1
|
Barber KE, Pitts BX, Stiede JT, Espil FM, Woods DW, Specht MW, Bennett SM, Walkup JT, Ricketts EJ, McGuire JF, Peterson AL, Compton SN, Wilhelm S, Scahill L, Piacentini JC. Perceived Negative Effects of Tic Management Strategies in Adults With Tic Disorders. Behav Modif 2024; 48:449-470. [PMID: 38557310 PMCID: PMC11179959 DOI: 10.1177/01454455241236446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Behavior therapy is a well-established and empirically supported treatment for tic disorders (TDs). However, concerns have been expressed about the negative effects of behavioral interventions, such as tic worsening, tic substitution, and excessive effort. This study explored perceived negative effects of tic management strategies in adults with TDs and predictors of these experiences. Participants (N = 72) completed semi-structured interviews 11 years after receiving behavior therapy or supportive therapy in a randomized clinical trial. We examined responses to interview questions about managing tics and predictors of reported negative effects. Most participants did not experience tic worsening (84%) or tic substitution (75%) from tic management strategies. The majority felt they could manage tics while participating in their environment (87%) and did not report life interference from tic management (77%). About half (45%) felt less present when managing tics. Treatment non-responders in the original trial were more likely to report negative effects of tic management strategies. No differences in reported negative consequences were found between those who received behavior therapy versus supportive therapy, suggesting that behavior therapy specifically does not lead to such adverse effects. These findings could reduce misconceptions about behavior therapy for TDs and enhance its acceptability and utilization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John T Walkup
- Ann and Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Emily J Ricketts
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Alan L Peterson
- The University of Texas Health Science Center at San Antonio, San Antonio, USA
| | | | | | - Lawrence Scahill
- Emory University School of Medicine Marcus Center, Atlanta, GA, USA
| | - John C Piacentini
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| |
Collapse
|
2
|
Zabag R, Rinck M, Becker E, Gilboa-Schechtman E, Levy-Gigi E. Although I know it: Social anxiety is associated with a deficit in positive updating even when the cost of avoidance is Obvious. J Psychiatr Res 2024; 169:279-283. [PMID: 38065052 DOI: 10.1016/j.jpsychires.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 01/15/2024]
Abstract
Social anxiety (SA) is associated with difficulties in positively updating negative social information when new information and feedback about chosen options (actual decisions) are received. However, it is unclear whether this difficulty persists when hidden information regarding unchosen options is explicitly presented. The aim of the current study was to address this gap. Participants (Mturk; n = 191) completed a two-phases novel task. In the task, participants chose to approach or avoid people, represented by images of faces. During the initial (learning) phase, participants learned, in a probabilistic context, which people are associated with negative outcomes and should be avoided, and which are associated with positive outcomes and should be approached. During the subsequent updating phase, people previously associated with negative outcomes became associated with positive outcomes and vice versa. Importantly, participants received feedback not only on their approach (actual) decisions, but also on their avoidance (counter-factual) decisions (e.g., approaching this person would have been beneficial). The results revealed that even when the consequences of avoidance were explicitly presented, SA was associated with difficulty in positive updating of social information. The findings support the view that biased updating of social information is a change-resistant mechanism that may underlie the maintenance of SA.
Collapse
Affiliation(s)
- Reut Zabag
- Department of Psychology, Yale University, New Haven, Connecticut, United States; Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel.
| | - Mike Rinck
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Eni Becker
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Eva Gilboa-Schechtman
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel; Gonda Multidisciplinary Brain Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Einat Levy-Gigi
- Gonda Multidisciplinary Brain Center, Bar-Ilan University, Ramat-Gan, Israel; Faculty of Education, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
3
|
Wang X, Liu X, Chen L, Zhang X. The inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk involved in Tourette syndrome development. Front Immunol 2023; 14:1178113. [PMID: 37187752 PMCID: PMC10175669 DOI: 10.3389/fimmu.2023.1178113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Background Tourette syndrome (TS) is associated with immunological dysfunction. The DA system is closely related to TS development, or behavioral stereotypes. Previous evidence suggested that hyper-M1-polarized microglia may exist in the brains of TS individuals. However, the role of microglia in TS and their interaction with dopaminergic neurons is unclear. In this study, we applied iminodipropionitrile (IDPN) to establish a TS model and focused on the inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk. Methods Male Sprague-Dawley rats were intraperitoneally injected with IDPN for seven consecutive days. Stereotypic behavior was observed to verify the TS model. Striatal microglia activation was evaluated based on different markers and expressions of inflammatory factors. The striatal dopaminergic neurons were purified and co-cultured with different microglia groups, and dopamine-associated markers were assessed. Results First, there was pathological damage to striatal dopaminergic neurons in TS rats, as indicated by decreased expression of TH, DAT, and PITX3. Next, the TS group showed a trend of increased Iba-1 positive cells and elevated levels of inflammatory factors TNF-α and IL-6, as well as an enhanced M1-polarization marker (iNOS) and an attenuated M2-polarization marker (Arg-1). Finally, in the co-culture experiment, IL-4-treated microglia could upregulate the expression of TH, DAT, and PITX3 in striatal dopaminergic neurons vs LPS-treated microglia. Similarly, the TS group (microglia from TS rats) caused a decreased expression of TH, DAT, and PITX3 compared with the Sham group (microglia from control rats) in the dopaminergic neurons. Conclusion In the striatum of TS rats, microglia activation is M1 hyperpolarized, which transmits inflammatory injury to striatal dopaminergic neurons and disrupts normal dopamine signaling.
Collapse
Affiliation(s)
- Xueming Wang
- Plastic Surgery Department, Fujian Children’s Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiumei Liu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Developmental and Behavior Pediatrics Department, Fujian Children’s Hospital, Fuzhou, China
- *Correspondence: Xiumei Liu,
| | - Liangliang Chen
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Developmental and Behavior Pediatrics Department, Fujian Children’s Hospital, Fuzhou, China
| | - Xiaoling Zhang
- Child Healthcare Department, Fuzhou Maternal and Child Health Hospital, Fuzhou, China
| |
Collapse
|
4
|
Tomskiy AA, Poddubskaya AA, Gamaleya AA, Zaitsev OS. Neurosurgical management of Tourette syndrome: A literature review and analysis of a case series treated with deep brain stimulation. PROGRESS IN BRAIN RESEARCH 2022; 272:41-72. [PMID: 35667806 DOI: 10.1016/bs.pbr.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tourette syndrome (TS) is a heterogeneous disorder, which clinical presentation includes both multiple motor and vocal tics and commonly associated psychiatric conditions (obsessive-compulsive disorder, attention deficit hyperactivity disorder, depression, anxiety, etc.). Treatment options primarily consist of non-pharmacological interventions (habit reversal training, relaxation techniques, cognitive behavioral therapy, and social rehabilitation) and pharmacotherapy. In case of the intractable forms, neurosurgical treatment may be considered, primarily deep brain stimulation (DBS). DBS appear to be effective in medically intractable TS patients, although, the preferential brain target is still not defined. The majority of studies describe small number of cases and the issues of appropriate patient selection and ethics remain to be clarified. In this article, we review the main points in management of TS, discuss possible indications and contraindications for neurosurgical treatment, and analyze our experience of DBS in a case series of refractory TS patients with the focus on target selection and individual outcomes.
Collapse
Affiliation(s)
- Alexey A Tomskiy
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation.
| | - Anna A Poddubskaya
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation; Psychiatry Research Group, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Anna A Gamaleya
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Oleg S Zaitsev
- Psychiatry Research Group, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| |
Collapse
|
5
|
Roessner V, Eichele H, Stern JS, Skov L, Rizzo R, Debes NM, Nagy P, Cavanna AE, Termine C, Ganos C, Münchau A, Szejko N, Cath D, Müller-Vahl KR, Verdellen C, Hartmann A, Rothenberger A, Hoekstra PJ, Plessen KJ. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part III: pharmacological treatment. Eur Child Adolesc Psychiatry 2022; 31:425-441. [PMID: 34757514 PMCID: PMC8940878 DOI: 10.1007/s00787-021-01899-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 10/24/2021] [Indexed: 12/18/2022]
Abstract
In 2011, the European Society for the Study of Tourette Syndrome (ESSTS) published the first European guidelines for Tourette Syndrome (TS). We now present an update of the part on pharmacological treatment, based on a review of new literature with special attention to other evidence-based guidelines, meta-analyses, and randomized double-blinded studies. Moreover, our revision took into consideration results of a recent survey on treatment preferences conducted among ESSTS experts. The first preference should be given to psychoeducation and to behavioral approaches, as it strengthens the patients' self-regulatory control and thus his/her autonomy. Because behavioral approaches are not effective, available, or feasible in all patients, in a substantial number of patients pharmacological treatment is indicated, alone or in combination with behavioral therapy. The largest amount of evidence supports the use of dopamine blocking agents, preferably aripiprazole because of a more favorable profile of adverse events than first- and second-generation antipsychotics. Other agents that can be considered include tiapride, risperidone, and especially in case of co-existing attention deficit hyperactivity disorder (ADHD), clonidine and guanfacine. This view is supported by the results of our survey on medication preference among members of ESSTS, in which aripiprazole was indicated as the drug of first choice both in children and adults. In treatment resistant cases, treatment with agents with either a limited evidence base or risk of extrapyramidal adverse effects might be considered, including pimozide, haloperidol, topiramate, cannabis-based agents, and botulinum toxin injections. Overall, treatment of TS should be individualized, and decisions based on the patient's needs and preferences, presence of co-existing conditions, latest scientific findings as well as on the physician's preferences, experience, and local regulatory requirements.
Collapse
Affiliation(s)
- Veit Roessner
- Department of Child and Adolescent Psychiatry, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Heike Eichele
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway , Regional Resource Center for Autism, ADHD, Tourette Syndrome and Narcolepsy Western Norway, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Jeremy S. Stern
- Department of Neurology, St George’s Hospital, St George’s University of London, London, UK
| | - Liselotte Skov
- Paediatric Department, Herlev University Hospital, Herlev, Denmark
| | - Renata Rizzo
- Child and Adolescent Neurology and Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Péter Nagy
- Vadaskert Child Psychiatric Hospital and Outpatient Clinic, Budapest, Hungary
| | - Andrea E. Cavanna
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Cristiano Termine
- Child Neuropsychiatry Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Christos Ganos
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland ,Department of Bioethics, Medical University of Warsaw, Warsaw, Poland ,Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, New Haven, CT USA
| | - Danielle Cath
- Department of Psychiatry, University Medical Center Groningen, Rijks Universiteit Groningen, GGZ Drenthe Mental Health Institution, Assen, The Netherlands
| | - Kirsten R. Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Cara Verdellen
- PsyQ Nijmegen, Parnassia Group, Nijmegen, The Netherlands ,TicXperts, Heteren, The Netherlands
| | - Andreas Hartmann
- Department of Neurology, Sorbonne Université, Pitié-Salpetriere Hospital, Paris, France ,National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
| | - Aribert Rothenberger
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Gottingen, Gottingen, Germany
| | - Pieter J. Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kerstin J. Plessen
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland ,Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| |
Collapse
|
6
|
|
7
|
Eördegh G, Pertich Á, Tárnok Z, Nagy P, Bodosi B, Giricz Z, Hegedűs O, Merkl D, Nyujtó D, Oláh S, Őze A, Vidomusz R, Nagy A. Impairment of visually guided associative learning in children with Tourette syndrome. PLoS One 2020; 15:e0234724. [PMID: 32544176 PMCID: PMC7297359 DOI: 10.1371/journal.pone.0234724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
The major symptoms of Tourette syndrome are motor and vocal tics, but Tourette syndrome is occasionally associated with cognitive alterations as well. Although Tourette syndrome does not affect the majority of cognitive functions, some of them improve. There is scarce evidence on the impairment of learning functions in patients with Tourette syndrome. The core symptoms of Tourette syndrome are related to dysfunction of the basal ganglia and the frontostriatal loops. Acquired equivalence learning is a kind of associative learning that is related to the basal ganglia and the hippocampi. The modified Rutgers Acquired Equivalence Test was used in the present study to observe the associative learning function of patients with Tourette syndrome. The cognitive learning task can be divided into two main phases: the acquisition and test phases. The latter is further divided into two parts: retrieval and generalization. The acquisition phase of the associative learning test, which mainly depends on the function of the basal ganglia, was affected in the entire patient group, which included patients with Tourette syndrome with attention deficit hyperactivity disorder, obsessive compulsive disorder, autism spectrum disorder, or no comorbidities. Patients with Tourette syndrome performed worse in building associations. However, the retrieval and generalization parts of the test phase, which primarily depend on the function of the hippocampus, were not worsened by Tourette syndrome.
Collapse
Affiliation(s)
- Gabriella Eördegh
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Ákos Pertich
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsanett Tárnok
- Vadaskert Child and Adolescent Psychiatry, Budapest, Hungary
| | - Péter Nagy
- Vadaskert Child and Adolescent Psychiatry, Budapest, Hungary
| | - Balázs Bodosi
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsófia Giricz
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Orsolya Hegedűs
- Vadaskert Child and Adolescent Psychiatry, Budapest, Hungary
| | - Dóra Merkl
- Vadaskert Child and Adolescent Psychiatry, Budapest, Hungary
| | - Diána Nyujtó
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Szabina Oláh
- Vadaskert Child and Adolescent Psychiatry, Budapest, Hungary
| | - Attila Őze
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Réka Vidomusz
- Vadaskert Child and Adolescent Psychiatry, Budapest, Hungary
| | - Attila Nagy
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- * E-mail:
| |
Collapse
|
8
|
Fontanesi L, Palminteri S, Lebreton M. Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: a meta-analytical approach using diffusion decision modeling. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:490-502. [PMID: 31175616 PMCID: PMC6598978 DOI: 10.3758/s13415-019-00723-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Reinforcement learning (RL) models describe how humans and animals learn by trial-and-error to select actions that maximize rewards and minimize punishments. Traditional RL models focus exclusively on choices, thereby ignoring the interactions between choice preference and response time (RT), or how these interactions are influenced by contextual factors. However, in the field of perceptual decision-making, such interactions have proven to be important to dissociate between different underlying cognitive processes. Here, we investigated such interactions to shed new light on overlooked differences between learning to seek rewards and learning to avoid losses. We leveraged behavioral data from four RL experiments, which feature manipulations of two factors: outcome valence (gains vs. losses) and feedback information (partial vs. complete feedback). A Bayesian meta-analysis revealed that these contextual factors differently affect RTs and accuracy: While valence only affects RTs, feedback information affects both RTs and accuracy. To dissociate between the latent cognitive processes, we jointly fitted choices and RTs across all experiments with a Bayesian, hierarchical diffusion decision model (DDM). We found that the feedback manipulation affected drift rate, threshold, and non-decision time, suggesting that it was not a mere difficulty effect. Moreover, valence affected non-decision time and threshold, suggesting a motor inhibition in punishing contexts. To better understand the learning dynamics, we finally fitted a combination of RL and DDM (RLDDM). We found that while the threshold was modulated by trial-specific decision conflict, the non-decision time was modulated by the learned context valence. Overall, our results illustrate the benefits of jointly modeling RTs and choice data during RL, to reveal subtle mechanistic differences underlying decisions in different learning contexts.
Collapse
Affiliation(s)
- Laura Fontanesi
- Center of Economic Psychology, University of Basel, Basel, Switzerland
| | - Stefano Palminteri
- Human Reinforcement Learning team, Université de Paris Sciences et Lettres, Paris, France.
- Département d'études cognitives, Ecole Normale Supérieure, Paris, France.
- Laboratoire de Neurosciences Cognitives et Computationnelles, Institut National de la Santé et Recherche Médicale, Paris, France.
| | - Maël Lebreton
- Amsterdam Brain and Cognition, Universiteit van Amsterdam, Amsterdam, The Netherlands
- Center for Research in Experimental Economics and Political Decision-making, Amsterdam School of Economics, Universiteit van Amsterdam, Amsterdam, The Netherlands
- Neurology and Imaging of Cognition, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Swiss Center for Affective Science, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Abstract
This is the fourth yearly article in the Tourette Syndrome Research Highlights series, summarizing research from 2017 relevant to Tourette syndrome and other tic disorders. The authors briefly summarize reports they consider most important or interesting. The highlights from 2018 article is being drafted on the Authorea online authoring platform, and readers are encouraged to add references or give feedback on our selections using the comments feature on that page. After the calendar year ends, the article is submitted as the annual update for the Tics collection on F1000Research.
Collapse
Affiliation(s)
- Andreas Hartmann
- Sorbonne University, National Reference Centre for Tourette Disorder, Pitié-Salpêtrière Hospital, Paris, France
| | - Yulia Worbe
- Sorbonne University, National Reference Centre for Tourette Disorder, Pitié-Salpêtrière Hospital, Paris, France
- Department of Physiology, Saint-Antoine Hospital, Paris, France
| | - Kevin J. Black
- Psychiatry, Neurology, Radiology, and Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110-1093, USA
| |
Collapse
|