1
|
Schwabenland M, Mossad O, Sievert A, Peres AG, Ringel E, Baasch S, Kolter J, Cascone G, Dokalis N, Vlachos A, Ruzsics Z, Henneke P, Prinz M, Blank T. Neonatal immune challenge poses a sex-specific risk for epigenetic microglial reprogramming and behavioral impairment. Nat Commun 2023; 14:2721. [PMID: 37169749 PMCID: PMC10175500 DOI: 10.1038/s41467-023-38373-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
While the precise processes underlying a sex bias in the development of central nervous system (CNS) disorders are unknown, there is growing evidence that an early life immune activation can contribute to the disease pathogenesis. When we mimicked an early systemic viral infection or applied murine cytomegalovirus (MCMV) systemically in neonatal female and male mice, only male adolescent mice presented behavioral deficits, including reduced social behavior and cognition. This was paralleled by an increased amount of infiltrating T cells in the brain parenchyma, enhanced interferon-γ (IFNγ) signaling, and epigenetic reprogramming of microglial cells. These microglial cells showed increased phagocytic activity, which resulted in abnormal loss of excitatory synapses within the hippocampal brain region. None of these alterations were seen in female adolescent mice. Our findings underscore the early postnatal period's susceptibility to cause sex-dependent long-term CNS deficiencies following infections.
Collapse
Affiliation(s)
- Marius Schwabenland
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Omar Mossad
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annika Sievert
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adam G Peres
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elena Ringel
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Baasch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Giulia Cascone
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nikolaos Dokalis
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zsolt Ruzsics
- Institute for Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Thomas Blank
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Gorini F, Miceli M, de Antonellis P, Amente S, Zollo M, Ferrucci V. Epigenetics and immune cells in medulloblastoma. Front Genet 2023; 14:1135404. [PMID: 36968588 PMCID: PMC10036437 DOI: 10.3389/fgene.2023.1135404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Medulloblastoma (MB) is a highly malignant childhood tumor of the cerebellum. Transcriptional and epigenetic signatures have classified MB into four molecular subgroups, further stratified into biologically different subtypes with distinct somatic copy-number aberrations, driver genes, epigenetic alterations, activated pathways, and clinical outcomes. The brain tumor microenvironment (BTME) is of importance to regulate a complex network of cells, including immune cells, involved in cancer progression in brain malignancies. MB was considered with a “cold” immunophenotype due to the low influx of immune cells across the blood brain barrier (BBB). Recently, this assumption has been reconsidered because of the identification of infiltrating immune cells showing immunosuppressive phenotypes in the BTME of MB tumors. Here, we are providing a comprehensive overview of the current status of epigenetics alterations occurring during cancer progression with a description of the genomic landscape of MB by focusing on immune cells within the BTME. We further describe how new immunotherapeutic approaches could influence concurring epigenetic mechanisms of the immunosuppressive cells in BTME. In conclusion, the modulation of these molecular genetic complexes in BTME during cancer progression might enhance the therapeutic benefit, thus firing new weapons to fight MB.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Pasqualino de Antonellis
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- DAI Medicina di Laboratorio e Trasfusionale, ‘AOU Federico II Policlinico, Naples, Italy
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- *Correspondence: Veronica Ferrucci,
| |
Collapse
|
3
|
Lumateperone Normalizes Pathological Levels of Acute Inflammation through Important Pathways Known to Be Involved in Mood Regulation. J Neurosci 2023; 43:863-877. [PMID: 36549907 PMCID: PMC9899083 DOI: 10.1523/jneurosci.0984-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Lumateperone is indicated for the treatment of schizophrenia in adults and for depressive episodes associated with bipolar I or II disorder (bipolar depression) in adults, as monotherapy and as adjunctive therapy with lithium or valproate (Calabrese et al., 2021). It is currently under evaluation for the treatment of major depressive disorder (www.ClinicalTrials.gov). Lumateperone acts by selectively modulating serotonin, dopamine, and glutamate neurotransmission in the brain. However, other mechanisms could be involved in the actions of lumateperone, and because of the connection between the immune system and psychiatric health, we hypothesized that lumateperone might improve symptoms of depression, at least in part, by normalizing pathologic inflammation. Here, we show that in male and female C57BL/6 mice subjected to an acute immune challenge, lumateperone reduced aberrantly elevated levels of key proinflammatory cytokines (e.g., IL-1β, IL-6, and TNF-α) in both brain and serum; lumateperone also reduced proinflammatory cytokines in male mice under acute behavioral stress. Further, we demonstrate that lumateperone altered key genes/pathways involved in maintaining tissue integrity and supporting blood-brain barrier function, such as claudin-5 and intercellular adhesion molecule 1. In addition, in acutely stressed male Sprague Dawley rats, lumateperone conferred anxiolytic- and antianhedonic-like properties while enhancing activity in the mammalian target of rapamycin complex 1 pathway in the PFC. Together, our preclinical findings indicate that lumateperone, in addition to its ability to modulate multiple neurotransmitter systems, could also act by reducing the impact of acute inflammatory challenges.SIGNIFICANCE STATEMENT Lumateperone is indicated in adults to treat schizophrenia and depressive episodes associated with bipolar I or II disorder, as monotherapy and adjunctive therapy with lithium or valproate. Because aberrant immune system activity is associated with increased depressive symptoms, the relationship between lumateperone and immune function was studied. Here, lumateperone reduced the levels of proinflammatory cytokines that were increased following an immune challenge or stress in mice. Additionally, lumateperone altered genes and pathways that maintain blood-brain barrier integrity, restored an index of blood-brain barrier function, reduced anxiety-like behavior in rodents, and enhanced mammalian target of rapamycin complex 1 pathway signaling in the PFC. These results highlight the anti-inflammatory actions of lumateperone and describe how lumateperone may reduce immune pathophysiology, which is associated with depressive symptoms.
Collapse
|
4
|
Park J, Kim Y, Lee C, Kim YT. 3,5-Dicaffeoylquinic acid attenuates microglial activation-mediated inflammatory pain by enhancing autophagy through the suppression of MCP3/JAK2/STAT3 signaling. Biomed Pharmacother 2022; 153:113549. [DOI: 10.1016/j.biopha.2022.113549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/02/2022] Open
|
5
|
Hu M, Wang Y, Meng Y, Hu J, Qiao J, Zhen J, Liang D, Fan M. Hypoxia induced-disruption of lncRNA TUG1/PRC2 interaction impairs human trophoblast invasion through epigenetically activating Nodal/ALK7 signalling. J Cell Mol Med 2022; 26:4087-4100. [PMID: 35729773 PMCID: PMC9279603 DOI: 10.1111/jcmm.17450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Inadequate trophoblastic invasion is considered as one of hallmarks of preeclampsia (PE), which is characterized by newly onset of hypertension (>140/90 mmHg) and proteinuria (>300 mg in a 24‐h urine) after 20 weeks of gestation. Accumulating evidence has indicated that long noncoding RNAs are aberrantly expressed in PE, whereas detailed mechanisms are unknown. In the present study, we showed that lncRNA Taurine upregulated 1 (TUG1) were downregulated in preeclamptic placenta and in HTR8/SVneo cells under hypoxic conditions, together with reduced enhancer of zeste homolog2 (EZH2) and embryonic ectoderm development (EED) expression, major components of polycomb repressive complex 2 (PRC2), as well as activation of Nodal/ALK7 signalling pathway. Mechanistically, we found that TUG1 bound to PRC2 (EZH2/EED) in HTR8/SVneo cells and weakened TUG1/PRC2 interplay was correlated with upregulation of Nodal expression via decreasing H3K27me3 mark at the promoter region of Nodal gene under hypoxic conditions. And activation of Nodal signalling prohibited trophoblast invasion via reducing MMP2 levels. Overexpression of TUG1 or EZH2 significantly attenuated hypoxia‐induced reduction of trophoblastic invasiveness via negative modulating Nodal/ALK7 signalling and rescuing expression of its downstream target MMP2. These investigations might provide some evidence for novel mechanisms responsible for inadequate trophoblastic invasion and might shed some light on identifying future therapeutic targets for PE.
Collapse
Affiliation(s)
- Mengsi Hu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanping Meng
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinxiu Hu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiao Qiao
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Decai Liang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Minghua Fan
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Systematic identification of biomarker-driven drug combinations to overcome resistance. Nat Chem Biol 2022; 18:615-624. [PMID: 35332332 DOI: 10.1038/s41589-022-00996-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
The ability to understand and predict variable responses to therapeutic agents may improve outcomes in patients with cancer. We hypothesized that the basal gene-transcription state of cancer cell lines, coupled with cell viability profiles of small molecules, might be leveraged to nominate specific mechanisms of intrinsic resistance and to predict drug combinations that overcome resistance. We analyzed 564,424 sensitivity profiles to identify candidate gene-compound pairs, and validated nine such relationships. We determined the mechanism of a novel relationship, in which expression of the serine hydrolase enzymes monoacylglycerol lipase (MGLL) or carboxylesterase 1 (CES1) confers resistance to the histone lysine demethylase inhibitor GSK-J4 by direct enzymatic modification. Insensitive cell lines could be sensitized to GSK-J4 by inhibition or gene knockout. These analytical and mechanistic studies highlight the potential of integrating gene-expression features with small-molecule response to identify patient populations that are likely to benefit from treatment, to nominate rational candidates for combinations and to provide insights into mechanisms of action.
Collapse
|
7
|
Rana S, Maurya S, Mohapatra G, Singh S, Babar R, Chandrasekhar H, Chamoli G, Rathore D, Kshetrapal P, Srikanth CV. Activation of epigenetic regulator KDM6B by Salmonella Typhimurium enables chronic infections. Gut Microbes 2022; 13:1986665. [PMID: 34696686 PMCID: PMC8555538 DOI: 10.1080/19490976.2021.1986665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) infections result in self limiting gastroenteritis except in rare cases wherein manifestations of chronic infections can occur. Strategies employed by Salmonella to thrive in hostile environments of host during chronic infections are complex and multifaceted. In chronic state, a coordinated action of bacterial effectors allows reprogramming of macrophages to M2 subtype and thereby creating a permissible replicative niche. The mechanistic details of these processes are not fully known. In the current study we identified, histone H3-lysine 27 trimethylation (H3K27me3)-specific demethylase, KDM6B to be upregulated in both cell culture and in murine model of Salmonella infection. KDM6B recruitment upon infection exhibited an associated loss of overall H3K27me3 in host cells and was Salmonella SPI1 effectors coordinated. ChIP-qRT-PCR array analysis revealed several new gene promoter targets of KDM6B demethylase activity including PPARδ, a crucial regulator of fatty acid oxidation pathway and Salmonella-persistent infections. Furthermore, pharmacological inhibition of KDM6B demethylase activity with GSKJ4 in chronic Salmonella infection mice model led to a significant reduction in pathogen load and M2 macrophage polarization in peripheral lymphoid organs. The following work thus reveals Salmonella effector-mediated epigenetic reprogramming of macrophages responsible for its long-term survival and chronic carriage.
Collapse
Affiliation(s)
- Sarika Rana
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonalika Maurya
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Gayatree Mohapatra
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Savita Singh
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Rohan Babar
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Hridya Chandrasekhar
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Garima Chamoli
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Deepak Rathore
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Pallavi Kshetrapal
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - C. V. Srikanth
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India,CONTACT C. V. Srikanth Regional Centre for Biotechnology, 3rd Milestone Gurgaon Faridabad Expressway, Faridabad, India
| |
Collapse
|
8
|
Yildirim-Buharalioglu G. KDM6B Regulates Prostate Cancer Cell Proliferation by Controlling c-MYC Expression. Mol Pharmacol 2021; 101:106-119. [PMID: 34862309 DOI: 10.1124/molpharm.121.000372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022] Open
Abstract
Elevated expression of lysine demethylase 6A (KDM6A) and 6B (KDM6B) has been reported in prostate cancer (PCa). However, the mechanism underlying the specific role of KDM6A/B in PCa is still fragmentary. Here, we report novel KDM6A/B downstream targets involved in controlling PCa cell proliferation. KDM6A and KDM6B mRNAs were higher in LNCaP but not in PC3 and DU145 cells. Higher KDM6A mRNA was confirmed at the protein level. A metastasis associated gene focussed oligonucleotide array was performed to identify KDM6A/B dependent genes in LNCaP cells treated with a KDM6 family selective inhibitor, GSK-J4. This identified 5 genes (c-MYC, NF2, CTBP1, EPHB2, PLAUR) that were decreased more than 50 % by GSK-J4 and c-MYC was the most downregulated gene. Array data was validated by quantitative RT-PCR, which detected a reduction in c-MYC steady state mRNA and pre-spliced mRNA, indicative of transcriptional repression of c-MYC gene expression. Furthermore, c-MYC protein was also decreased by GSK-J4. Importantly, GSK-J4 reduced mRNA and protein levels of c-MYC target gene, CyclinD1 (CCND1). Silencing of KDM6A/B with siRNA confirmed that expression of both c-MYC and CCND1 are dependent on KDM6B. Phosphorylated Retinoblastoma (pRb), a marker of G1 to S-phase transition, was decreased by GSK-J4 and KDM6B silencing. GSK-J4 treatment resulted decrease in cell proliferation and cell number, detected by MTS assay and conventional cell counting, respectively. Consequently, we conclude that KDM6B controlling c-MYC, CCND1 and pRb contribute regulation of PCa cell proliferation, which represents KDM6B as a promising epigenetic target for the treatment of advanced PCa. Significance Statement Lysine demethylase 6A (KDM6A) and 6B (KDM6B) were upregulated in prostate cancer (PCa). Here, we reported novel KDM6A/B downstream targets involved in controlling PCa cell proliferation. Amongst 84 metastasis associated genes, c-MYC was the most inhibited gene by KDM6 family inhibitor, GSK-J4. This was accompanied by decreased c-MYC target gene, CCND1 and pRb, which were selectively dependent on KDM6B. GSK-J4 decreased proliferation and cell counting. Consequently, we conclude that KDM6B controlling c-MYC, CCND1 and pRb contribute regulation of PCa proliferation.
Collapse
|
9
|
Yin B, Ma Q, Zhao L, Song C, Wang C, Yu F, Shi Y, Ye L. Epigenetic Control of Autophagy Related Genes Transcription in Pulpitis via JMJD3. Front Cell Dev Biol 2021; 9:654958. [PMID: 34434926 PMCID: PMC8381646 DOI: 10.3389/fcell.2021.654958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023] Open
Abstract
Autophagy is an intracellular self-cannibalization process delivering cytoplasmic components to lysosomes for digestion. Autophagy has been reported to be involved in pulpitis, but the regulation of autophagy during pulpitis progression is largely unknown. To figure out the epigenetic regulation of autophagy during pulpitis, we screened several groups of histone methyltransferases and demethylases in response to TNFα treatment. It was found JMJD3, a histone demethylase reducing di- and tri-methylation of H3K27, regulated the expression of several key autophagy genes via demethylation of H3K27me3 at the gene promoters. Our study highlighted the epigenetic regulation of autophagy genes during pulpitis, which will potentially provide a novel therapeutic strategy.
Collapse
Affiliation(s)
- Bei Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qingge Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lingyi Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Song
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong MX, Tu WJ, Zhao J. Microglial Polarization: Novel Therapeutic Strategy against Ischemic Stroke. Aging Dis 2021; 12:466-479. [PMID: 33815877 PMCID: PMC7990355 DOI: 10.14336/ad.2020.0701] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, which is the second highest cause of death and the leading cause of disability, represents ~71% of all strokes globally. Some studies have found that the key elements of the pathobiology of stroke is immunity and inflammation. Microglia are the first line of defense in the nervous system. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 types and neuroprotective M2 types. Therefore, ways to promote microglial polarization toward M2 phenotype after stroke have become the focus of attention in recent years. In this review, we discuss the process of microglial polarization, summarize the alternation of signaling pathways and epigenetic regulation that control microglial polarization in ischemic stroke, aiming to find the potential mechanisms by which microglia can be transformed into the M2 polarized phenotype.
Collapse
Affiliation(s)
- Yimeng Xue
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Nie
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin-Jian Wang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Han-Cheng Qiu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Long Ma
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-Xin Dong
- 3Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Wen-Jun Tu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,3Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jizong Zhao
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,4China National Clinical Research Center for Neurological Diseases, Beijing, China.,5Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,6Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
11
|
Luo Y, Fang Y, Kang R, Lenahan C, Gamdzyk M, Zhang Z, Okada T, Tang J, Chen S, Zhang JH. Inhibition of EZH2 (Enhancer of Zeste Homolog 2) Attenuates Neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-κB (Trimethylation of Histone 3 Lysine 27/Suppressor of Cytokine Signaling 3/Tumor Necrosis Factor Receptor Family 6/Nuclear Factor-κB) in a Rat Model of Subarachnoid Hemorrhage. Stroke 2020; 51:3320-3331. [PMID: 32933418 PMCID: PMC7725431 DOI: 10.1161/strokeaha.120.029951] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Neuroinflammation has been proven to play an important role in the pathogenesis of early brain injury after subarachnoid hemorrhage (SAH). EZH2 (enhancer of zeste homolog 2)-mediated H3K27Me3 (trimethylation of histone 3 lysine 27) has been recognized to play a critical role in multiple inflammatory diseases. However, there is still a lack of evidence to address the effect of EZH2 on the immune response of SAH. Therefore, the aim of this study was to determine the role of EZH2 in SAH-induced neuroinflammation and explore the effect of EZH2 inhibition with its specific inhibitor EPZ6438. METHODS The endovascular perforation method was performed on rats to induce subarachnoid hemorrhage. EPZ6438, a specific EZH2 inhibitor, was administered intraperitoneally at 1 hour after SAH. SOCS3 (Suppressor of cytokine signaling 3) siRNA and H3K27me3 CRISPR were administered intracerebroventricularly at 48 hours before SAH to explore potential mechanisms. The SAH grade, short-term and long-term neurobehavioral tests, immunofluorescence staining, and western blots were performed after SAH. RESULTS The expression of EZH2 and H3K27me3 peaked at 24 hours after SAH. In addition, inhibition of EZH2 with EPZ6438 significantly improved neurological deficits both in short-term and long-term outcome studies. Moreover, EPZ6438 treatment significantly decreased the levels of EZH2, H3K27Me3, pathway-related proteins TRAF6 (TNF [tumor necrosis factor] receptor family 6), NF-κB (nuclear factor-κB) p65, proinflammatory cytokines TNF-α, IL (interleukin)-6, IL-1β, but increased the expression levels of SOCS3 and anti-inflammatory cytokine IL-10. Furthermore, administration of SOCS3 siRNA and H3k27me3-activating CRISPR partly abolished the neuroprotective effect of EPZ6438, which indicated that the neuroprotective effect of EPZ6438 acted, at least partly, through activation of SOCS3. CONCLUSIONS In summary, the inhibition of EZH2 by EPZ6438 attenuated neuroinflammation via H3K27me3/SOCS3/TRAF6/NF-κB signaling pathway after SAH in rats. By targeting EZH2, this study may provide an innovative method to ameliorate early brain injury after SAH.
Collapse
Affiliation(s)
- Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ruiqing Kang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Takeshi Okada
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
12
|
Yuan Y, Wu C, Ling EA. Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations. Curr Pharm Des 2020; 25:2375-2393. [PMID: 31584369 DOI: 10.2174/1381612825666190722114248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies. METHODS Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed. RESULTS Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds. CONCLUSION Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore
| |
Collapse
|
13
|
Jmjd3 is involved in the susceptibility to depression induced by maternal separation via enhancing the neuroinflammation in the prefrontal cortex and hippocampus of male rats. Exp Neurol 2020; 328:113254. [PMID: 32084453 DOI: 10.1016/j.expneurol.2020.113254] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/09/2020] [Accepted: 02/17/2020] [Indexed: 12/29/2022]
Abstract
Adverse childhood experience is a major risk factor for the onset of depression in adulthood. Neuroinflammation characterized by microglial activation and cytokine secretion is involved in susceptibility to depression induced by early life stress. Jumonji domain-containing protein 3 (Jmjd3), a trimethylated lysine 27 in histone 3 (H3K27me3) demethylase, can be activated by nuclear factor-kappa B (NF-κB), further regulating the expression of pro-inflammatory cytokines and resulting in neuroinflammation. However, its involvement in susceptibility to early life stress-related depression is unknown. In the current study, maternal separation (MS) was utilized as a model of early life stress and systemic lipopolysaccharide (LPS) administration in adulthood was used as a later-life challenge. Depressive- and anxiety-like behaviors and memory impairment were detected by behavioral tests. Microglial activation, pro-inflammatory cytokine expression, and NF-κB, Jmjd3, and H3K27me3 expression were detected in the prefrontal cortex and hippocampus in both infant and adult rats. Meanwhile, the Jmjd3 inhibitor GSK-J4 was used as an intervention in vivo and in vitro. Our results showed that MS induced depression-like behaviors and synchronously caused microglial activation, pro-inflammatory cytokine over-expression, NF-κB and Jmjd3 over-expression, and decreased H3K27me3 expression in infant rats. All these alterations could also be detected in adulthood. Seven-day LPS administration in adult rats induced similar changes of behaviors and biomarkers. Interestingly, compared with rats not exposed to MS, MS-exposed rats receiving LPS administration developed more severe depression-like behaviors and neuroinflammatory status, higher levels of NF-κB and Jmjd3 expression, and lower levels of H3K27me3 expression. In addition, LPS induced microglial activation, pro-inflammatory cytokine expression and increased Jmjd3 expression in vitro. Furthermore, GSK-J4 treatment alleviated these alterations in vivo and in vitro. Thus, our data indicate that Jmjd3 is involved in the susceptibility to depression induced by MS via enhancement of neuroinflammation in the prefrontal cortex and hippocampus of rats.
Collapse
|
14
|
Tao T, Liu GJ, Shi X, Zhou Y, Lu Y, Gao YY, Zhang XS, Wang H, Wu LY, Chen CL, Zhuang Z, Li W, Hang CH. DHEA Attenuates Microglial Activation via Induction of JMJD3 in Experimental Subarachnoid Haemorrhage. J Neuroinflammation 2019; 16:243. [PMID: 31779639 PMCID: PMC6883548 DOI: 10.1186/s12974-019-1641-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Background Microglia are resident immune cells in the central nervous system and central to the innate immune system. Excessive activation of microglia after subarachnoid haemorrhage (SAH) contributes greatly to early brain injury, which is responsible for poor outcomes. Dehydroepiandrosterone (DHEA), a steroid hormone enriched in the brain, has recently been found to regulate microglial activation. The purpose of this study was to address the role of DHEA in SAH. Methods We used in vivo models of endovascular perforation and in vitro models of haemoglobin exposure to illustrate the effects of DHEA on microglia in SAH. Results In experimental SAH mice, exogenous DHEA administration increased DHEA levels in the brain and modulated microglial activation. Ameliorated neuronal damage and improved neurological outcomes were also observed in the SAH mice pretreated with DHEA, suggesting neuronal protective effects of DHEA. In cultured microglia, DHEA elevated the mRNA and protein levels of Jumonji d3 (JMJD3, histone 3 demethylase) after haemoglobin exposure, downregulated the H3K27me3 level, and inhibited the transcription of proinflammatory genes. The devastating proinflammatory microglia-mediated effects on primary neurons were also attenuated by DHEA; however, specific inhibition of JMJD3 abolished the protective effects of DHEA. We next verified that DHEA-induced JMJD3 expression, at least in part, through the tropomyosin-related kinase A (TrkA)/Akt signalling pathway. Conclusions DHEA has a neuroprotective effect after SAH. Moreover, DHEA increases microglial JMJD3 expression to regulate proinflammatory/anti-inflammatory microglial activation after haemoglobin exposure, thereby suppressing inflammation.
Collapse
Affiliation(s)
- Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Xuan Shi
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100032, China
| | - Han Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Chun-Lei Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China. .,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China. .,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
15
|
Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell 2019; 10:864-882. [PMID: 31701394 PMCID: PMC6881266 DOI: 10.1007/s13238-019-0653-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, many studies have shown that histone methylation plays an important role in maintaining the active and silent state of gene expression in human diseases. The Jumonji domain-containing protein D3 (JMJD3), specifically demethylate di- and trimethyl-lysine 27 on histone H3 (H3K27me2/3), has been widely studied in immune diseases, infectious diseases, cancer, developmental diseases, and aging related diseases. We will focus on the recent advances of JMJD3 function in human diseases, and looks ahead to the future of JMJD3 gene research in this review.
Collapse
Affiliation(s)
- Xiangxian Zhang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Yuan
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Kim S, Kim YE, Hong S, Kim KT, Sung DK, Lee Y, Park WS, Chang YS, Song MR. Reactive microglia and astrocytes in neonatal intraventricular hemorrhage model are blocked by mesenchymal stem cells. Glia 2019; 68:178-192. [PMID: 31441125 DOI: 10.1002/glia.23712] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/08/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
Severe intraventricular hemorrhage (IVH) in premature infants triggers reactive gliosis, causing acute neuronal death and glial scar formation. Transplantation of mesenchymal stem cells (MSCs) has often showed improved CNS recovery in an IVH model, but whether this response is related to reactive glial cells is still unclear. Herein, we suggest that MSCs impede the response of reactive microglia rather than astrocytes, thereby blocking neuronal damage. Astrocytes alone showed mild reactiveness under hemorrhagic conditions mimicked by thrombin treatment, and this was not blocked by MSC-conditioned medium (MSC-CM) in vitro. In contrast, thrombin-induced microglial activation and release of proinflammatory cytokines were inhibited by MSC-CM. Interestingly, astrocytes showed greater reactive response when co-cultured with microglia, and this was abolished in the presence of MSC-CM. Gene expression profiles in microglia revealed that transcript levels of genes for immune response and proinflammatory cytokines were altered by thrombin treatment. This result coincided with the robust phosphorylation of STAT1 and p38 MAPK, which might be responsible for the production and release of proinflammatory cytokines. Furthermore, application of MSC-CM diminished thrombin-mediated phosphorylation of STAT1 and p38 MAPK, supporting the acute anti-inflammatory role of MSCs under hemorrhagic conditions. In line with this, activation of microglia and consequent cytokine release were impaired in Stat1-null mice. However, reactive response in Stat1-deficient astrocytes was maintained. Taken together, our results demonstrate that MSCs mainly block the activation of microglia involving STAT1-mediated cytokine release and subsequent reduction of reactive astrocytes.
Collapse
Affiliation(s)
- Seojeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Young Eun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Sujeong Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Kyung-Tai Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
17
|
Pioli PD, Casero D, Montecino-Rodriguez E, Morrison SL, Dorshkind K. Plasma Cells Are Obligate Effectors of Enhanced Myelopoiesis in Aging Bone Marrow. Immunity 2019; 51:351-366.e6. [PMID: 31303400 DOI: 10.1016/j.immuni.2019.06.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 04/10/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
Abstract
Aging results in increased myelopoiesis, which is linked to the increased incidence of myeloid leukemias and production of myeloid-derived suppressor cells. Here, we examined the contribution of plasma cells (PCs) to age-related increases in myelopoiesis, as PCs exhibit immune regulatory function and sequester in bone marrow (BM). PC number was increased in old BM, and they exhibited high expression of genes encoding inflammatory cytokines and pathogen sensors. Antibody-mediated depletion of PCs from old mice reduced the number of myeloid-biased hematopoietic stem cells and mature myeloid cells to levels in young animals, but lymphopoiesis was not rejuvenated, indicating that redundant mechanisms inhibit that process. PCs also regulated the production of inflammatory factors from BM stromal cells, and disruption of the PC-stromal cell circuitry with inhibitors of the cytokines IL-1 and TNF-α attenuated myelopoiesis in old mice. Thus, the age-related increase in myelopoiesis is driven by an inflammatory network orchestrated by PCs.
Collapse
Affiliation(s)
- Peter D Pioli
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Sherie L Morrison
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Rodriguez RM, Suarez-Alvarez B, Lopez-Larrea C. Therapeutic Epigenetic Reprogramming of Trained Immunity in Myeloid Cells. Trends Immunol 2019; 40:66-80. [PMID: 30595189 DOI: 10.1016/j.it.2018.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022]
Abstract
Infiltrating and tissue-resident myeloid cells are essential regulators of innate and adaptive immunity. During inflammation, and in response to microbial products, these cells can adapt to microenvironmental conditions and acquire specialized functions, including phagocytosis and the production of proinflammatory cytokines. Such myeloid plasticity is driven, in part, by epigenetic dynamics that can sustain stable phenotypes after activation, and which may lead to maladaptive cell polarization states associated with inflammation and autoimmunity. Here, we review recent reports describing epigenetic mechanisms linked to such polarization states and innate immune memory (tolerance and training) in monocyte and macrophage lineages. We discuss how these mechanisms might be targeted to develop putative immunomodulatory tools that might be used to treat a variety of immune-mediated diseases.
Collapse
Affiliation(s)
- R M Rodriguez
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - B Suarez-Alvarez
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain.
| | - C Lopez-Larrea
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; Immunology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain.
| |
Collapse
|
19
|
Lee J, Lee S, Ryu YJ, Lee D, Kim S, Seo JY, Oh E, Paek SH, Kim SU, Ha CM, Choi SY, Kim KT. Vaccinia-related kinase 2 plays a critical role in microglia-mediated synapse elimination during neurodevelopment. Glia 2019; 67:1667-1679. [PMID: 31050055 DOI: 10.1002/glia.23638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
During postnatal neurodevelopment, excessive synapses must be eliminated by microglia to complete the establishment of neural circuits in the brain. The lack of synaptic regulation by microglia has been implicated in neurodevelopmental disorders such as autism, schizophrenia, and intellectual disability. Here we suggest that vaccinia-related kinase 2 (VRK2), which is expressed in microglia, may stimulate synaptic elimination by microglia. In VRK2-deficient mice (VRK2KO ), reduced numbers of presynaptic puncta within microglia were observed. Moreover, the numbers of presynaptic puncta and synapses were abnormally increased in VRK2KO mice by the second postnatal week. These differences did not persist into adulthood. Even though an increase in the number of synapses was normalized, adult VRK2KO mice showed behavioral defects in social behaviors, contextual fear memory, and spatial memory.
Collapse
Affiliation(s)
- Juhyun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seunghyun Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Young-Jae Ryu
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ji-Young Seo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eunji Oh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung U Kim
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Chang-Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Kyong-Tai Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea.,Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
20
|
Chen H, Huang Y, Zhu X, Liu C, Yuan Y, Su H, Zhang C, Liu C, Xiong M, Qu Y, Yun P, Zheng L, Huang K. Histone demethylase UTX is a therapeutic target for diabetic kidney disease. J Physiol 2019; 597:1643-1660. [PMID: 30516825 PMCID: PMC6418754 DOI: 10.1113/jp277367] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Diabetic kidney disease (DKD) is a major complication of diabetes. We found that UTX (ubiquitously transcribed tetratricopeptide repeat on chromosome X, also known as KDM6A), a histone demethylase, was upregulated in the renal mesangial and tubular cells of diabetic mice and DKD patients. In cultured renal mesangial and tubular cells, UTX overexpression promoted palmitic acid-induced elevation of inflammation and DNA damage, whereas UTX knockdown or GSK-J4 treatment showed the opposite effects. We found that UTX demethylase activity-dependently regulated the transcription of inflammatory genes and apoptosis; moreover, UTX bound with p53 and p53-dependently exacerbated DNA damage. Administration of GSK-J4, an H3K27 demethylase inhibitor, ameliorated the diabetes-induced renal abnormalities in db/db mice, an animal model of type 2 diabetes. These results revealed the possible mechanisms underlying the regulation of histone methylation in DKD and suggest UTX as a potential therapeutic target for DKD. ABSTRACT Diabetic kidney disease (DKD) is a microvascular complication of diabetes and the leading cause of end-stage kidney disease worldwide without effective therapy available. UTX (ubiquitously transcribed tetratricopeptide repeat on chromosome X, also known as KDM6A), a histone demethylase that removes the di- and tri-methyl groups from histone H3K27, plays important biological roles in gene activation, cell fate control and life span regulation in Caenorhabditis elegans. In the present study, we report upregulated UTX in the kidneys of diabetic mice and DKD patients. Administration of GSK-J4, an H3K27 demethylase inhibitor, ameliorated the diabetes-induced renal dysfunction, abnormal morphology, inflammation, apoptosis and DNA damage in db/db mice, comprising an animal model of type 2 diabetes. In cultured renal mesanglial and tubular cells, UTX overexpression promoted palmitic acid induced elevation of inflammation and DNA damage, whereas UTX knockdown or GSK-J4 treatment showed the opposite effects. Mechanistically, we found that UTX demethylase activity-dependently regulated the transcription of inflammatory genes; moreover, UTX bound with p53 and p53-dependently exacerbated DNA damage. Collectively, our results suggest UTX as a potential therapeutic target for DKD.
Collapse
Affiliation(s)
- Hong Chen
- Tongji School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yixue Huang
- Tongji School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiuqin Zhu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhanChina
| | - Chong Liu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhanChina
| | - Yangmian Yuan
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhanChina
| | - Hua Su
- Department of NephrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chun Zhang
- Department of NephrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chengyu Liu
- Tongji School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mingrui Xiong
- Tongji School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yannan Qu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhanChina
| | - Peng Yun
- The First People's Hospital of JingzhouJingzhouChina
| | - Ling Zheng
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhanChina
| | - Kun Huang
- Tongji School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
21
|
Pulido-Salgado M, Vidal-Taboada JM, Barriga GGD, Solà C, Saura J. RNA-Seq transcriptomic profiling of primary murine microglia treated with LPS or LPS + IFNγ. Sci Rep 2018; 8:16096. [PMID: 30382133 PMCID: PMC6208373 DOI: 10.1038/s41598-018-34412-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 10/17/2018] [Indexed: 01/20/2023] Open
Abstract
Microglia, the main resident immune cells in the CNS, are thought to participate in the pathogenesis of various neurological disorders. LPS and LPS + IFNγ are stimuli that are widely used to activate microglia. However, the transcriptomic profiles of microglia treated with LPS and LPS + IFNγ have not been properly compared. Here, we treated murine primary microglial cultures with LPS or LPS + IFNγ for 6 hours and then performed RNA-Sequencing. Gene expression patterns induced by the treatments were obtained by WGCNA and 11 different expression profiles were found, showing differential responses to LPS and LPS + IFNγ in many genes. Interestingly, a subset of genes involved in Parkinson’s, Alzheimer’s and Huntington’s disease were downregulated by both treatments. By DESeq analysis we found differentially upregulated and downregulated genes that confirmed LPS and LPS + IFNγ as inducers of microglial pro-inflammatory responses, but also highlighted their involvement in specific cell functions. In response to LPS, microglia tended to be more proliferative, pro-inflammatory and phagocytic; whereas LPS + IFNγ inhibited genes were involved in pain, cell division and, unexpectedly, production of some inflammatory mediators. In summary, this study provides a detailed description of the transcriptome of LPS- and LPS + IFNγ treated primary microglial cultures. It may be useful to determine whether these in vitro phenotypes resemble microglia in in vivo pathological conditions.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Department of Biomedical Sciences, Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Jose M Vidal-Taboada
- Department of Biomedical Sciences, Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, Barcelona, Spain. .,Peripheral Nervous System, Neuroscience Dept, VHIR- Vall d'Hebron Research Institute, Barcelona, Spain.
| | - Gerardo Garcia-Diaz Barriga
- Department of Biomedical Sciences, Histology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Barcelona, Spain
| | - Josep Saura
- Department of Biomedical Sciences, Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
Matt SM, Allen JM, Lawson MA, Mailing LJ, Woods JA, Johnson RW. Butyrate and Dietary Soluble Fiber Improve Neuroinflammation Associated With Aging in Mice. Front Immunol 2018; 9:1832. [PMID: 30154787 PMCID: PMC6102557 DOI: 10.3389/fimmu.2018.01832] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Aging results in chronic systemic inflammation that can alter neuroinflammation of the brain. Specifically, microglia shift to a pro-inflammatory phenotype predisposing them to hyperactivation upon stimulation by peripheral immune signals. It is proposed that certain nutrients can delay brain aging by preventing or reversing microglial hyperactivation. Butyrate, a short-chain fatty acid (SCFA) produced primarily by bacterial fermentation of fiber in the colon, has been extensively studied pharmacologically as a histone deacetylase inhibitor and serves as an attractive therapeutic candidate, as butyrate has also been shown to be anti-inflammatory and improve memory in animal models. In this study, we demonstrate that butyrate can attenuate pro-inflammatory cytokine expression in microglia in aged mice. It is still not fully understood, however, if an increase in butyrate-producing bacteria in the gut as a consequence of a diet high in soluble fiber could affect microglial activation during aging. Adult and aged mice were fed either a 1% cellulose (low fiber) or 5% inulin (high fiber) diet for 4 weeks. Findings indicate that mice fed inulin had an altered gut microbiome and increased butyrate, acetate, and total SCFA production. In addition, histological scoring of the distal colon demonstrated that aged animals on the low fiber diet had increased inflammatory infiltrate that was significantly reduced in animals consuming the high fiber diet. Furthermore, gene expression of inflammatory markers, epigenetic regulators, and the microglial sensory apparatus (i.e., the sensome) were altered by both diet and age, with aged animals exhibiting a more anti-inflammatory microglial profile on the high fiber diet. Taken together, high fiber supplementation in aging is a non-invasive strategy to increase butyrate levels, and these data suggest that an increase in butyrate through added soluble fiber such as inulin could counterbalance the age-related microbiota dysbiosis, potentially leading to neurological benefits.
Collapse
Affiliation(s)
- Stephanie M. Matt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jacob M. Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marcus A. Lawson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Lucy J. Mailing
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jeffrey A. Woods
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W. Johnson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
23
|
Cheray M, Joseph B. Epigenetics Control Microglia Plasticity. Front Cell Neurosci 2018; 12:243. [PMID: 30123114 PMCID: PMC6085560 DOI: 10.3389/fncel.2018.00243] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/18/2018] [Indexed: 01/31/2023] Open
Abstract
Microglia, resident immune cells of the central nervous system, fulfill multiple functions in the brain throughout life. These microglial functions range from participation in innate and adaptive immune responses, involvement in the development of the brain and its homeostasis maintenance, to contribution to degenerative, traumatic, and proliferative diseases; and take place in the developing, the aging, the healthy, or the diseased brain. Thus, an impressive level of cellular plasticity, appears as a requirement for the pleiotropic biological functions of microglia. Epigenetic changes, including histone modifications or DNA methylation as well as microRNA expression, are important modifiers of gene expression, and have been involved in cell phenotype regulation and reprogramming and are therefore part of the mechanisms regulating cellular plasticity. Here, we review and discuss the epigenetic mechanisms, which are emerging as contributors to this microglial cellular plasticity and thereby can constitute interesting targets to modulate microglia associated brain diseases, including developmental diseases, neurodegenerative diseases as well as cancer.
Collapse
Affiliation(s)
- Mathilde Cheray
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
24
|
Lively S, Schlichter LC. Microglia Responses to Pro-inflammatory Stimuli (LPS, IFNγ+TNFα) and Reprogramming by Resolving Cytokines (IL-4, IL-10). Front Cell Neurosci 2018; 12:215. [PMID: 30087595 PMCID: PMC6066613 DOI: 10.3389/fncel.2018.00215] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
Microglia respond to CNS injuries and diseases with complex reactions, often called "activation." A pro-inflammatory phenotype (also called classical or M1 activation) lies at one extreme of the reactivity spectrum. There were several motivations for this study. First, bacterial endotoxin (lipopolysaccharide, LPS) is the most commonly used pro-inflammatory stimulus for microglia, both in vitro and in vivo; however, pro-inflammatory cytokines (e.g., IFNγ, TNFα) rather than LPS will be encountered with sterile CNS damage and disease. We lack direct comparisons of responses between LPS and such cytokines. Second, while transcriptional profiling is providing substantial data on microglial responses to LPS, these studies mainly use mouse cells and models, and there is increasing evidence that responses of rat microglia can differ. Third, the cytokine milieu is dynamic after acute CNS damage, and an important question in microglial biology is: How malleable are their responses? There are very few studies of effects of resolving cytokines, particularly for rat microglia, and much of the work has focused on pro-inflammatory outcomes. Here, we first exposed primary rat microglia to LPS or to IFNγ+TNFα (I+T) and compared hallmark functional (nitric oxide production, migration) and molecular responses (almost 100 genes), including surface receptors that can be considered part of the sensome. Protein changes for exemplary molecules were also quantified: ARG1, CD206/MRC1, COX-2, iNOS, and PYK2. Despite some similarities, there were notable differences in responses to LPS and I+T. For instance, LPS often evoked higher pro-inflammatory gene expression and also increased several anti-inflammatory genes. Second, we compared the ability of two anti-inflammatory, resolving cytokines (IL-4, IL-10), to counteract responses to LPS and I+T. IL-4 was more effective after I+T than after LPS, and IL-10 was surprisingly ineffective after either stimulus. These results should prove useful in modeling microglial reactivity in vitro; and comparing transcriptional responses to sterile CNS inflammation in vivo.
Collapse
Affiliation(s)
- Starlee Lively
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Lyanne C Schlichter
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Small Molecule GSK-J1 Affects Differentiation of Specific Neuronal Subtypes in Developing Rat Retina. Mol Neurobiol 2018; 56:1972-1983. [PMID: 29981055 DOI: 10.1007/s12035-018-1197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
Abstract
Histone post-translational modification has been shown to play a pivotal role in regulating gene expression and fate determination during the development of the central nervous system. Application of pharmacological blockers that control histone methylation status has been considered a promising avenue to control abnormal developmental processes and diseases as well. In this study, we focused on the role of potent histone demethylase inhibitor GSK-J1 as a blocker of Jumonji domain-containing protein 3 (Jmjd3) in early postnatal retinal development. Jmjd3 participates in different processes such as cell proliferation, apoptosis, differentiation, senescence, and cell reprogramming via demethylation of histone 3 lysine 27 trimethylation status (H3K27 me3). As a first approach, we determined the localization of Jmjd3 in neonate and adult rat retina. We observed that Jmjd3 accumulation is higher in the adult retina, which is consistent with the localization in the differentiated neurons, including ganglion cells in the retina of neonate rats. At this developmental age, we also observed the presence of Jmjd3 in undifferentiated cells. Also, we confirmed that GSK-J1 caused the increase in the H3k27 me3 levels in the retinas of neonate rats. We next examined the functional consequences of GSK-J1 treatment on retinal development. Interestingly, injection of GSK-J1 simultaneously increased the number of proliferative and apoptotic cells. Furthermore, an increased number of immature cells were detected in the outer plexiform layer, with longer neuronal processes. Finally, the influence of GSK-J1 on postnatal retinal cytogenesis was examined. Interestingly, GSK-J1 specifically caused a significant decrease in the number of PKCα-positive cells, which is a reliable marker of rod-on bipolar cells, showing no significant effects on the differentiation of other retinal subtypes. To our knowledge, these data provide the first evidence that in vivo pharmacological blocking of histone demethylase by GSK-J1 affects differentiation of specific neuronal subtypes. In summary, our results indisputably revealed that the application of GSK-J1 could influence cell proliferation, maturation, apoptosis induction, and specific cell determination. With this, we were able to provide evidence that this small molecule can be explored in therapeutic strategies for the abnormal development and diseases of the central nervous system.
Collapse
|
26
|
Electric Stimulation of Ear Reduces the Effect of Toll-Like Receptor 4 Signaling Pathway on Kainic Acid-Induced Epileptic Seizures in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5407256. [PMID: 29682548 PMCID: PMC5846353 DOI: 10.1155/2018/5407256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/22/2022]
Abstract
Epilepsy is a common clinical syndrome with recurrent neuronal discharges in the temporal lobe, cerebral cortex, and hippocampus. Clinical antiepileptic medicines are often ineffective or of little benefit in 30% of epileptic patients and usually cause severe side effects. Emerging evidence indicates the crucial role of inflammatory mediators in epilepsy. The current study investigates the role of toll-like receptor 4 (TLR4) and its underlying mechanisms in kainic acid- (KA-) induced epileptic seizures in rats. Experimental KA injection successfully initiated an epileptic seizure accompanied by increased expression of TLR4 in the prefrontal cortex, hippocampus, and somatosensory cortex. In addition, calcium-sensitive phosphorylated Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα) increased after the initiation of the epileptic seizure. Furthermore, downstream-phosphorylated signal-regulated kinase (ERK), c-Jun NH2-terminal protein kinase (JNK), and p38 kinase simultaneously increased in these brain areas. Moreover, the transcriptional factor phosphorylated nuclear factor-κB (pNF-κB) increased, suggesting that nucleus transcription was affected. Furthermore, the aforementioned molecules decreased by an electric stimulation (ES) of either 2 Hz or 15 Hz of the ear in the three brain areas. Accordingly, we suggest that ES of the ear can successfully control epileptic seizures by regulating the TLR4 signaling pathway and has a therapeutic benefit in reducing epileptic seizures.
Collapse
|
27
|
Das A, Yang CS, Arifuzzaman S, Kim S, Kim SY, Jung KH, Lee YS, Chai YG. High-Resolution Mapping and Dynamics of the Transcriptome, Transcription Factors, and Transcription Co-Factor Networks in Classically and Alternatively Activated Macrophages. Front Immunol 2018; 9:22. [PMID: 29403501 PMCID: PMC5778122 DOI: 10.3389/fimmu.2018.00022] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
Macrophages are the prime innate immune cells of the inflammatory response, and the combination of multiple signaling inputs derived from the recognition of host factors [e.g., interferon-g (IFN-γ)] and invading pathogen products (e.g., toll-like receptors (TLRs) agonists) are required to maintain essential macrophage function. The profound effects on biological outcomes of inflammation associated with IFN-γ pretreatment (“priming”) and TLR4 ligand bacterial lipopolysaccharide (LPS)-induced macrophage activation (M1 or classical activation) have long been recognized, but the underlying mechanisms are not well defined. Therefore, we analyzed gene expression profiles of macrophages and identified genes, transcription factors (TFs), and transcription co-factors (TcoFs) that are uniquely or highly expressed in IFN-γ-mediated TLR4 ligand LPS-inducible versus only TLR4 ligand LPS-inducible primary macrophages. This macrophage gene expression has not been observed in macrophage cell lines. We also showed that interleukin (IL)-4 and IL-13 (M2 or alternative activation) elicited the induction of a distinct subset of genes related to M2 macrophage polarization. Importantly, this macrophage gene expression was also associated with promoter conservation. In particular, our approach revealed novel roles for the TFs and TcoFs in response to inflammation. We believe that the systematic approach presented herein is an important framework to better understand the transcriptional machinery of different macrophage subtypes.
Collapse
Affiliation(s)
- Amitabh Das
- Institute of Natural Science and Technology, Hanyang University, Ansan, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea.,Department of Bionanotechnology, Hanyang University, Seoul, South Korea
| | | | - Sojin Kim
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea
| | - Sun Young Kim
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea.,Department of Bionanotechnology, Hanyang University, Seoul, South Korea
| | - Kyoung Hwa Jung
- Institute of Natural Science and Technology, Hanyang University, Ansan, South Korea
| | - Young Seek Lee
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea.,Department of Bionanotechnology, Hanyang University, Seoul, South Korea
| |
Collapse
|