1
|
Yabueng N, Sansupa C, Noirungsee N, Kraisitnitikul P, Chansuebsri S, Janta R, Khoomrung S, Disayathanoowat T, Chantara S. Characterization of Airborne Microbial Communities in Northern Thailand: Impacts of Smoke Haze Versus Non-Haze Conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:125302. [PMID: 39542164 DOI: 10.1016/j.envpol.2024.125302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Data on airborne microorganisms, particularly in Southeast Asia, are more limited compared to chemical data. This study is the first to examine the community and diversity of microorganisms on PM2.5 in an urban area of Northern Thailand during both smoke haze and non-smoke haze periods of 2020. This study evaluated the composition of airborne bacteria and fungi and analyzed their association with the chemical composition of PM2.5 and meteorological variables. Significantly higher concentrations of PM2.5 and more chemical compounds were observed during the smoke haze period compared to the non-smoke haze period. Increased PM2.5 concentrations significantly altered both bacterial and fungal communities. The diversity and richness of airborne bacteria increased, whereas those of fungi decreased. The level of PM2.5 concentration (the carrier), the chemical composition of PM2.5 (the resources for survival), and the local meteorological conditions (relative humidity (RH)) were associated with the differences in bacterial and fungal populations. In addition, air originating from the west of the receptor site, influenced by both terrestrial and marine air mass routes, contributed to higher bacterial diversity and richness during the smoke haze period. In contrast, fungal diversity and richness were greater when the air came from the southwest, following a marine route. However, the primary health concern is pathogens, which were present in both periods (such as Clostridium, Aspergillus, and Cladosporium) and were especially abundant during smoke haze periods. This study highlights those airborne microorganisms, along with the particles and their chemical composition, are important components that can impact health, including that of humans, animals, and the environment.
Collapse
Affiliation(s)
- Nuttipon Yabueng
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chakriya Sansupa
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Siriraj Metabolomics and Phenomics Center (SiMPC), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pavidarin Kraisitnitikul
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sarana Chansuebsri
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Radshadaporn Janta
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sakda Khoomrung
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Siriraj Metabolomics and Phenomics Center (SiMPC), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok 10700, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science Mahidol University, Bangkok 10400, Thailand; Thailand Metabolomics Society
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somporn Chantara
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Chemistry Department, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Zhang Y, He Q, Tong X, Yin P, Liu Y, Meng X, Gao Y, Shi S, Li X, Kan H, Zhou M, Li Y, Chen R. Differential associations of fine and coarse particulate air pollution with cause-specific pneumonia mortality: A nationwide, individual-level, case-crossover study. ENVIRONMENTAL RESEARCH 2024; 252:119054. [PMID: 38704007 DOI: 10.1016/j.envres.2024.119054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The connections between fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) and daily mortality of viral pneumonia and bacterial pneumonia were unclear. OBJECTIVES To distinguish the connections between PM2.5 and PM2.5-10 and daily mortality due to viral pneumonia and bacterial pneumonia. METHODS Using a comprehensive national death registry encompassing all areas of mainland China, we conducted a case-crossover investigation from 2013 to 2019 at an individual level. Residential daily particle concentrations were evaluated using satellite-based models with a spatial resolution of 1 km. To analyze the data, we employed the conditional logistic regression model in conjunction with polynomial distributed lag models. RESULTS We included 221,507 pneumonia deaths in China. Every interquartile range (IQR) elevation in concentrations of PM2.5 (lag 0-2 d, 37.6 μg/m3) was associated with higher magnitude of mortality for viral pneumonia (3.03%) than bacterial pneumonia (2.14%), whereas the difference was not significant (p-value for difference = 0.38). An IQR increase in concentrations of PM2.5-10 (lag 0-2 d, 28.4 μg/m3) was also linked to higher magnitude of mortality from viral pneumonia (3.06%) compared to bacterial pneumonia (2.31%), whereas the difference was not significant (p-value for difference = 0.52). After controlling for gaseous pollutants, their effects were all stable; however, with mutual adjustment, the associations of PM2.5 remained, and those of PM2.5-10 were no longer statistically significant. Greater magnitude of associations was noted in individuals aged 75 years and above, as well as during the cold season. CONCLUSION This nationwide study presents compelling evidence that both PM2.5 and PM2.5-10 exposures could increase pneumonia mortality of viral and bacterial causes, highlighting the more robust effects of PM2.5 and somewhat higher sensitivity of viral pneumonia.
Collapse
Affiliation(s)
- Ye Zhang
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qinglin He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xunliang Tong
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Peng Yin
- National Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yunning Liu
- National Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xinyue Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Maigeng Zhou
- National Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Bao Y, Chen Y, Wang F, Xu Z, Zhou S, Sun R, Wu X, Yan K. East Asian monsoon manipulates the richness and taxonomic composition of airborne bacteria over China coastal area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162581. [PMID: 36889406 DOI: 10.1016/j.scitotenv.2023.162581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Airborne bacteria may have significant impacts on aerosol properties, public health and ecosystem depending on their taxonomic composition and transport. This study investigated the seasonal and spatial variations of bacterial composition and richness over the east coast of China and the roles of East Asian monsoon played through synchronous sampling and 16S rRNA sequencing analysis of airborne bacteria at Huaniao island of the East China Sea (ECS) and the urban and rural sites of Shanghai. Airborne bacteria showed higher richness over the land sites than Huaniao island with the highest values found in the urban and rural springs associated with the growing plants. For the island, the maximal richness occurred in winter as the result of prevailing terrestrial winds controlled by East Asian winter monsoon. Proteobacteria, Actinobacteria and Cyanobacteria were found to be top three phyla, together accounting for 75 % of total airborne bacteria. Radiation-resistant Deinococcus, Methylobacterium belonging to Rhizobiales (related to vegetation) and Mastigocladopsis_PCC_10914 originating from marine ecosystem were indicator genera for urban, rural and island sites, respectively. The Bray-Curits dissimilarity of taxonomic composition between the island and two land sites was the lowest in winter with the representative genera over island also typically from the soil. Our results reveal that seasonal change of monsoon wind directions evidently affects the richness and taxonomic composition of airborne bacteria in China coastal area. Particularly, prevailing terrestrial winds lead to the dominance of land-derived bacteria over the coastal ECS which may have a potential impact on marine ecosystem.
Collapse
Affiliation(s)
- Yang Bao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Ying Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 202162, China.
| | - Fanghui Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Zongjun Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Shengqian Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Ruihua Sun
- Pudong New District Environmental Monitoring Station, Shanghai 200135, China
| | - Xiaowei Wu
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Ke Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Urban Aerobiome and Effects on Human Health: A Systematic Review and Missing Evidence. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Urban air pollutants are a major public health concern and include biological matters which composes about 25% of the atmospheric aerosol particles. Airborne microorganisms were traditionally characterized by culture-based methods recognizing just 1.5–15.3% of the total bacterial diversity that was evaluable by genome signature in the air environment (aerobiome). Despite the large number of exposed people, urban aerobiomes are still weakly described even if recently advanced literature has been published. This paper aims to systematically review the state of knowledge on the urban aerobiome and human health effects. A total of 24 papers that used next generation sequencing (NGS) techniques for characterization and comprised a seasonal analysis have been included. A core of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroides and various factors that influenced the community structure were detected. Heterogenic methods and results were reported, for both sampling and aerobiome diversity analysis, highlighting the necessity of in-depth and homogenized assessment thus reducing the risk of bias. The aerobiome can include threats for human health, such as pathogens and resistome spreading; however, its diversity seems to be protective for human health and reduced by high levels of air pollution. Evidence of the urban aerobiome effects on human health need to be filled up quickly for urban public health purposes.
Collapse
|
5
|
Sun Y, Meng Y, Ou Z, Li Y, Zhang M, Chen Y, Zhang Z, Chen X, Mu P, Norbäck D, Zhao Z, Zhang X, Fu X. Indoor microbiome, air pollutants and asthma, rhinitis and eczema in preschool children - A repeated cross-sectional study. ENVIRONMENT INTERNATIONAL 2022; 161:107137. [PMID: 35168186 DOI: 10.1016/j.envint.2022.107137] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Indoor microbiome exposure is associated with asthma, rhinitis and eczema. However, no studies report the interactions between environmental characteristics, indoor microbiome and health effects in a repeated cross-sectional framework. METHODS 1,279 and 1,121 preschool children in an industrial city (Taiyuan) of China were assessed for asthma, rhinitis and eczema symptoms in 2012 and 2019 by self-administered questionnaires, respectively. Bacteria and fungi in classroom vacuum dust were characterized by culture-independent amplicon sequencing. Multi-level logistic/linear regression was performed in two cross-sectional and two combined models to assess the associations. RESULTS The number of observed species in bacterial and fungal communities in classrooms increased significantly from 2012 to 2019, and the compositions of the microbial communities were drastically changed (p < 0.001). The temporal microbiome variation was significantly larger than the spatial variation within the city (p < 0.001). Annual average outdoor SO2 concentration decreased by 60.7%, whereas NO2 and PM10 concentrations increased by 63.3% and 40.0% from 2012 to 2019, which were both associated with indoor microbiome variation (PERMANOVA p < 0.001). The prevalence of asthma (2.0% to 3.3%, p = 0.06) and rhinitis (28.0% to 25.3%, p = 0.13) were not significantly changed, but the prevalence of eczema was increased (3.6% to 7.0%; p < 0.001). Aspergillus subversicolor, Collinsella and Cutibacterium were positively associated with asthma, rhinitis and eczema, respectively (p < 0.01). Prevotella, Lactobacillus iners and Dolosigranulum were protectively (negatively) associated with rhinitis (p < 0.01), consistent with previous studies in the human respiratory tract. NO2 and PM10 concentrations were negatively associated with rhinitis in a bivariate model, but a multivariate mediation analysis revealed that Prevotella fully mediated the health effects. CONCLUSIONS This is the first study to report the interactions between environmental characteristics, indoor microbiome and health in a repeated cross-sectional framework. The mediating effects of indoor microorganisms suggest incorporating biological with chemical exposure for a comprehensive exposure assessment.
Collapse
Affiliation(s)
- Yu Sun
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yi Meng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zheyuan Ou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yanling Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zefei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Xingyi Chen
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Dan Norbäck
- Occupational and Environmental Medicine, Dept. of Medical Science, University Hospital, Uppsala University, 75237 Uppsala, Sweden
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China.
| | - Xi Fu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, PR China.
| |
Collapse
|
6
|
Effect of Air Purification Systems on Particulate Matter and Airborne Bacteria in Public Buses. ATMOSPHERE 2021. [DOI: 10.3390/atmos13010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The indoor air quality in public transport systems is a major concern in South Korea. Within this context, we investigated the effect of air purification systems on the indoor air quality of intercity buses, one of the most popular transport options in South Korea. Air purifiers were custom designed and equipped with high-efficiency particulate air (HEPA) filters to remove particulate matter and ultraviolet light-emitting diodes (UV-LEDs) to remove airborne bacteria. To investigate the effectiveness of the air purification systems, we compared concentrations of particulate matter (PM2.5 and PM10), airborne bacteria, and carbon dioxide (CO2) in six buses (three with air purification systems and three without) along three bus routes (BUS1, BUS2, BUS3) in Gyeonggi Province, South Korea, between 6 April and 4 May 2021. Compared to the buses without air purification, those with air purification systems showed 34–60% and 25–61% lower average concentrations of PM2.5 and PM10, respectively. In addition, buses with air purification systems had 24–78% lower average airborne bacteria concentrations compared to those without air purification systems (when measured after 30 min of initial purification).
Collapse
|
7
|
Núñez A, García AM, Moreno DA, Guantes R. Seasonal changes dominate long-term variability of the urban air microbiome across space and time. ENVIRONMENT INTERNATIONAL 2021; 150:106423. [PMID: 33578068 DOI: 10.1016/j.envint.2021.106423] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 05/24/2023]
Abstract
Compared to soil or aquatic ecosystems, the atmosphere is still an underexplored environment for microbial diversity. In this study, we surveyed the composition, variability and sources of microbes (bacteria and fungi) in the near surface atmosphere of a highly populated area, spanning ~ 4,000 Km2 around the city center of Madrid (Spain), in different seasonal periods along two years. We found a core of abundant bacterial genera robust across space and time, most of soil origin, while fungi were more sensitive to environmental conditions. Microbial communities showed clear seasonal patterns driven by variability of environmental factors, mainly temperature and accumulated rain, while local sources played a minor role. We also identified taxa in both groups characteristic of seasonal periods, but not of specific sampling sites or plant coverage. The present study suggests that the near surface atmosphere of urban environments contains an ecosystem stable across relatively large spatial and temporal scales, with a rather homogenous composition, modulated by climatic variations. As such, it contributes to our understanding of the long-term changes associated to the human exposome in the air of highly populated areas.
Collapse
Affiliation(s)
- Andrés Núñez
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid, Spain; Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ana M García
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid, Spain
| | - Diego A Moreno
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid, Spain; Facultad de Farmacia, Universidad de Castilla-La Mancha (FF-UCLM), Albacete, Spain.
| | - Raúl Guantes
- Department of Condensed Matter Physics and Material Science Institute 'Nicolás Cabrera', Science Faculty, Universidad Autónoma de Madrid, Madrid, Spain; Institute for Condensed Matter Physics (IFIMAC), Science Faculty, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Bae Y, Hwang JS, Shin YJ. miR-30c-1 encourages human corneal endothelial cells to regenerate through ameliorating senescence. Aging (Albany NY) 2021; 13:9348-9372. [PMID: 33744867 PMCID: PMC8064150 DOI: 10.18632/aging.202719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
In the present study, we studied the role of microRNA-30c-1 (miR-30c-1) on transforming growth factor beta1 (TGF-β1)-induced senescence of hCECs. hCECs were transfected by miR-30c-1 and treated with TGF-β1 to assess the inhibitory effect of miR-30c-1 on TGF-β1-induced senescence. Cell viability and proliferation rate in miR-30c-1-transfected cells was elevated compared with control. Cell cycle analysis revealed that cell abundance in S phase was elevated in miR-30c-1-treated cells compared with control. TGF-β1 increased the senescence of hCECs; however, this was ameliorated by miR-30c-1. TGF-β1 increased the size of hCECs, the ratio of senescence-associated beta-galactosidase-stained cells, secretion of senescence-associated secretory phenotype factors, the oxidative stress, and arrested the cell cycle, all of which were ameliorated by miR-30c-1 treatment. miR-30c-1 also suppressed a TGF-β1-induced depolarization of mitochondrial membrane potential and a TGF-β1 stimulated increase in levels of cleaved poly (ADP-ribose) polymerase (PARP), cleaved caspase 3, and microtubule-associated proteins 1A/1B light chain 3B II. In conclusion, miR-30c-1 promoted the proliferation of hCECs through ameliorating the TGF- β1-induced senescence of hCECs and reducing cell death of hCECs. Thus, miR-30c-1 may be a therapeutic target for hCECs regeneration.
Collapse
Affiliation(s)
- Younghwan Bae
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Cordero JM, Núñez A, García AM, Borge R. Assessment and statistical modelling of airborne microorganisms in Madrid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116124. [PMID: 33246763 DOI: 10.1016/j.envpol.2020.116124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The limited evidence available suggests that the interaction between chemical pollutants and biological particles may intensify respiratory diseases caused by air pollution in urban areas. Unlike air pollutants, which are routinely measured, records of biotic component are scarce. While pollen concentrations are daily surveyed in most cities, data related to airborne bacteria or fungi are not usually available. This work presents the first effort to understand atmospheric pollution integrating both biotic and abiotic agents, trying to identify relationships among the Proteobacteria, Actinobacteria and Ascomycota phyla with palynological, meteorological and air quality variables using all biological historical records available in the Madrid Greater Region. The tools employed involve statistical hypothesis contrast tests such as Kruskal-Wallis and machine learning algorithms. A cluster analysis was performed to analyse which abiotic variables were able to separate the biotic variables into groups. Significant relationships were found for temperature and relative humidity. In addition, the relative abundance of the biological phyla studied was affected by PM10 and O3 ambient concentration. Preliminary Generalized Additive Models (GAMs) to predict the biotic relative abundances based on these atmospheric variables were developed. The results (r = 0.70) were acceptable taking into account the scarcity of the available data. These models can be used as an indication of the biotic composition when no measurements are available. They are also a good starting point to continue working in the development of more accurate models and to investigate causal relationships.
Collapse
Affiliation(s)
- José María Cordero
- Environmental Modelling Laboratory, Department of Chemical and Environmental Engineering, Universidad Politécnica de Madrid, (UPM), E-28006, Madrid, Spain
| | - Andrés Núñez
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), E-28006, Madrid, Spain; Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, E-30100, Murcia, Spain
| | - Ana M García
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), E-28006, Madrid, Spain
| | - Rafael Borge
- Environmental Modelling Laboratory, Department of Chemical and Environmental Engineering, Universidad Politécnica de Madrid, (UPM), E-28006, Madrid, Spain.
| |
Collapse
|
10
|
Pompilio A, Di Bonaventura G. Ambient air pollution and respiratory bacterial infections, a troubling association: epidemiology, underlying mechanisms, and future challenges. Crit Rev Microbiol 2020; 46:600-630. [PMID: 33059504 DOI: 10.1080/1040841x.2020.1816894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The World Health Organization attributed more than four million premature deaths to ambient air pollution in 2016. Numerous epidemiologic studies demonstrate that acute respiratory tract infections and exacerbations of pre-existing chronic airway diseases can result from exposure to ambient (outdoor) air pollution. In this context, the atmosphere contains both chemical and microbial pollutants (bioaerosols), whose impact on human health remains unclear. Therefore, this review: summarises the findings from recent studies on the association between exposure to air pollutants-especially particulate matter and ozone-and onset or exacerbation of respiratory infections (e.g. pneumonia, cystic fibrosis lung infection, and tuberculosis); discusses the mechanisms underlying the relationship between air pollution and respiratory bacterial infections, which is necessary to define prevention and treatment strategies; demonstrates the relevance of air pollution modelling in investigating and preventing the impact of exposure to air pollutants on human health; and outlines future actions required to improve air quality and reduce morbidity and mortality related to air pollution.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
11
|
Zhou Y, Lai Y, Tong X, Leung MHY, Tong JCK, Ridley IA, Lee PKH. Airborne Bacteria in Outdoor Air and Air of Mechanically Ventilated Buildings at City Scale in Hong Kong across Seasons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11732-11743. [PMID: 32852192 DOI: 10.1021/acs.est.9b07623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Studies of the indoor airborne microbiome have mostly been confined to a single location and time point. Here, we characterized, over the course of a year, the geographic variation, building-function dependence, and dispersal characteristics of indoor and outdoor airborne microbiomes (bacterial members only) of eight mechanically ventilated commercial buildings. Based on the Sloan neutral model, airborne microbiomes were randomly dispersed in the respective indoor and outdoor environments and between the two environments during each season. The dominant taxa in the indoor and outdoor environments showed minor variations at each location among seasons. The airborne microbiomes displayed weak seasonality for both indoor and outdoor environments, while a weak geographic variation was found only for the indoor environments. Source tracking results show that outdoor air and occupant skin were major contributors to the indoor airborne microbiomes, but the extent of the contribution from each source varied within and among buildings over the seasons, which suggests variations in local building use. Based on 32 cases of indoor airborne microbiome data, we determined that the indoor/outdoor (I/O) ratio of PM2.5 was not a robust indicator of the sources found indoors. Alternatively, the indoor concentration of carbon dioxide was more closely correlated with the major sources of the indoor airborne microbiome in mechanically ventilated environments.
Collapse
Affiliation(s)
- You Zhou
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yonghang Lai
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jimmy C K Tong
- Building Sustainability Group, Arup, Kowloon, Hong Kong SAR, China
| | - Ian A Ridley
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Wu JY, Zhu YS, Guo C, Xia Y, Guo ZM, Li QL, Lu JH. A Comparative Study of Associated Microbiota Between Pig Farm and Pig Slaughterhouse in Guangdong, China. Curr Microbiol 2020; 77:3310-3320. [PMID: 32915289 PMCID: PMC7485193 DOI: 10.1007/s00284-020-02187-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The goal of this study was to compare the microbiota in different pig-present settings in China. Bioaerosol samples from pig farms and slaughterhouses and nasal samples from pig farmers and slaughterhouse workers were collected in Guangdong, southern China. The bacterial genomic DNA was isolated and subjected to 16S sequencing. The data were analyzed using QIIME2 with the DADA2 pipeline. A total of 14,923,551 clean reads and 2785 operational taxonomic units (OTUs) were obtained, which were mostly grouped into 4 phyla (Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria) and 220 families. The microbiota richness of nasal samples in pig-present workers was higher than that of bioaerosols collected in the vicinity of the pig enclosures. There were 31.7% (620/1954) shared OTUs between pig farm bioaerosols and pig farmers which was higher than that between pig slaughterhouses and slaughterhouse workers (23.4%, 364/1553) (p < 0.001). Acinetobacter and Pseudomonas were the most abundant in pig-present bioaerosols, and Staphylococcus, Pseudomonas, and Corynebacterium were dominant bacterial genus in pig farmers. The bacterial patterns are also specific to the location of sample collected. The results suggest that bioaerosol microbiota interact with human nasal microbes in the vicinity of the pig farm enclosures, providing the basis for further analysis of microbial transmission across hosts in pig-present settings.
Collapse
Affiliation(s)
- Jian-Yong Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yan-Shan Zhu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, 10032, USA
| | - Yao Xia
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhong-Min Guo
- Laboratory Animal Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qian-Lin Li
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia-Hai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
- Key Laboratory for Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Park EH, Heo J, Kim H, Yi SM. The major chemical constituents of PM 2.5 and airborne bacterial community phyla in Beijing, Seoul, and Nagasaki. CHEMOSPHERE 2020; 254:126870. [PMID: 32353811 DOI: 10.1016/j.chemosphere.2020.126870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Ambient particle (PM2.5) samples were collected in three East Asian cities (Beijing, China; Seoul, South Korea; Nagasaki, Japan) from December 2014 to November 2015 to quantitatively investigate airborne bacteria at the phylum level. Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Cyanobacteria represented the top five airborne bacterial phyla in all three cities. The most dominant airborne phylum, Proteobacteria, was more prevalent during the winter (at rates of 67.2%, 79.9%, and 87.0% for Beijing, Seoul, and Nagasaki, respectively). Correlations among airborne bacteria and environmental factors including PM2.5, its major chemical constituents, and meteorological factors were calculated. Temperature correlated negatively with Proteobacteria but positively with Firmicutes and Bacteroidetes. The abundance of Cyanobacteria correlated positively with particulate NO3- and SO42- levels in Beijing (R = 0.46 and R = 0.35 for NO3- and SO42-, respectively) but negatively in Seoul (R = -0.14 and R = -0.19 for NO3- and SO42-, respectively) and Nagasaki (R = -0.05 and R = -0.03 for NO3- and SO42-, respectively). Backward trajectory analysis was applied for 72 h and three clusters were classified in each city. Five dominant bacteria and other bacterial groups showed significant differences (p < 0.05) in local clustering, as compared to the long-range transport clusters from Beijing. The proportions of the five bacterial phyla in Seoul were significantly different in each cluster. A local cluster in Nagasaki had higher ratios of all major airborne bacterial phyla, except Proteobacteria.
Collapse
Affiliation(s)
- Eun Ha Park
- College of Environmental Sciences and Engineering, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 10087, China; Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jongbae Heo
- Busan Developmet Institute, 955 Jungangdae-ro, Busanjin-gu, Busan, 47210, Republic of Korea.
| | - Ho Kim
- Institute of Health and Environment, Seoul National University, 1 Gwanak, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Muk Yi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
14
|
Qin N, Liang P, Wu C, Wang G, Xu Q, Xiong X, Wang T, Zolfo M, Segata N, Qin H, Knight R, Gilbert JA, Zhu TF. Longitudinal survey of microbiome associated with particulate matter in a megacity. Genome Biol 2020; 21:55. [PMID: 32127018 PMCID: PMC7055069 DOI: 10.1186/s13059-020-01964-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND While the physical and chemical properties of airborne particulate matter (PM) have been extensively studied, their associated microbiome remains largely unexplored. Here, we performed a longitudinal metagenomic survey of 106 samples of airborne PM2.5 and PM10 in Beijing over a period of 6 months in 2012 and 2013, including those from several historically severe smog events. RESULTS We observed that the microbiome composition and functional potential were conserved between PM2.5 and PM10, although considerable temporal variations existed. Among the airborne microorganisms, Propionibacterium acnes, Escherichia coli, Acinetobacter lwoffii, Lactobacillus amylovorus, and Lactobacillus reuteri dominated, along with several viral species. We further identified an extensive repertoire of genes involved in antibiotic resistance and detoxification, including transporters, transpeptidases, and thioredoxins. Sample stratification based on Air Quality Index (AQI) demonstrated that many microbial species, including those associated with human, dog, and mouse feces, exhibit AQI-dependent incidence dynamics. The phylogenetic and functional diversity of air microbiome is comparable to those of soil and water environments, as its composition likely derives from a wide variety of sources. CONCLUSIONS Airborne particulate matter accommodates rich and dynamic microbial communities, including a range of microbial elements that are associated with potential health consequences.
Collapse
Affiliation(s)
- Nan Qin
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China. .,Realbio Genomics Institute, Shanghai, 200050, China.
| | - Peng Liang
- School of Life Sciences, Peking University, Beijing, 100871, China.,School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China
| | - Chunyan Wu
- Realbio Genomics Institute, Shanghai, 200050, China
| | - Guanqun Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China
| | - Qian Xu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Realbio Genomics Institute, Shanghai, 200050, China
| | - Xiao Xiong
- Realbio Genomics Institute, Shanghai, 200050, China
| | | | - Moreno Zolfo
- Centre for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Huanlong Qin
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA. .,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA. .,Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Ting F Zhu
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Pan Y, Pan X, Xiao H, Xiao H. Structural Characteristics and Functional Implications of PM 2.5 Bacterial Communities During Fall in Beijing and Shanghai, China. Front Microbiol 2019; 10:2369. [PMID: 31681228 PMCID: PMC6798152 DOI: 10.3389/fmicb.2019.02369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/30/2019] [Indexed: 11/22/2022] Open
Abstract
Air pollution characterized by fine particulate matter (PM2.5) frequently has occurred in China, and has posed threats to human health. The physiochemical characteristics of airborne PM2.5 have been extensively studied, but its bacterial structures and functions have not yet been well studied. Herein, we focused on the structural characteristics and functional implications of airborne bacteria under different pollution levels in Beijing and Shanghai. The α- and β-diversities showed no obvious difference in two cities (p > 0.05). The dominant phyla Proteobacteria, Firmicutes, and Actinobacteria with total abundance of over 92% were found in all PM2.5 samples. The results of weighted unifrac non-metric multidimensional scaling (NMDS) suggested that air pollution was no obviously correlated with bacterial community but dispersed disorderly. Furthermore, canonical correlation analysis (CCA) and permutation test indicated that NH4+, SO42-, and wind speed were the key factors that associated with airborne bacterial community structure. Chemical components of particulate matter played more important role in structuring bacterial community than meteorological conditions based on the result of partial CCA. In addition, the annotation of metabolic pathway suggested that the predominant genus Pseudomonas was obviously correlated with disease infections. Several dominant species might contribute to organic degradation, nitrogen cycles, and ice-nuclei activities in environments. Overall, this work enhanced our understanding of functions of airborne bacteria and highlighted their potential role in atmospheric chemical progresses.
Collapse
Affiliation(s)
- Yuanyuan Pan
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, China
| | - Xianglong Pan
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, China
| | - Hongwei Xiao
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, China
| | - Huayun Xiao
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, China
| |
Collapse
|
16
|
Yoo K, Han I, Ko KS, Lee TK, Yoo H, Khan MI, Tiedje JM, Park J. Bacillus-Dominant Airborne Bacterial Communities Identified During Asian Dust Events. MICROBIAL ECOLOGY 2019; 78:677-687. [PMID: 30904989 DOI: 10.1007/s00248-019-01348-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Asian dust (AD) events have received significant attention due to their adverse effects on ecosystems and human health. However, detailed information about airborne pathogens associated with AD events is limited. This study monitored airborne bacterial communities and identified AD-specific bacteria and the potential hazards associated with these bacteria during AD events. Over a 33-month period, 40 air samples were collected under normal atmospheric conditions (non-AD events; n = 34) and during AD events (n = 6). The airborne bacterial communities in the air samples collected during non-AD events (non-AD sample) and AD events (AD sample) were evaluated using both culture-dependent and culture-independent methods. The bacterial diversity increased significantly, along with the 16S rRNA gene copy number, in AD samples (p < 0.05) and was positively correlated with PM10 concentration. High throughput sequencing of the 16S rRNA gene revealed that the relative abundance of the phylum Firmicutes increased substantially in AD samples (44.3 ± 5.0%) compared with non-AD samples (27.8 ± 4.3%). Within the phylum Firmicutes, AD samples included a greater abundance of Bacillus species (almost 23.8%) than non-AD samples (almost 13.3%). Both culture-dependent and culture-independent methods detected common predominant species closely related to Bacillus cereus during AD events. Subsequent multilocus sequence typing (MLST) and enterotoxin gene assays confirmed the presence of virulence factors in B. cereus isolates from AD samples. Furthermore, the abundance of bceT, encoding enterotoxin in B. cereus, was significantly higher in AD samples (p < 0.05). The systematic characterization of airborne bacterial communities in AD samples in this study suggests that B. cereus pose risks to public health.
Collapse
Affiliation(s)
- Keunje Yoo
- Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, South Korea
| | - Il Han
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, South Korea
| | - Hyunji Yoo
- Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, South Korea
| | - Muhammad Imran Khan
- Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, South Korea
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, 48824, USA
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, South Korea.
| |
Collapse
|
17
|
Mhuireach GÁ, Betancourt-Román CM, Green JL, Johnson BR. Spatiotemporal Controls on the Urban Aerobiome. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Dueker ME, French S, O'Mullan GD. Comparison of Bacterial Diversity in Air and Water of a Major Urban Center. Front Microbiol 2018; 9:2868. [PMID: 30555433 PMCID: PMC6282627 DOI: 10.3389/fmicb.2018.02868] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/07/2018] [Indexed: 01/22/2023] Open
Abstract
The interaction of wind with aquatic and terrestrial surfaces is known to control the creation of microbial aerosols allowing for their entrainment into air masses that can be transported regionally and globally. Near surface interactions between urban waterways and urban air are understudied but some level of interaction among these bacterial communities would be expected and may be relevant to understanding both urban air and water quality. To address this gap related to patterns of local air-water microbial exchange, we utilized next-generation sequencing of 16S rRNA genes from paired air and water samples collected from 3 urban waterfront sites and evaluated their relative bacterial diversity. Aerosol samples at all sites were significantly more diverse than water samples. Only 17–22% of each site’s bacterial aerosol OTUs were present at every site. These shared aerosol OTUs included taxa associated with terrestrial systems (e.g., Bacillus), aquatic systems (e.g., Planktomarina) and sewage (e.g., Enterococcus). In fact, sewage-associated genera were detected in both aerosol and water samples, (e.g., Bifidobacterium, Blautia, and Faecalibacterium), demonstrating the widespread influence of similar pollution sources across these urban environments. However, the majority (50–61%) of the aerosol OTUs at each site were unique to that site, suggesting that local sources are an important influence on bioaerosols. According to indicator species analysis, each site’s aerosols harbored the highest percentage of bacterial OTUs statistically determined to uniquely represent that site’s aquatic bacterial community, further demonstrating a local connection between water quality and air quality in the urban environment.
Collapse
Affiliation(s)
- M Elias Dueker
- Biology and Environmental & Urban Studies Programs, Bard College, Annandale-on-Hudson, NY, United States.,Bard Center for the Study of Land, Air, and Water, Annandale-on-Hudson, NY, United States.,Cary Institute of Ecosystem Studies, Millbrook, NY, United States
| | - Shaya French
- Biology and Environmental & Urban Studies Programs, Bard College, Annandale-on-Hudson, NY, United States
| | - Gregory D O'Mullan
- School of Earth and Environmental Sciences, Queens College, City University of New York, New York City, NY, United States
| |
Collapse
|
19
|
Behzad H, Mineta K, Gojobori T. Global Ramifications of Dust and Sandstorm Microbiota. Genome Biol Evol 2018; 10:1970-1987. [PMID: 29961874 PMCID: PMC6097598 DOI: 10.1093/gbe/evy134] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Dust and sandstorm events inject substantial quantities of foreign microorganisms into global ecosystems, with the ability to impact distant environments. The majority of these microorganisms originate from deserts and drylands where the soil is laden with highly stress-resistant microbes capable of thriving under extreme environmental conditions, and a substantial portion of them survive long journeys through the atmosphere. This large-scale transmission of highly resilient alien microbial contaminants raises concerns with regards to the invasion of sensitive and/or pristine sink environments, and to human health-concerns exacerbated by increases in the rate of desertification. Further increases in the transport of dust-associated microbiota could extend the spread of foreign microbes to new ecosystems, increase their load in present sink environments, disrupt ecosystem balance, and potentially introduce new pathogens. Our present understanding of these microorganisms, their phylogenic affiliations and functional significance, is insufficient to determine their impact. The purpose of this review is to provide an overview of available data regarding dust and sandstorm microbiota and their potential ramifications on human and ecosystem health. We conclude by discussing current gaps in dust and sandstorm microbiota research, and the need for collaborative studies involving high-resolution meta-omic approaches in conjunction with extensive ecological time-series studies to advance the field towards an improved and sufficient understanding of these invisible atmospheric travelers and their global ramifications.
Collapse
Affiliation(s)
- Hayedeh Behzad
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Katsuhiko Mineta
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| |
Collapse
|