1
|
Xiao B, Chu C, Lin Z, Fang T, Zhou Y, Zhang C, Shan J, Chen S, Li L. Treadmill exercise in combination with acousto-optic and olfactory stimulation improves cognitive function in APP/PS1 mice through the brain-derived neurotrophic factor- and Cygb-associated signaling pathways. Neural Regen Res 2025; 20:2706-2726. [PMID: 39105365 DOI: 10.4103/nrr.nrr-d-23-01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/23/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00031/figure1/v/2024-11-05T132919Z/r/image-tiff A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease. Consequently, enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression. Nonetheless, non-pharmacological interventions aimed at inducing adult neurogenesis are currently limited. Although individual non-pharmacological interventions, such as aerobic exercise, acousto-optic stimulation, and olfactory stimulation, have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease, the therapeutic effect of a strategy that combines these interventions has not been fully explored. In this study, we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months. Amyloid deposition became evident at 4 months, while neurogenesis declined by 6 months, further deteriorating as the disease progressed. However, following a 4-week multifactor stimulation protocol, which encompassed treadmill running (46 min/d, 10 m/min, 6 days per week), 40 Hz acousto-optic stimulation (1 hour/day, 6 days/week), and olfactory stimulation (1 hour/day, 6 days/week), we found a significant increase in the number of newborn cells (5'-bromo-2'-deoxyuridine-positive cells), immature neurons (doublecortin-positive cells), newborn immature neurons (5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells), and newborn astrocytes (5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells). Additionally, the amyloid-beta load in the hippocampus decreased. These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice. Furthermore, cognitive abilities were improved, and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation, as evidenced by Morris water maze, novel object recognition, forced swimming test, and tail suspension test results. Notably, the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2 weeks after treatment cessation. At the molecular level, multifactor stimulation upregulated the expression of neuron-related proteins (NeuN, doublecortin, postsynaptic density protein-95, and synaptophysin), anti-apoptosis-related proteins (Bcl-2 and PARP), and an autophagy-associated protein (LC3B), while decreasing the expression of apoptosis-related proteins (BAX and caspase-9), in the hippocampus of amyloid precursor protein/presenilin 1 mice. These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways. Furthermore, serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis, oxidative damage, and cognition. Collectively, these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Biao Xiao
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chaoyang Chu
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhicheng Lin
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Tianyuan Fang
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yuyu Zhou
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chuxia Zhang
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jianghui Shan
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Shiyu Chen
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Liping Li
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
- Ningbo Key Laboratory of Behavioral Neuroscience, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang Province, China
| |
Collapse
|
2
|
Sciuto L, Fichera V, Zanghì A, Vecchio M, Falsaperla R, Galioto S, Palmucci S, Belfiore G, Di Napoli C, Polizzi A, Praticò AD. Lissencephaly, Pachygyrias, Band Heterotopias, RELN Pathway, and ARX Mutations (Incomplete Neuron Migration). JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:332-340. [DOI: 10.1055/s-0044-1786790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractLissencephaly (LIS) is a group of malformations of cortical development consisting of a defective neuronal migration that results in lack of formation of the normal cerebral convolutions. It includes a spectrum of defect with varying degrees of severity, from agyria and pachygyria to subcortical band heterotopia. The etiopathogenesis of LIS includes both genetic and environmental factors. Although nongenetic forms of LIS have been reported, genetic causes are certainly more frequent and to date 19 LIS-SBH-associated genes have been identified. Most common mutations involve LIS1, DCX, ARX, and RELN genes. Clinically affected individuals present with early hypotonia, which can progress to limb spasticity, seizures, and psychomotor retardation. Convulsive episodes usually appear early (first months of life) and include infantile spasms, akinetic or myoclonic seizures, up to the development of complex epileptic syndromes, including atypical absences, myoclonia, and partial or tonic–clonic seizures. Several clinical entities are associated with classical LIS, including the following: isolated lissencephaly sequence (ILS); Miller–Dieker syndrome (MDS; OMIM 247200); subcortical band heterotopia (OMIM 300067); X-linked LIS with abnormal genitalia; and LIS with cerebellar hypoplasia. Diagnosis primarily depends on genetic and neuroimaging. Magnetic resonance imaging (MRI) is the gold standard, and it detects the presence of thick cortical cortex, its location, and the layers' architecture. Based on neuroimaging, it is possible to distinguish six subtypes of gyral malformations. Clinical and therapeutic management of these patients is challenging, considering the necessity to face drug-resistant epilepsy, intellectual disability, spasticity, and dysphagia and feeding problems. At the present moment, no gene-specific treatment for LIS is available.
Collapse
Affiliation(s)
- Laura Sciuto
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Valeria Fichera
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Neonatal Intensive Care unit and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Sebastiano Galioto
- Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies, IPTRA Unit, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Giuseppe Belfiore
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Claudia Di Napoli
- Chair of Genetics, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| |
Collapse
|
3
|
Carli ALE, Hardy JM, Hoblos H, Ernst M, Lucet IS, Buchert M. Structure-Guided Prediction of the Functional Impact of DCLK1 Mutations on Tumorigenesis. Biomedicines 2023; 11:biomedicines11030990. [PMID: 36979969 PMCID: PMC10046695 DOI: 10.3390/biomedicines11030990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1) is a functional serine/threonine (S/T)-kinase and a member of the doublecortin family of proteins which are characterized by their ability to bind to microtubules (MTs). DCLK1 is a proposed cancer driver gene, and its upregulation is associated with poor overall survival in several solid cancer types. However, how DCLK1 associates with MTs and how its kinase function contributes to pro-tumorigenic processes is poorly understood. This review builds on structural models to propose not only the specific functions of the domains but also attempts to predict the impact of individual somatic missense mutations on DCLK1 functions. Somatic missense mutations in DCLK1 are most frequently located within the N-terminal MT binding region and likely impact on the ability of DCLK1 to bind to αβ-tubulin and to polymerize and stabilize MTs. Moreover, the MT binding affinity of DCLK1 is negatively regulated by its auto-phosphorylation, and therefore mutations that affect kinase activity are predicted to indirectly alter MT dynamics. The emerging picture portrays DCLK1 as an MT-associated protein whose interactions with tubulin heterodimers and MTs are tightly controlled processes which, when disrupted, may confer pro-tumorigenic properties.
Collapse
Affiliation(s)
- Annalisa L E Carli
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joshua M Hardy
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hanadi Hoblos
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Ernst
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Isabelle S Lucet
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Buchert
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
4
|
Novel DCX pathogenic variant in a girl with subcortical band heterotopia. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Subcortical band heterotopia (SBH), is a brain malformation defined by symmetrical and bilateral heterotopic gray matter bands localized deep within the white matter, between the cortex and lateral ventricles. SBH is the result of abnormal neuronal migration, with improper positioning of the cortical neurons. DCX gene (doublecortin), a microtubule-associated protein with essential roles in neuronal migration and differentiation during brain development, is one of the main contributors to the X-linked Lissencephaly spectrum pathogenesis (OMIM #300067). DCX variants are responsible for SBH in females and isolated lissencephaly in males. Herein, we present a 7-year-old girl with a de novo frameshift variant in DCX gene, unreported by date. The patient has focal complex seizures with onset at 23 months of age, fully controlled with medication, mild tremor and coordination impairment of fine movements and some learning difficulties, otherwise with normal development. The brain magnetic resonance imaging revealed the presence of thick SBH. Direct sequencing of DCX gene revealed a pathogenic heterozygous cytosine duplication in exon 3; this frameshift variant leads to a premature stop codon in position 164 (p.Gln160Profs*5). The variant type and its predicted consequence at protein level correlates with the severity of radiological findings. The clinical presentation of our patient is, however, milder than expected. Our research expands the mutational spectrum of DCX gene in SBH females and provides a detailed clinical and imagistic description of the patient. This paper highlights the utility of single gene sequencing as a first-tier diagnostic test of patients with gene-specific phenotypic features.
Collapse
|
5
|
Rafiei A, Cruz Tetlalmatzi S, Edrington CH, Lee L, Crowder DA, Saltzberg DJ, Sali A, Brouhard G, Schriemer DC. Doublecortin engages the microtubule lattice through a cooperative binding mode involving its C-terminal domain. eLife 2022; 11:66975. [PMID: 35485925 PMCID: PMC9122500 DOI: 10.7554/elife.66975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Doublecortin (DCX) is a microtubule (MT)-associated protein that regulates MT structure and function during neuronal development and mutations in DCX lead to a spectrum of neurological disorders. The structural properties of MT-bound DCX that explain these disorders are incompletely determined. Here, we describe the molecular architecture of the DCX–MT complex through an integrative modeling approach that combines data from X-ray crystallography, cryo-electron microscopy, and a high-fidelity chemical crosslinking method. We demonstrate that DCX interacts with MTs through its N-terminal domain and induces a lattice-dependent self-association involving the C-terminal structured domain and its disordered tail, in a conformation that favors an open, domain-swapped state. The networked state can accommodate multiple different attachment points on the MT lattice, all of which orient the C-terminal tails away from the lattice. As numerous disease mutations cluster in the C-terminus, and regulatory phosphorylations cluster in its tail, our study shows that lattice-driven self-assembly is an important property of DCX.
Collapse
Affiliation(s)
- Atefeh Rafiei
- Department of Chemistry, University of Calgary, Calgary, Canada
| | | | | | - Linda Lee
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - D Alex Crowder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Daniel J Saltzberg
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Gary Brouhard
- Department of Biology, McGill University, Montreal, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Liu ZT, Ma YT, Pan ST, Xie K, Shen W, Lin SY, Gao JY, Li WY, Li GY, Wang QW, Li LP. Effects of involuntary treadmill running in combination with swimming on adult neurogenesis in an Alzheimer's mouse model. Neurochem Int 2022; 155:105309. [PMID: 35276288 DOI: 10.1016/j.neuint.2022.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Physical exercise plays a role on the prevention and treatment of Alzheimer's disease (AD), but the exercise mode and the mechanism for these positive effects is still ambiguous. Here, we investigated the effect of an aerobic interval exercise, running in combination with swimming, on behavioral dysfunction and associated adult neurogenesis in a mouse model of AD. We demonstrate that 4 weeks of the exercise could ameliorate Aβ42 oligomer-induced cognitive impairment in mice utilizing Morris water maze tests. Additionally, the exercised Aβ42 oligomer-induced mice exhibited a significant reduction of anxiety- and depression-like behaviors compared to the sedentary Aβ42 oligomer-induced mice utilizing an Elevated zero maze and a Tail suspension test. Moreover, by utilizing 5'-bromodeoxyuridine (BrdU) as an exogenous cell tracer, we found that the exercised Aβ42 oligomer-induced mice displayed a significant increase in newborn cells (BrdU+ cells), which differentiated into a majority of neurons (BrdU+ DCX+ cells or BrdU+NeuN+ cells) and a few of astrocytes (BrdU+GFAP+ cells). Likewise, the exercised Aβ42 oligomer-induced mice also displayed the higher levels of NeuN, PSD95, synaptophysin, Bcl-2 and lower level of GFAP protein. Furthermore, alteration of serum metabolites in transgenic AD mice between the exercised and sedentary group were significantly associated with lipid metabolism, amino acid metabolism, and neurotransmitters. These findings suggest that combined aerobic interval exercise-mediated metabolites and proteins contributed to improving adult neurogenesis and behavioral performance after AD pathology, which might provide a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Zhi-Tao Liu
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Yu-Tao Ma
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Shao-Tao Pan
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Kai Xie
- Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Wei Shen
- Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Su-Yang Lin
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Jun-Yan Gao
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Wan-Yi Li
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Guang-Yu Li
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Qin-Wen Wang
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China.
| | - Li-Ping Li
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, 315010, PR China.
| |
Collapse
|
7
|
Fu X, Rao L, Li P, Liu X, Wang Q, Son AI, Gennerich A, Liu JSH. Doublecortin and JIP3 are neural-specific counteracting regulators of dynein-mediated retrograde trafficking. eLife 2022; 11:82218. [PMID: 36476638 PMCID: PMC9799976 DOI: 10.7554/elife.82218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in the microtubule (MT)-binding protein doublecortin (DCX) or in the MT-based molecular motor dynein result in lissencephaly. However, a functional link between DCX and dynein has not been defined. Here, we demonstrate that DCX negatively regulates dynein-mediated retrograde transport in neurons from Dcx-/y or Dcx-/y;Dclk1-/- mice by reducing dynein's association with MTs and disrupting the composition of the dynein motor complex. Previous work showed an increased binding of the adaptor protein C-Jun-amino-terminal kinase-interacting protein 3 (JIP3) to dynein in the absence of DCX. Using purified components, we demonstrate that JIP3 forms an active motor complex with dynein and its cofactor dynactin with two dyneins per complex. DCX competes with the binding of the second dynein, resulting in a velocity reduction of the complex. We conclude that DCX negatively regulates dynein-mediated retrograde transport through two critical interactions by regulating dynein binding to MTs and regulating the composition of the dynein motor complex.
Collapse
Affiliation(s)
- Xiaoqin Fu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina,Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina,Key Laboratory of Perinatal Medicine of WenzhouWenzhouChina
| | - Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina,Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina,Key Laboratory of Perinatal Medicine of WenzhouWenzhouChina
| | - Xinglei Liu
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Qi Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina
| | - Alexander I Son
- Center for Neuroscience Research, Children's National Research Institute, Children's National HospitalWashingtonUnited States
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Judy Shih-Hwa Liu
- Department of Neurology, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown UniversityProvidenceUnited States
| |
Collapse
|
8
|
Morcillo P, Cordero H, Ijomone OM, Ayodele A, Bornhorst J, Gunther L, Macaluso FP, Bowman AB, Aschner M. Defective Mitochondrial Dynamics Underlie Manganese-Induced Neurotoxicity. Mol Neurobiol 2021; 58:3270-3289. [PMID: 33666854 PMCID: PMC9009155 DOI: 10.1007/s12035-021-02341-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Perturbations in mitochondrial dynamics have been observed in most neurodegenerative diseases. Here, we focus on manganese (Mn)-induced Parkinsonism-like neurodegeneration, a disorder associated with the preferential of Mn in the basal ganglia where the mitochondria are considered an early target. Despite the extensive characterization of the clinical presentation of manganism, the mechanism by which Mn mediated mitochondrial toxicity is unclear. In this study we hypothesized whether Mn exposure alters mitochondrial activity, including axonal transport of mitochondria and mitochondrial dynamics, morphology, and network. Using primary neuron cultures exposed to 100 μM Mn (which is considered the threshold of Mn toxicity in vitro) and intraperitoneal injections of MnCl2 (25mg/kg) in rat, we observed that Mn increased mitochondrial fission mediated by phosphorylation of dynamin-related protein-1 at serine 616 (p-s616-DRP1) and decreased mitochondrial fusion proteins (MFN1 and MFN2) leading to mitochondrial fragmentation, defects in mitochondrial respiratory capacity, and mitochondrial ultrastructural damage in vivo and in vitro. Furthermore, Mn exposure impaired mitochondrial trafficking by decreasing dynactin (DCTN1) and kinesin-1 (KIF5B) motor proteins and increasing destabilization of the cytoskeleton at protein and gene levels. In addition, mitochondrial communication may also be altered by Mn exposure, increasing the length of nanotunnels to reach out distal mitochondria. These findings revealed an unrecognized role of Mn in dysregulation of mitochondrial dynamics providing a potential explanation of early hallmarks of the disorder, as well as a possible common pathway with neurological disorders arising upon chronic Mn exposure.
Collapse
Affiliation(s)
- Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Hector Cordero
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Omamuyovwi M Ijomone
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Akinyemi Ayodele
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Leslie Gunther
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
9
|
Tan J, Wu Z, Liu J, Zhang W, Yuan W, Peng H. MicroRNA-203-mediated inhibition of doublecortin underpins cardioprotection conferred by sevoflurane in rats after myocardial ischaemia-reperfusion injury. J Cell Mol Med 2020; 24:9825-9838. [PMID: 32783282 PMCID: PMC7520273 DOI: 10.1111/jcmm.15566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
Myocardial ischaemia‐reperfusion (I/R) injury is a serious illness with high morbidity and mortality. Mounting evidence indicates the utility of sevoflurane (SEV) in the treatment of myocardial I/R injury. This study aimed to explore the molecular mechanisms underlying the protective action of SEV against myocardial I/R injury. A rat model of myocardial I/R injury was established, and I/R rats were treated with different concentrations of SEV. MicroRNA‐203 (miR‐203) and doublecortin (DCX) expression levels were determined using reverse transcription‐quantitative polymerase chain reaction. Putative target relationship between miR‐203 and DCX was explored using dual‐luciferase reporter gene assay and RNA‐binding protein immunoprecipitation assay. Ischaemia‐reperfusion rats were treated with SEV, miR‐203 antagomir or sh‐DCX, followed by determination of oxidative stress‐ and inflammation‐related factor levels using nitrite and enzyme‐linked immunosorbent assays, and that of apoptosis‐related factors using Western blot analysis. The apoptotic rate of myocardial tissues was determined using TdT‐mediated dUTP‐biotin nick end labeling (TUNEL) staining, and the infract area was evaluated using triphenyltetrazolium chloride staining. The results showed miR‐203 was poorly expressed and DCX was highly expressed in myocardial tissues of I/R rats. Sevoflurane was found to elevate miR‐203, and miR‐203, in turn, could target and reduce DCX expression. Sevoflurane, miR‐203 overexpression or DCX silencing resulted in declined oxidative stress, inflammation, apoptosis and infarct area, ultimately alleviating myocardial I/R injury. Collectively, these findings showed that SEV‐activated miR‐203 exhibited suppressive effects on myocardial I/R injury in rats and highlighted the SEV/miR‐203/DCX axis as a promising therapeutic target for myocardial I/R injury management.
Collapse
Affiliation(s)
- Jian Tan
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University, Pingxiang, P. R. China
| | - Zhiguo Wu
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University, Pingxiang, P. R. China
| | - Jun Liu
- Department of Obstetrics, Pingxiang Maternity and Child Health Hospital, Pingxiang, P. R. China
| | - Wenting Zhang
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University, Pingxiang, P. R. China
| | - Wanqiu Yuan
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University, Pingxiang, P. R. China
| | - Hong Peng
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University, Pingxiang, P. R. China
| |
Collapse
|
10
|
Nestin Selectively Facilitates the Phosphorylation of the Lissencephaly-Linked Protein Doublecortin (DCX) by cdk5/p35 to Regulate Growth Cone Morphology and Sema3a Sensitivity in Developing Neurons. J Neurosci 2020; 40:3720-3740. [PMID: 32273484 DOI: 10.1523/jneurosci.2471-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 11/21/2022] Open
Abstract
Nestin, an intermediate filament protein widely used as a marker of neural progenitors, was recently found to be expressed transiently in developing cortical neurons in culture and in developing mouse cortex. In young cortical cultures, nestin regulates axonal growth cone morphology. In addition, nestin, which is known to bind the neuronal cdk5/p35 kinase, affects responses to axon guidance cues upstream of cdk5, specifically, to Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, and changes in microtubules and actin filaments are well studied. In contrast, the roles of intermediate filament proteins in this process are poorly understood, even in cultured neurons. Here, we investigate the molecular mechanism by which nestin affects growth cone morphology and Sema3a sensitivity. We find that nestin selectively facilitates the phosphorylation of the lissencephaly-linked protein doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected by nestin. We uncover that this substrate selectivity is based on the ability of nestin to interact with DCX, but not with other cdk5 substrates. Nestin thus creates a selective scaffold for DCX with activated cdk5/p35. Last, we use cortical cultures derived from Dcx KO mice to show that the effects of nestin on growth cone morphology and on Sema3a sensitivity are DCX-dependent, thus suggesting a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating the intracellular kinase signaling environment in developing neurons. The sex of animal subjects is unknown.SIGNIFICANCE STATEMENT Nestin, an intermediate filament protein highly expressed in neural progenitors, was recently identified in developing neurons where it regulates growth cone morphology and responsiveness to the guidance cue Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, but the roles of intermediate filaments in this process are poorly understood. We now report that nestin selectively facilitates phosphorylation of the lissencephaly-linked doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected. This substrate selectivity is based on preferential scaffolding of DCX, cdk5, and p35 by nestin. Additionally, we demonstrate a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating intracellular kinase signaling in developing neurons.
Collapse
|
11
|
Liu RX, Ma J, Wang B, Tian T, Guo N, Liu SJ. No DCX-positive neurogenesis in the cerebral cortex of the adult primate. Neural Regen Res 2020; 15:1290-1299. [PMID: 31960815 PMCID: PMC7047795 DOI: 10.4103/1673-5374.272610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Whether endogenous neurogenesis occurs in the adult cortex remains controversial. An increasing number of reports suggest that doublecortin (DCX)-positive neurogenesis persists in the adult primate cortex, attracting enormous attention worldwide. In this study, different DCX antibodies were used together with NeuN antibodies in immunohistochemistry and western blot assays using adjacent cortical sections from adult monkeys. Antibody adsorption, antigen binding, primary antibody omission and antibody-free experiments were used to assess specificity of the signals. We found either strong fluorescent signals, medium-weak intensity signals in some cells, weak signals in a few perikarya or near complete lack of labeling in adjacent cortical sections incubated with the various DCX antibodies. The putative DCX-positive cells in the cortex were also positive for NeuN, a specific marker of mature neurons. However, further experiments showed that most of these signals were either the result of antibody cross reactivity, the non-specificity of secondary antibodies or tissue autofluorescence. No confirmed DCX-positive cells were detected in the adult macaque cortex by immunofluorescence. Our findings show that DCX-positive neurogenesis does not occur in the cerebral cortex of adult primates, and that false-positive signals (artefacts) are caused by antibody cross reactivity and autofluorescence. The experimental protocols were approved by the Institutional Animal Care and Use Committee of the Institute of Neuroscience, Beijing, China (approval No. IACUC-AMMS-2014-501).
Collapse
Affiliation(s)
- Ruo-Xu Liu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Jie Ma
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Bin Wang
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Tian Tian
- Department of Pharmacy, Medical College, Huanghe S&T University, Zhengzhou, Henan Province, China
| | - Ning Guo
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Shao-Jun Liu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| |
Collapse
|
12
|
Yoshida S, Yoshida K. Multiple functions of DYRK2 in cancer and tissue development. FEBS Lett 2019; 593:2953-2965. [PMID: 31505048 DOI: 10.1002/1873-3468.13601] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) are evolutionarily conserved from yeast to mammals. Accumulating studies have revealed that DYRKs have important roles in regulation of the cell cycle and survival. DYRK2, a member of the class II DYRK family protein, is a key regulator of p53, and phosphorylates it at Ser46 to induce apoptosis in response to DNA damage. Moreover, recent studies have uncovered that DYRK2 regulates G1/S transition, epithelial-mesenchymal-transition, and stemness in human cancer cells. DYRK2 also appears to have roles in tissue development in lower eukaryotes. Thus, the elucidation of mechanisms for DYRK2 during mammalian tissue development will promote the understanding of cell differentiation, tissue homeostasis, and congenital diseases as well as cancer. In this review, we discuss the roles of DYRK2 in tumor cells. Moreover, we focus on DYRK2-dependent developmental mechanisms in several species including fly (Drosophila), worm (Caenorhabditis elegans), zebrafish (Danio rerio), and mammals.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Martineau FS, Sahu S, Plantier V, Buhler E, Schaller F, Fournier L, Chazal G, Kawasaki H, Represa A, Watrin F, Manent JB. Correct Laminar Positioning in the Neocortex Influences Proper Dendritic and Synaptic Development. Cereb Cortex 2019; 28:2976-2990. [PMID: 29788228 PMCID: PMC6041803 DOI: 10.1093/cercor/bhy113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 01/28/2023] Open
Abstract
The neocortex is a 6-layered laminated structure with a precise anatomical and functional organization ensuring proper function. Laminar positioning of cortical neurons, as determined by termination of neuronal migration, is a key determinant of their ability to assemble into functional circuits. However, the exact contribution of laminar placement to dendrite morphogenesis and synapse formation remains unclear. Here we manipulated the laminar position of cortical neurons by knocking down doublecortin (Dcx), a crucial effector of migration, and show that misplaced neurons fail to properly form dendrites, spines, and functional glutamatergic and GABAergic synapses. We further show that knocking down Dcx in properly positioned neurons induces similar but milder defects, suggesting that the laminar misplacement is the primary cause of altered neuronal development. Thus, the specific laminar environment of their fated layers is crucial for the maturation of cortical neurons, and influences their functional integration into developing cortical circuits.
Collapse
Affiliation(s)
| | - Surajit Sahu
- INMED, Aix-Marseille University, INSERM U901, Marseille, France
| | | | | | | | | | | | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Alfonso Represa
- INMED, Aix-Marseille University, INSERM U901, Marseille, France
| | | | | |
Collapse
|
14
|
Moslehi M, Ng DC, Bogoyevitch MA. Pathogenic E2K mutation of doublecortin X (DCX) alters microtubule stabilisation and actin filament association. Biochem Biophys Res Commun 2019; 513:540-545. [DOI: 10.1016/j.bbrc.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
|
15
|
Moslehi M, Ng DCH, Bogoyevitch MA. Doublecortin X (DCX) serine 28 phosphorylation is a regulatory switch, modulating association of DCX with microtubules and actin filaments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:638-649. [PMID: 30625347 DOI: 10.1016/j.bbamcr.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 11/18/2022]
Abstract
Doublecortin X (DCX) plays essential roles in neuronal development via its regulation of cytoskeleton dynamics. This is mediated through direct interactions between its doublecortin (DC) domains (DC1 and DC2) with microtubules (MTs) and indirect association with actin filaments (F-ACT). While the regulatory role of the DCX C-terminus following DC2 (i.e. DCX residues 275-366) has been established, less is known of the possible contributions made by the DCX N-terminus preceding DC1 (i.e. DCX residues 1-44). Here, we assessed the influence of DCX Ser28 within the DCX N-terminus, on the association of DCX with MTs and F-ACT. We compared the cytoskeletal interactions of the DCX S28E phosphomimetic and DCX S28A phospho-resistant mutants and wild-type DCX. Immunoprecipitation and colocalisation analyses indicated increased association of DCX S28E with F-ACT but decreased interaction with MTs, and conversely enhanced DCX S28A association with MTs but decreased association with F-ACT. To evaluate the impact of DCX mutants on cytoskeletal filaments we performed fluorescence recovery after photobleaching (FRAP) studies on SiR-tubulin and β-actin-mCherry and observed comparable tubulin and actin exchange rates in the presence of DCX WT and DCX S28A. However, we observed faster tubulin exchange rates but slower actin exchange rates in the presence of DCX S28E. Moreover, DCX S28E enhanced the association with the actin-binding protein spinophilin (Spn) suggesting the shift to favour association with both F-ACT and Spn in the presence of DCX S28E. Taken together, our results highlight a new role for DCX S28 as a regulatory switch for cytoskeletal organisation.
Collapse
Affiliation(s)
- Maryam Moslehi
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|