1
|
Thoraval L, Varin-Simon J, Ohl X, Velard F, Reffuveille F, Tang-Fichaux M. Cutibacterium acnes and its complex host interaction in prosthetic joint infection: Current insights and future directions. Res Microbiol 2024:104265. [PMID: 39701197 DOI: 10.1016/j.resmic.2024.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Cutibacterium acnes is a commensal Gram-positive anaerobic bacterium that can also act as an opportunistic pathogen in various diseases, particularly in prosthetic joint infections (PJI). Throughout this review, we delve into the current understanding of the intricate interactions between C. acnes and host cells and discuss bacterial persistence in the host. C. acnes colonization and subsequent PJI set-up represent complex processes involving bacterial adhesion, immune recognition, and host response mechanisms. We highlight existing knowledge and gaps in specific host-pathogen interactions and stress the importance of acquiring additional information to develop targeted strategies for preventing and treating C. acnes-related PIJ.
Collapse
Affiliation(s)
- Léa Thoraval
- Université de Reims Champagne-Ardenne, BIOS, Reims, France
| | | | - Xavier Ohl
- Université de Reims Champagne-Ardenne, CHU Reims, BIOS, Service D'Orthopédie et Traumatologie, Reims, France
| | | | - Fany Reffuveille
- Université de Reims Champagne-Ardenne, BIOS, UFR Pharmacie, Reims, France.
| | | |
Collapse
|
2
|
Liew-Littorin C, Davidsson S, Nilsdotter-Augustinsson Å, Hellmark B, Brüggemann H, Söderquist B. Genomic characterization and clinical evaluation of prosthetic joint infections caused by Cutibacterium acnes. Microbiol Spectr 2024; 12:e0030324. [PMID: 39377601 PMCID: PMC11537072 DOI: 10.1128/spectrum.00303-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024] Open
Abstract
Cutibacterium acnes is a major skin commensal that may act as an opportunistic pathogen. It is difficult to interpret findings of C. acnes in tissue cultures obtained during arthroplasty revision surgery, since they may represent true infection or contamination. This study investigated whether C. acnes obtained from prosthetic joint infections (PJIs) were related and shared common genomic traits that might correlate with clinical courses and patient outcomes. C. acnes isolates from revision surgery of patients with PJIs of the hip, shoulder, and knee were characterized using molecular methods to determine the sequence type (ST) and the presence of possible virulence determinants (Christie-Atkins-Munch-Peterson factors, dermatan sulfate-binding adhesion 1, hyaluronidase lyase, and linear plasmid). A standardized review of the patients' medical charts was performed. The study included 37 patients with C. acnes culture-positive tissue samples where multiple isolates of C. acnes belonged to the same ST. Most of the isolates belonged to phylotype IA1. Phylogenetic analysis of virulence determinants revealed no shared pattern among PJI isolates. Seven patients had a polymicrobial infection. Exchange revision was performed in 70% of the patients, and >50% of all patients received antibiotic treatment for ≥3 months. Failure was noted in seven patients. No specific ST or any identifiable unique feature among virulence determinants were found among C. acnes isolated from PJIs of hips and shoulders. The majority of patients had low inflammatory markers and were treated successfully, even polymicrobial infections. However, failure was more common among shoulder infections compared with hip infections. IMPORTANCE Prosthetic joint infection (PJI) is a rare complication after arthroplasty surgery. The infection seldom resolves without a combination of both surgical and antibiotic treatment and can cause significant suffering among affected patients. Cutibacterium acnes is a common skin bacterium that is most often found in shoulder PJIs but can also infect other prostheses. In this study, we conducted a review of patients with previously verified PJIs involving C. acnes in hip or shoulder prostheses, along with a genomic analysis of the bacteria causing the infections. The majority of patients had successful outcomes. We did not identify any specific phylogenetic lineage or specific molecular signature of virulence factors among these PJI-associated C. acnes isolates that seemed to be associated with increased potential to cause infection among this species. This indicates that C. acnes isolated from PJIs originates from the patients' own skin microbiome and is inoculated during the arthroplasty surgery.
Collapse
Affiliation(s)
- C. Liew-Littorin
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - S. Davidsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Å. Nilsdotter-Augustinsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Östergötland, Sweden
| | - B. Hellmark
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - H. Brüggemann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - B. Söderquist
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
3
|
Han MH, Khan SA, Moon GS. Cutibacterium acnes KCTC 3314 Growth Reduction with the Combined Use of Bacteriophage PAP 1-1 and Nisin. Antibiotics (Basel) 2023; 12:1035. [PMID: 37370354 DOI: 10.3390/antibiotics12061035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acne has high psychological impacts recorded worldwide, from depression to suicide. To control acne infection, bacteriophage could be used in synergy or combination with antibiotics/antimicrobials. Bacteriophages are specific to their hosts without interfering with the normal skin microbes and have the ability to lyse bacterial cells. In this current study, the bacteriophage PAP 1-1 was isolated, characterized, and tested against the pathogenic acne-causing bacterium Cutibacterium acnes. Examination under transmission electron microscopy (TEM) revealed that the newly isolated phage has a morphology typical of siphoviruses. Phylogenetic analysis, utilizing the maximum likelihood (ML) algorithm based on complete genome sequences, revealed that PAP 1-1 clustered together with bacteriophages active to Propionibacterium acnes (now known as C. acnes), forming a distinct evolutionary lineage. The genomic analysis further identified the presence of an endolysin gene in PAP 1-1, suggesting its potential to regulate the growth of C. acnes. Subsequent experiments conducted in RCM broth confirmed the ability of PAP 1-1 to effectively control the proliferation of C. acnes. In combination with bacteriocin from Lactococcus lactis CJNU 3001 and nisin, PAP 1-1 greatly decreased the viable cell counts of C. acnes in the broth.
Collapse
Affiliation(s)
- Min-Hui Han
- Major of Biotechnology, Korea National University of Transportation, Chungju 27909, Republic of Korea
| | - Shehzad Abid Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Gi-Seong Moon
- Major of Biotechnology, Korea National University of Transportation, Chungju 27909, Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Chungju 27909, Republic of Korea
| |
Collapse
|
4
|
Martín C, Ordiales H, Vázquez F, Pevida M, Rodríguez D, Merayo J, Vázquez F, García B, Quirós LM. Bacteria associated with acne use glycosaminoglycans as cell adhesion receptors and promote changes in the expression of the genes involved in their biosynthesis. BMC Microbiol 2022; 22:65. [PMID: 35219289 PMCID: PMC8881830 DOI: 10.1186/s12866-022-02477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
Abstract
Background Cell surface glycosaminoglycans (GAGs) participate in many physiological and pathological processes, including infections and inflammatory response. Acne is a common chronic inflammatory skin disorder that affects the pilosebaceous unit and has a multifactorial etiology, including bacterial colonization of the hair follicle. This study aimed to investigate the participation of GAG in the adhesion of Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis to keratinocytes and fibroblasts of the skin by competition experiments and cell surface removal using specific liases. The alteration in the transcription of the genes responsible for the synthesis of GAG induced by the adhesion of these bacteria was also analyzed by qRT-PCR. Results GAGs are involved in bacterial adherence to skin cells, especially fibroblasts, where chondroitin sulfate displayed the higher effect. Bacterial adherence produced different alterations in the transcription of the genes responsible for GAG structures. P. acnes induced mostly changes in keratinocytes, while S. epidermidis was the main cause of alterations in fibroblasts. These variations in gene expression affected all the stages in the biosynthesis of the main species of GAGs, heparan and chondroitin sulphate. Conclusions GAGs species are involved in the adhesion of acne-related bacteria to skin cells in a differential manner depending on each microorganism and cellular type, although other receptors seem to exist. Bacterial adherence led to variations on gene expression in skin cells affecting GAG chains structure what, consequently, should alter their interactions with different ligands, affecting the development of acne disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02477-2.
Collapse
|
5
|
Baquero F, Saralegui C, Marcos-Mencía D, Ballestero L, Vañó-Galván S, Moreno-Arrones ÓM, Del Campo R. Epidermis as a Platform for Bacterial Transmission. Front Immunol 2021; 12:774018. [PMID: 34925344 PMCID: PMC8671829 DOI: 10.3389/fimmu.2021.774018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
The epidermis constitutes a continuous external layer covering the body, offering protection against bacteria, the most abundant living organisms that come into contact with this barrier. The epidermis is heavily colonized by commensal bacterial organisms that help protect against pathogenic bacteria. The highly regulated and dynamic interaction between the epidermis and commensals involves the host’s production of nutritional factors promoting bacterial growth together to chemical and immunological bacterial inhibitors. Signal trafficking ensures the system’s homeostasis; conditions that favor colonization by pathogens frequently foster commensal growth, thereby increasing the bacterial population size and inducing the skin’s antibacterial response, eliminating the pathogens and re-establishing the normal density of commensals. The microecological conditions of the epidermis favors Gram-positive organisms and are unsuitable for long-term Gram-negative colonization. However, the epidermis acts as the most important host-to-host transmission platform for bacteria, including those that colonize human mucous membranes. Bacteria are frequently shared by relatives, partners, and coworkers. The epidermal bacterial transmission platform of healthcare workers and visitors can contaminate hospitalized patients, eventually contributing to cross-infections. Epidermal transmission occurs mostly via the hands and particularly through fingers. The three-dimensional physical structure of the epidermis, particularly the fingertips, which have frictional ridges, multiplies the possibilities for bacterial adhesion and release. Research into the biology of bacterial transmission via the hands is still in its infancy; however, tribology, the science of interacting surfaces in relative motion, including friction, wear and lubrication, will certainly be an important part of it. Experiments on finger-to-finger transmission of microorganisms have shown significant interindividual differences in the ability to transmit microorganisms, presumably due to genetics, age, sex, and the gland density, which determines the physical, chemical, adhesive, nutritional, and immunological status of the epidermal surface. These studies are needed to optimize interventions and strategies for preventing the hand transmission of microorganisms.
Collapse
Affiliation(s)
- Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Claudia Saralegui
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Daniel Marcos-Mencía
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luna Ballestero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sergio Vañó-Galván
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Óscar M Moreno-Arrones
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Health Sciences, Universidad Alfonso X El Sabio, Madrid, Spain.,Centro de Investigación en Red en Enfermedades Infecciosas (CIBER-EEII), Madrid, Spain
| |
Collapse
|
6
|
Brüggemann H, Salar-Vidal L, Gollnick HPM, Lood R. A Janus-Faced Bacterium: Host-Beneficial and -Detrimental Roles of Cutibacterium acnes. Front Microbiol 2021; 12:673845. [PMID: 34135880 PMCID: PMC8200545 DOI: 10.3389/fmicb.2021.673845] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bacterial species Cutibacterium acnes (formerly known as Propionibacterium acnes) is tightly associated with humans. It is the dominant bacterium in sebaceous regions of the human skin, where it preferentially colonizes the pilosebaceous unit. Multiple strains of C. acnes that belong to phylogenetically distinct types can co-exist. In this review we summarize and discuss the current knowledge of C. acnes regarding bacterial properties and traits that allow host colonization and play major roles in host-bacterium interactions and also regarding the host responses that C. acnes can trigger. These responses can have beneficial or detrimental consequences for the host. In the first part of the review, we highlight and critically review disease associations of C. acnes, in particular acne vulgaris, implant-associated infections and native infections. Here, we also analyse the current evidence for a direct or indirect role of a C. acnes-related dysbiosis in disease development or progression, i.e., reduced C. acnes strain diversity and/or the predominance of a certain phylotype. In the second part of the review, we highlight historical and recent findings demonstrating beneficial aspects of colonization by C. acnes such as colonization resistance, immune system interactions, and oxidant protection, and discuss the molecular mechanisms behind these effects. This new insight led to efforts in skin microbiota manipulation, such as the use of C. acnes strains as probiotic options to treat skin disorders.
Collapse
Affiliation(s)
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Harald P. M. Gollnick
- Department of Dermatology and Venerology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Mayslich C, Grange PA, Dupin N. Cutibacterium acnes as an Opportunistic Pathogen: An Update of Its Virulence-Associated Factors. Microorganisms 2021; 9:303. [PMID: 33540667 PMCID: PMC7913060 DOI: 10.3390/microorganisms9020303] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cutibacterium acnes is a member of the skin microbiota found predominantly in regions rich in sebaceous glands. It is involved in maintaining healthy skin and has long been considered a commensal bacterium. Its involvement in various infections has led to its emergence as an opportunist pathogen. Interactions between C. acnes and the human host, including the human skin microbiota, promote the selection of C. acnes strains capable of producing several virulence factors that increase inflammatory capability. This pathogenic property may be related to many infectious mechanisms, such as an ability to form biofilms and the expression of putative virulence factors capable of triggering host immune responses or enabling C. acnes to adapt to its environment. During the past decade, many studies have identified and characterized several putative virulence factors potentially involved in the pathogenicity of this bacterium. These virulence factors are involved in bacterial attachment to target cells, polysaccharide-based biofilm synthesis, molecular structures mediating inflammation, and the enzymatic degradation of host tissues. C. acnes, like other skin-associated bacteria, can colonize various ecological niches other than skin. It produces several proteins or glycoproteins that could be considered to be active virulence factors, enabling the bacterium to adapt to the lipophilic environment of the pilosebaceous unit of the skin, but also to the various organs it colonizes. In this review, we summarize current knowledge concerning characterized C. acnes virulence factors and their possible implication in the pathogenicity of C. acnes.
Collapse
Affiliation(s)
- Constance Mayslich
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
| | - Philippe Alain Grange
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
- Service de Dermatologie-Vénéréologie, Groupe Hospitalier APHP.5, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
| | - Nicolas Dupin
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
- Service de Dermatologie-Vénéréologie, Groupe Hospitalier APHP.5, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
| |
Collapse
|
8
|
Spittaels KJ, Ongena R, Zouboulis CC, Crabbé A, Coenye T. Cutibacterium acnes Phylotype I and II Strains Interact Differently With Human Skin Cells. Front Cell Infect Microbiol 2020; 10:575164. [PMID: 33330124 PMCID: PMC7717938 DOI: 10.3389/fcimb.2020.575164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Acne vulgaris is one of the most common skin disorders and affects the pilosebaceous units. Although the exact pathogenesis of acne is still unknown, Cutibacterium acnes (formerly known as Propionibacterium acnes) is considered one of the key contributing factors. In fact, a significant association exists between C. acnes strains belonging to phylotype I and acne. However, there is still heavy debate on the exact role of C. acnes in acne and its behavior in the pilosebaceous unit, and more specifically its interactions with the human skin cells. In this study, key elements of the host-pathogen interaction were studied for a collection of C. acnes strains, belonging to phylotype I and II, including association with HaCaT keratinocytes and SZ95 sebocytes, the effect of C. acnes on keratinocyte tight junctions in a HaCaT monoculture and in an additional keratinocyte-sebocyte co-culture model, and C. acnes invasion through the keratinocyte cell layer. Our data showed association of all C. acnes strains to both skin cell lines, with a significantly higher association of type I strains compared to type II strains. Microscopic imaging and western blot analysis of the tight junction protein ZO-1, together with transepithelial electrical resistance (TEER) measurements revealed an initial induction of keratinocyte tight junctions after 24 h infection but a degradation after 48 h, demonstrating a decline in cell lining integrity during infection. Subsequently, C. acnes was able to invade after 48 h of infection, although invasion frequency was significantly higher for type II strains compared to type I strains.
Collapse
Affiliation(s)
- Karl-Jan Spittaels
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Ruben Ongena
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Wang W, Chen J, Zhu Y, Feng F. Activity prediction of aminoquinoline drugs based on deep learning. Biotechnol Appl Biochem 2020; 68:927-937. [PMID: 32865272 DOI: 10.1002/bab.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/23/2020] [Indexed: 11/09/2022]
Abstract
The results of the traditional prediction method for the activity of aminoquinoline drugs are inaccurate, so the prediction method for the activity of aminoquinoline drugs based on the deep learning is designed. The molecular holographic distance vector method was used to describe the molecular structure of 40 aminoquinoline compounds, and the principal component regression method was used for modeling and quantitative analysis. Two methods were used to predict the activity of aminoquinoline drugs. The correlation coefficients of the results obtained from the two sets of activity data and the cross test were 0.9438 and 0.9737, and 0.8305 and 0.9098, respectively. Our data suggested that method for the activity prediction of aminoquinoline drugs based on deep learning studied in this paper can better predict the activity of aminoquinoline drugs and provide a strong basis for the activity prediction of aminoquinoline drugs.
Collapse
Affiliation(s)
- Wenle Wang
- Department of Mechanical and Electrical Engineering, Jiangsu Food & Pharmaceutical Science College, Huai'an, China
| | - Jinquan Chen
- Department of Mechanical and Electrical Engineering, Jiangsu Food & Pharmaceutical Science College, Huai'an, China
| | - Yujie Zhu
- Department of Mechanical and Electrical Engineering, Jiangsu Food & Pharmaceutical Science College, Huai'an, China
| | - Feng Feng
- Department of Mechanical and Electrical Engineering, Jiangsu Food & Pharmaceutical Science College, Huai'an, China
| |
Collapse
|
10
|
Bernard C, Lemoine V, Hoogenkamp MA, Girardot M, Krom BP, Imbert C. Candida albicans enhances initial biofilm growth of Cutibacterium acnes under aerobic conditions. BIOFOULING 2019; 35:350-360. [PMID: 31088179 DOI: 10.1080/08927014.2019.1608966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Candida albicans and Cutibacterium acnes are opportunistic pathogens that co-colonize the human body. They are involved in biofilm-related infections of implanted medical devices. The objective of this study was to evaluate the ability of these species to interact and form polymicrobial biofilms. SEM imaging and adhesion assays showed that C. acnes adhesion to C. albicans did not have a preference for a specific morphological state of C. albicans; bacteria adhered to both hyphal and yeast forms of C. albicans. C. albicans did not influence growth of C. acnes under anaerobic growth conditions, however under aerobic growth condition, C. albicans enhanced early C. acnes biofilm formation. This favorable impact of C. albicans was not mediated by secreted compounds accumulating in the medium, but required the presence of metabolically active C. albicans. The ability of these microorganisms to interact together could modulate the physiopathology of infections.
Collapse
Affiliation(s)
- Clément Bernard
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
| | - Virginie Lemoine
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
| | - Michel A Hoogenkamp
- b Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA) , Vrije Universiteit Amsterdam and the University of Amsterdam , Amsterdam , The Netherlands
| | - Marion Girardot
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
| | - Bastiaan P Krom
- b Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA) , Vrije Universiteit Amsterdam and the University of Amsterdam , Amsterdam , The Netherlands
- c ESCMID Study Group for Biofilms (ESGB)
| | - Christine Imbert
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
- c ESCMID Study Group for Biofilms (ESGB)
| |
Collapse
|
11
|
Characterization of the housekeeping sortase from the human pathogen Propionibacterium acnes: first investigation of a class F sortase. Biochem J 2019; 476:665-682. [PMID: 30670573 DOI: 10.1042/bcj20180885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 11/17/2022]
Abstract
Sortase enzymes play an important role in Gram-positive bacteria. They are responsible for the covalent attachment of proteins to the surface of the bacteria and perform this task via a highly sequence-specific transpeptidation reaction. Since these immobilized proteins are often involved in pathogenicity of Gram-positive bacteria, characterization of this type of enzyme is also of medical relevance. Different classes of sortases (A-F) have been found, which recognize characteristic recognition sequences present in substrate proteins. Up to date, sortase A from Staphylococcus aureus, a housekeeping class A sortase, is the most thoroughly studied representative of the sortase family of enzymes. Here we report the in-depth characterization of the class F sortase from Propionibacterium acnes, a class of sortases that has not been investigated before. As Sortase F is the only transpeptidase found in the P. acnes genome, it is the housekeeping sortase of this organism. Sortase F from P. acnes shows a behavior similar to sortases from class A in terms of pH dependence, recognition sequence and catalytic activity; furthermore, its activity is independent of bivalent ions, which contrasts to sortase A from S. aureus We demonstrate that sortase F is useful for protein engineering applications, by producing a site-specifically conjugated homogenous antibody-drug conjugate with a potency similar to that of a conjugate prepared with sortase A. Thus, the detailed characterization presented here will not only enable the development of anti-virulence agents targeting P. acnes but also provides a powerful alternative to sortase A for protein engineering applications.
Collapse
|
12
|
Petersson F, Kilsgård O, Shannon O, Lood R. Platelet activation and aggregation by the opportunistic pathogen Cutibacterium (Propionibacterium) acnes. PLoS One 2018; 13:e0192051. [PMID: 29385206 PMCID: PMC5792000 DOI: 10.1371/journal.pone.0192051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/16/2018] [Indexed: 11/19/2022] Open
Abstract
Cutibacterium (Propionibacterium) acnes, considered a part of the skin microbiota, is one of the most commonly isolated anaerobic bacteria from medical implants in contact with plasma. However, the precise interaction of C. acnes with blood cells and plasma proteins has not been fully elucidated. Herein, we have investigated the molecular interaction of C. acnes with platelets and plasma proteins. We report that the ability of C. acnes to aggregate platelets is dependent on phylotype, with a significantly lower ability amongst type IB isolates, and the interaction of specific donor-dependent plasma proteins (or concentrations thereof) with C. acnes. Pretreatment of C. acnes with plasma reduces the lag time before aggregation demonstrating that pre-deposition of plasma proteins on C. acnes is an important step in platelet aggregation. Using mass spectrometry we identified several plasma proteins deposited on C. acnes, including IgG, fibrinogen and complement factors. Inhibition of IgG, fibrinogen or complement decreased C. acnes-mediated platelet aggregation, demonstrating the importance of these plasma proteins for aggregation. The interaction of C. acnes and platelets was visualized using fluorescence microscopy, verifying the presence of IgG and fibrinogen as components of the aggregates, and co-localization of C. acnes and platelets in the aggregates. Here, we have demonstrated the ability of C. acnes to activate and aggregate platelets in a bacterium and donor-specific fashion, as well as added mechanistic insights into this interaction.
Collapse
Affiliation(s)
- Frida Petersson
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ola Kilsgård
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Immunotechnology, Faculty of Engineering Lund, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
13
|
McDowell A. Over a Decade of recA and tly Gene Sequence Typing of the Skin Bacterium Propionibacterium acnes: What Have We Learnt? Microorganisms 2017; 6:microorganisms6010001. [PMID: 29267255 PMCID: PMC5874615 DOI: 10.3390/microorganisms6010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
The Gram-positive, anaerobic bacterium Propionibacterium acnes forms part of the normal microbiota on human skin and mucosal surfaces. While normally associated with skin health, P. acnes is also an opportunistic pathogen linked with a range of human infections and clinical conditions. Over the last decade, our knowledge of the intraspecies phylogenetics and taxonomy of this bacterium has increased tremendously due to the introduction of DNA typing schemes based on single and multiple gene loci, as well as whole genomes. Furthermore, this work has led to the identification of specific lineages associated with skin health and human disease. In this review we will look back at the introduction of DNA sequence typing of P. acnes based on recA and tly loci, and then describe how these methods provided a basic understanding of the population genetic structure of the bacterium, and even helped characterize the grapevine-associated lineage of P. acnes, known as P. acnes type Zappe, which appears to have undergone a host switch from humans-to-plants. Particular limitations of recA and tly sequence typing will also be presented, as well as a detailed discussion of more recent, higher resolution, DNA-based methods to type P. acnes and investigate its evolutionary history in greater detail.
Collapse
Affiliation(s)
- Andrew McDowell
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Londonderry BT47 6SB, UK.
| |
Collapse
|
14
|
Davidsson S, Carlsson J, Mölling P, Gashi N, Andrén O, Andersson SO, Brzuszkiewicz E, Poehlein A, Al-Zeer MA, Brinkmann V, Scavenius C, Nazipi S, Söderquist B, Brüggemann H. Prevalence of Flp Pili-Encoding Plasmids in Cutibacterium acnes Isolates Obtained from Prostatic Tissue. Front Microbiol 2017; 8:2241. [PMID: 29201018 PMCID: PMC5696575 DOI: 10.3389/fmicb.2017.02241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
Inflammation is one of the hallmarks of prostate cancer. The origin of inflammation is unknown, but microbial infections are suspected to play a role. In previous studies, the Gram-positive, low virulent bacterium Cutibacterium (formerly Propionibacterium) acnes was frequently isolated from prostatic tissue. It is unclear if the presence of the bacterium represents a true infection or a contamination. Here we investigated Cutibacterium acnes type II, also called subspecies defendens, which is the most prevalent type among prostatic C. acnes isolates. Genome sequencing of type II isolates identified large plasmids in several genomes. The plasmids are highly similar to previously identified linear plasmids of type I C. acnes strains associated with acne vulgaris. A PCR-based analysis revealed that 28.4% (21 out of 74) of all type II strains isolated from cancerous prostates carry a plasmid. The plasmid shows signatures for conjugative transfer. In addition, it contains a gene locus for tight adherence (tad) that is predicted to encode adhesive Flp (fimbrial low-molecular weight protein) pili. In subsequent experiments a tad locus-encoded putative pilin subunit was identified in the surface-exposed protein fraction of plasmid-positive C. acnes type II strains by mass spectrometry, indicating that the tad locus is functional. Additional plasmid-encoded proteins were detected in the secreted protein fraction, including two signal peptide-harboring proteins; the corresponding genes are specific for type II C. acnes, thus lacking from plasmid-positive type I C. acnes strains. Further support for the presence of Flp pili in C. acnes type II was provided by electron microscopy, revealing cell appendages in tad locus-positive strains. Our study provides new insight in the most prevalent prostatic subspecies of C. acnes, subsp. defendens, and indicates the existence of Flp pili in plasmid-positive strains. Such pili may support colonization and persistent infection of human prostates by C. acnes.
Collapse
Affiliation(s)
- Sabina Davidsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Paula Mölling
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Natyra Gashi
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ove Andrén
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Swen-Olof Andersson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Elzbieta Brzuszkiewicz
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Munir A Al-Zeer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Seven Nazipi
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bo Söderquist
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | |
Collapse
|