathan Ramamurthy
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States.,Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States.,Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States.,Department of Neuroscience, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
| |
Collapse
|
16
|
Hegde RN, Chiki A, Petricca L, Martufi P, Arbez N, Mouchiroud L, Auwerx J, Landles C, Bates GP, Singh-Bains MK, Dragunow M, Curtis MA, Faull RL, Ross CA, Caricasole A, Lashuel HA. TBK1 phosphorylates mutant Huntingtin and suppresses its aggregation and toxicity in Huntington's disease models. EMBO J 2020; 39:e104671. [PMID: 32757223 PMCID: PMC7459410 DOI: 10.15252/embj.2020104671] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Phosphorylation of the N‐terminal domain of the huntingtin (HTT) protein has emerged as an important regulator of its localization, structure, aggregation, clearance and toxicity. However, validation of the effect of bona fide phosphorylation in vivo and assessing the therapeutic potential of targeting phosphorylation for the treatment of Huntington's disease (HD) require the identification of the enzymes that regulate HTT phosphorylation. Herein, we report the discovery and validation of a kinase, TANK‐binding kinase 1 (TBK1), that efficiently phosphorylates full‐length and N‐terminal HTT fragments in vitro (at S13/S16), in cells (at S13) and in vivo. TBK1 expression in HD models (cells, primary neurons, and Caenorhabditis elegans) increases mutant HTT exon 1 phosphorylation and reduces its aggregation and cytotoxicity. We demonstrate that the TBK1‐mediated neuroprotective effects are due to phosphorylation‐dependent inhibition of mutant HTT exon 1 aggregation and an increase in autophagic clearance of mutant HTT. These findings suggest that upregulation and/or activation of TBK1 represents a viable strategy for the treatment of HD by simultaneously lowering mutant HTT levels and blocking its aggregation.
Collapse
Affiliation(s)
- Ramanath Narayana Hegde
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lara Petricca
- Department of Neuroscience, IRBM Science Park, Rome, Italy
| | - Paola Martufi
- Department of Neuroscience, IRBM Science Park, Rome, Italy
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christian Landles
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - Malvindar K Singh-Bains
- Centre for Brain Research, Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Centre for Brain Research, Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
17
|
Gubert C, Renoir T, Hannan AJ. Why Woody got the blues: The neurobiology of depression in Huntington's disease. Neurobiol Dis 2020; 142:104958. [PMID: 32526274 DOI: 10.1016/j.nbd.2020.104958] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/02/2020] [Accepted: 06/03/2020] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is an extraordinary disorder that usually strikes when individuals are in the prime of their lives, as was the case for the influential 20th century musician Woody Guthrie. HD demonstrates the exceptionally fine line between life and death in such 'genetic diseases', as the only difference between those who suffer horribly and die slowly of this disease is often just a handful of extra tandem repeats (beyond the normal polymorphic range) in a genome that constitutes over 3 billion paired nucleotides of DNA. Furthermore, HD presents as a complex and heterogenous combination of psychiatric, cognitive and motor symptoms, so can appear as an unholy trinity of 'three disorders in one'. The autosomal dominant nature of the disorder is also extremely challenging for affected families, as a 'flip of a coin' dictates which children inherit the mutation from their affected parent, and the gene-negative family members bear the burden of caring for the other half of the family that is affected. In this review, we will focus on one of the earliest, and most devastating, symptoms associated with HD, depression, which has been reported to affect approximately half of gene-positive HD family members. We will discuss the pathogenesis of HD, and depressive symptoms in particular, including molecular and cellular mechanisms, and potential genetic and environmental modifiers. This expanding understanding of HD pathogenesis may not only lead to novel therapeutic options for HD families, but may also provide insights into depression in the wider population, which has the greatest burden of disease of any disorder and an enormous unmet need for new therapies.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
18
|
Shin H, Oh S, Kang D, Choi Y. Protein Quantification and Imaging by Surface-Enhanced Raman Spectroscopy and Similarity Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903638. [PMID: 32537409 PMCID: PMC7284192 DOI: 10.1002/advs.201903638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 05/29/2023]
Abstract
Protein quantification techniques such as immunoassays have been improved considerably, but they have several limitations, including time-consuming procedures, low sensitivity, and extrinsic detection. Because direct surface-enhanced Raman spectroscopy (SERS) can detect intrinsic signals of proteins, it can be used as an effective detection method. However, owing to the complexity and reliability of SERS signals, SERS is rarely adopted for quantification without a purified target protein. This study reports an efficient and effective direct SERS-based immunoassay (SERSIA) technique for protein quantification and imaging. SERSIA relies on the uniform coating of gold nanoparticles (GNPs) on a target-protein-immobilized substrate by simple centrifugation. As centrifugation induces close contact between the GNPs and target proteins, the intrinsic signals of the target protein can be detected. For quantification, the protein levels in a cell lysate are estimated using similarity analysis between antibody-only and protein-conjugated samples. This method reliably estimates the protein level at a sub-picomolar detection limit. Furthermore, this method enables quantitative imaging of immobilized protein at a micrometer range. Because this technique is fast, sensitive, and requires only one type of antibody, this approach can be a useful method to detect proteins in biological samples.
Collapse
Affiliation(s)
- Hyunku Shin
- Department of Bio‐convergence EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Seunghyun Oh
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Daehyeon Kang
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Yeonho Choi
- Department of Bio‐convergence EngineeringKorea UniversitySeoul02841Republic of Korea
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
- Department of BioengineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
19
|
Ultrasensitive quantitative measurement of huntingtin phosphorylation at residue S13. Biochem Biophys Res Commun 2020; 521:549-554. [DOI: 10.1016/j.bbrc.2019.09.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 11/21/2022]
|
20
|
Assessing average somatic CAG repeat instability at the protein level. Sci Rep 2019; 9:19152. [PMID: 31844074 PMCID: PMC6915696 DOI: 10.1038/s41598-019-55202-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Sandwich ELISA-based methods use Abs that target the expanded polyglutamine (polyQ) tract to quantify mutant huntingtin (mHTT). Using Meso Scale Discovery (MSD) assay, the mHTT signal detected with MW1 Ab correlated with polyQ length and doubled with a difference of only 7 glutamine residues between equivalent amounts of purified mHTTexon1 proteins. Similar polyQ length-dependent effects on MSD signals were confirmed using endogenous full length mHTT from brains of Huntington’s disease (HD) knock-in (KI) mice. We used this avidity bias to devise a method to assess average CAG repeat instability at the protein level in a mixed population of HTT proteins present in tissues. Signal detected for average polyQ length quantification at the protein level by our method exhibited a strong correlation with average CAG repeat length at the genomic DNA level determined by PCR method in striatal tissue homogenates from HdhQ140 KI mice and in human HD postmortem cortex. This work establishes that CAG repeat instability in mutant HTT is reflected at the protein level.
Collapse
|
21
|
Ko J, Isas JM, Sabbaugh A, Yoo JH, Pandey NK, Chongtham A, Ladinsky M, Wu WL, Rohweder H, Weiss A, Macdonald D, Munoz-Sanjuan I, Langen R, Patterson PH, Khoshnan A. Identification of distinct conformations associated with monomers and fibril assemblies of mutant huntingtin. Hum Mol Genet 2019; 27:2330-2343. [PMID: 29912367 DOI: 10.1093/hmg/ddy141] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 11/14/2022] Open
Abstract
The N-terminal fragments of mutant huntingtin (mHTT) misfold and assemble into oligomers, which ultimately bundle into insoluble fibrils. Conformations unique to various assemblies of mHTT remain unknown. Knowledge on the half-life of various multimeric structures of mHTT is also scarce. Using a panel of four new antibodies named PHP1-4, we have identified new conformations in monomers and assembled structures of mHTT. PHP1 and PHP2 bind to epitopes within the proline-rich domain (PRD), whereas PHP3 and PHP4 interact with motifs formed at the junction of polyglutamine (polyQ) and polyproline (polyP) repeats of HTT. The PHP1- and PHP2-reactive epitopes are exposed in fibrils of mHTT exon1 (mHTTx1) generated from recombinant proteins and mHTT assemblies, which progressively accumulate in the nuclei, cell bodies and neuropils in the brains of HD mouse models. Notably, electron microscopic examination of brain sections of HD mice revealed that PHP1- and PHP2-reactive mHTT assemblies are present in myelin sheath and in vesicle-like structures. Moreover, PHP1 and PHP2 antibodies block seeding and subsequent fibril assembly of mHTTx1 in vitro and in a cell culture model of HD. PHP3 and PHP4 bind to epitopes in full-length and N-terminal fragments of monomeric mHTT and binding diminishes as the mHTTx1 assembles into fibrils. Interestingly, PHP3 and PHP4 also prevent the aggregation of mHTTx1 in vitro highlighting a regulatory function for the polyQ-polyP motifs. These newly detected conformations may affect fibril assembly, stability and intercellular transport of mHTT.
Collapse
Affiliation(s)
- Jan Ko
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - J Mario Isas
- Zilka Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Adam Sabbaugh
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - Jung Hyun Yoo
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - Nitin K Pandey
- Zilka Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | | | - Mark Ladinsky
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - Wei-Li Wu
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | | | - Andreas Weiss
- Evotec, Manfred Eigen Campus, Hamburg 22419, Germany
| | | | | | - Ralf Langen
- Zilka Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | | | - Ali Khoshnan
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| |
Collapse
|
22
|
Sicorello A, Kelly G, Oregioni A, Nováček J, Sklenář V, Pastore A. The Structural Properties in Solution of the Intrinsically Mixed Folded Protein Ataxin-3. Biophys J 2019; 115:59-71. [PMID: 29972812 DOI: 10.1016/j.bpj.2018.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 10/28/2022] Open
Abstract
It has increasingly become clear over the last two decades that proteins can contain both globular domains and intrinsically unfolded regions that can both contribute to function. Although equally interesting, the disordered regions are difficult to study, because they usually do not crystallize unless bound to partners and are not easily amenable to cryo-electron microscopy studies. NMR spectroscopy remains the best technique to capture the structural features of intrinsically mixed folded proteins and describe their dynamics. These studies rely on the successful assignment of the spectrum, a task not easy per se given the limited spread of the resonances of the disordered residues. Here, we describe the structural properties of ataxin-3, the protein responsible for the neurodegenerative Machado-Joseph disease. Ataxin-3 is a 42-kDa protein containing a globular N-terminal Josephin domain and a C-terminal tail that comprises 13 polyglutamine repeats within a low complexity region. We developed a strategy that allowed us to achieve 87% assignment of the NMR spectrum using a mixed protocol based on high-dimensionality, high-resolution experiments and different labeling schemes. Thanks to the almost complete spectral assignment, we proved that the C-terminal tail is flexible, with extended helical regions, and interacts only marginally with the rest of the protein. We could also, for the first time to our knowledge, observe the structural propensity of the polyglutamine repeats within the context of the full-length protein and show that its structure is stabilized by the preceding region.
Collapse
Affiliation(s)
- Alessandro Sicorello
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Geoff Kelly
- Medical Research Council Biomolecular NMR Centre, The Francis Crick Institute, London, United Kingdom
| | - Alain Oregioni
- Medical Research Council Biomolecular NMR Centre, The Francis Crick Institute, London, United Kingdom
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vladimír Sklenář
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Annalisa Pastore
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
23
|
Soares TR, Reis SD, Pinho BR, Duchen MR, Oliveira JMA. Targeting the proteostasis network in Huntington's disease. Ageing Res Rev 2019; 49:92-103. [PMID: 30502498 PMCID: PMC6320389 DOI: 10.1016/j.arr.2018.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion mutation in the huntingtin protein. Expansions above 40 polyglutamine repeats are invariably fatal, following a symptomatic period characterised by choreiform movements, behavioural abnormalities, and cognitive decline. While mutant huntingtin (mHtt) is widely expressed from early life, most patients with HD present in mid-adulthood, highlighting the role of ageing in disease pathogenesis. mHtt undergoes proteolytic cleavage, misfolding, accumulation, and aggregation into inclusion bodies. The emerging model of HD pathogenesis proposes that the chronic production of misfolded mHtt overwhelms the chaperone machinery, diverting other misfolded clients to the proteasome and the autophagy pathways, ultimately leading to a global collapse of the proteostasis network. Multiple converging hypotheses also implicate ageing and its impact in the dysfunction of organelles as additional contributing factors to the collapse of proteostasis in HD. In particular, mitochondrial function is required to sustain the activity of ATP-dependent chaperones and proteolytic machinery. Recent studies elucidating mitochondria-endoplasmic reticulum interactions and uncovering a dedicated proteostasis machinery in mitochondria, suggest that mitochondria play a more active role in the maintenance of cellular proteostasis than previously thought. The enhancement of cytosolic proteostasis pathways shows promise for HD treatment, protecting cells from the detrimental effects of mHtt accumulation. In this review, we consider how mHtt and its post translational modifications interfere with protein quality control pathways, and how the pharmacological and genetic modulation of components of the proteostasis network impact disease phenotypes in cellular and in vivo HD models.
Collapse
Affiliation(s)
- Tânia R Soares
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Sara D Reis
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, UK.
| |
Collapse
|
24
|
DeGuire SM, Ruggeri FS, Fares MB, Chiki A, Cendrowska U, Dietler G, Lashuel HA. N-terminal Huntingtin (Htt) phosphorylation is a molecular switch regulating Htt aggregation, helical conformation, internalization, and nuclear targeting. J Biol Chem 2018; 293:18540-18558. [PMID: 30185623 PMCID: PMC6290154 DOI: 10.1074/jbc.ra118.004621] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease is a fatal neurodegenerative disorder resulting from a CAG repeat expansion in the first exon of the gene encoding the Huntingtin protein (Htt). Phosphorylation of this protein region (Httex1) has been shown to play important roles in regulating the structure, toxicity, and cellular properties of N-terminal fragments and full-length Htt. However, increasing evidence suggests that phosphomimetic substitutions in Htt result in inconsistent findings and do not reproduce all aspects of true phosphorylation. Here, we investigated the effects of bona fide phosphorylation at Ser-13 or Ser-16 on the structure, aggregation, membrane binding, and subcellular properties of the Httex1-Q18A variant and compared these effects with those of phosphomimetic substitutions. We show that phosphorylation at either Ser-13 and/or Ser-16 or phosphomimetic substitutions at both these residues inhibit the aggregation of mutant Httex1, but that only phosphorylation strongly disrupts the amphipathic α-helix of the N terminus and prompts the internalization and nuclear targeting of preformed Httex1 aggregates. In synthetic peptides, phosphorylation at Ser-13, Ser-16, or both residues strongly disrupted the amphipathic α-helix of the N-terminal 17 residues (Nt17) of Httex1 and Nt17 membrane binding. Experiments with peptides bearing different combinations of phosphorylation sites within Nt17 revealed a phosphorylation-dependent switch that regulates the Httex1 structure, involving cross-talk between phosphorylation at Thr-3 and Ser-13 or Ser-16. Our results provide crucial insights into the role of phosphorylation in regulating Httex1 structure and function, and underscore the critical importance of identifying the enzymes responsible for regulating Htt phosphorylation, and their potential as therapeutic targets for managing Huntington's disease.
Collapse
Affiliation(s)
- Sean M DeGuire
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland and
| | - Francesco S Ruggeri
- the Laboratory of the Physics of Living Matter, Institute of Physics of Biological Systems, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mohamed-Bilal Fares
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland and
| | - Anass Chiki
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland and
| | - Urszula Cendrowska
- the Laboratory of the Physics of Living Matter, Institute of Physics of Biological Systems, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Dietler
- the Laboratory of the Physics of Living Matter, Institute of Physics of Biological Systems, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland and
| |
Collapse
|
25
|
Harding RJ, Tong YF. Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin 2018; 39:754-769. [PMID: 29620053 DOI: 10.1038/aps.2018.11] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/18/2018] [Indexed: 02/08/2023] Open
Abstract
Many neurodegenerative diseases are characterized by impairment of protein quality control mechanisms in neuronal cells. Ineffective clearance of misfolded proteins by the proteasome, autophagy pathways and exocytosis leads to accumulation of toxic protein oligomers and aggregates in neurons. Toxic protein species affect various cellular functions resulting in the development of a spectrum of different neurodegenerative proteinopathies, including Huntington's disease (HD). Playing an integral role in proteostasis, dysfunction of the ubiquitylation system in HD is progressive and multi-faceted with numerous biochemical pathways affected, in particular, the ubiquitin-proteasome system and autophagy routes for protein aggregate degradation. Unravelling the molecular mechanisms involved in HD pathogenesis of proteostasis provides new insight in disease progression in HD as well as possible therapeutic avenues. Recent developments of potential therapeutics are discussed in this review.
Collapse
|
26
|
Caterino M, Squillaro T, Montesarchio D, Giordano A, Giancola C, Melone MAB. Huntingtin protein: A new option for fixing the Huntington's disease countdown clock. Neuropharmacology 2018. [PMID: 29526547 DOI: 10.1016/j.neuropharm.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Huntington's disease is a dreadful, incurable disorder. It springs from the autosomal dominant mutation in the first exon of the HTT gene, which encodes for the huntingtin protein (HTT) and results in progressive neurodegeneration. Thus far, all the attempted approaches to tackle the mutant HTT-induced toxicity causing this disease have failed. The mutant protein comes with the aberrantly expanded poly-glutamine tract. It is primarily to blame for the build-up of β-amyloid-like HTT aggregates, deleterious once broadened beyond the critical ∼35-37 repeats threshold. Recent experimental findings have provided valuable information on the molecular basis underlying this HTT-driven neurodegeneration. These findings indicate that the poly-glutamine siding regions and many post-translation modifications either abet or counter the poly-glutamine tract. This review provides an overall, up-to-date insight into HTT biophysics and structural biology, particularly discussing novel pharmacological options to specifically target the mutated protein and thus inhibit its functions and toxicity.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Tiziana Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases, University of Campania "Luigi Vanvitelli", Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Daniela Montesarchio
- InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA; Department of Medicine, Surgery and Neuroscience University of Siena, Siena, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Mariarosa A B Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases, University of Campania "Luigi Vanvitelli", Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Polyglutamine expansion diseases: More than simple repeats. J Struct Biol 2017; 201:139-154. [PMID: 28928079 DOI: 10.1016/j.jsb.2017.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022]
Abstract
Polyglutamine (polyQ) repeat-containing proteins are widespread in the human proteome but only nine of them are associated with highly incapacitating neurodegenerative disorders. The genetic expansion of the polyQ tract in disease-related proteins triggers a series of events resulting in neurodegeneration. The polyQ tract plays the leading role in the aggregation mechanism, but other elements modulate the aggregation propensity in the context of the full-length proteins, as implied by variations in the length of the polyQ tract required to trigger the onset of a given polyQ disease. Intrinsic features such as the presence of aggregation-prone regions (APRs) outside the polyQ segments and polyQ-flanking sequences, which synergistically participate in the aggregation process, are emerging for several disease-related proteins. The inherent polymorphic structure of polyQ stretches places the polyQ proteins in a central position in protein-protein interaction networks, where interacting partners may additionally shield APRs or reshape the aggregation course. Expansion of the polyQ tract perturbs the cellular homeostasis and contributes to neuronal failure by modulating protein-protein interactions and enhancing toxic oligomerization. Post-translational modifications further regulate self-assembly either by directly altering the intrinsic aggregation propensity of polyQ proteins, by modulating their interaction with different macromolecules or by modifying their withdrawal by the cell quality control machinery. Here we review the recent data on the multifaceted aggregation pathways of disease-related polyQ proteins, focusing on ataxin-3, the protein mutated in Machado-Joseph disease. Further mechanistic understanding of this network of events is crucial for the development of effective therapies for polyQ diseases.
Collapse
|