1
|
Cheng C, Xue X, Jiao Y, You R, Zhang M, Jia M, Du M, Zeng X, Sun JB, Qin W, Yang XJ. External trigeminal nerve stimulation (eTNS) Exhibits relaxation effects in fatigue states following napping deprivation. Neuroscience 2024; 567:123-132. [PMID: 39719246 DOI: 10.1016/j.neuroscience.2024.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND In the face of inevitable declines in alertness and fatigue resulting from sleep deprivation, effective countermeasures are essential for maintaining performance. External trigeminal nerve stimulation (eTNS) presents a potential avenue for regulating alertness by activating the locus coeruleus and reticular activating system. METHODS Here, we conducted a within-subject study with 66 habitual nappers, subjecting them to afternoon nap-deprivation and applying either 20-minute of 120 Hz eTNS or sham stimulation. We compared participants' performance in PVT and N-back tasks, subjective fatigue level and alertness ratings, and changes in heart rate variability, cortisol, and salivary alpha-amylase before and after stimulation. RESULTS The results revealed a significant decline in PVT and N-back tasks performance, along with increased subjective fatigue levels in the sham stimulation group. In contrast, the eTNS stimulation group maintained behavioral performance, with lower post-stimulation fatigue levels than sham group. After stimulation, the eTNS group exhibited decreased mean R-R interval and elevated LF/HF ratios, i.e., a shift in autonomic nervous system activity towards sympathetic dominance, and a significant reduction in cortisol levels, indicating a state of relaxation alleviating drowsiness. CONCLUSION These findings suggested that 120 Hz eTNS stimulation might induce a relaxing effect, and thereby alleviate fatigue while preserving alertness and cognitive performance.
Collapse
Affiliation(s)
- Chen Cheng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xinxin Xue
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yunyun Jiao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Rui You
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Mengkai Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Mengnan Jia
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Mengyu Du
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xiao Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jin-Bo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xue-Juan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
3
|
Li C, Ajmal E, Alok K, Powell K, Wadolowski S, Tambo W, Turpin J, Barthélemy E, Al-Abed Y, LeDoux D. CGRP as a potential mediator for the sexually dimorphic responses to traumatic brain injury. Biol Sex Differ 2024; 15:44. [PMID: 38816868 PMCID: PMC11138127 DOI: 10.1186/s13293-024-00619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The outcomes of traumatic brain injury (TBI) exhibit variance contingent upon biological sex. Although female sex hormones exert neuroprotective effects, the administration of estrogen and progesterone has not yielded conclusive results. Hence, it is conceivable that additional mediators, distinct from female sex hormones, merit consideration due to their potential differential impact on TBI outcomes. Calcitonin gene-related peptide (CGRP) exhibits sexually dimorphic expression and demonstrates neuroprotective effects in acute brain injuries. In this study, we aimed to examine sex-based variations in TBI structural and functional outcomes with respect to CGRP expression. METHODS Male and female Sprague Dawley rats were exposed to controlled cortical impact to induce severe TBI, followed by interventions with and without CGRP inhibition. In the acute phase of TBI, the study centered on elucidating the influence of CGRP on oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) and endothelial nitric oxide synthase (eNOS) signaling in the peri-impact tissue. Subsequently, during the chronic phase of TBI, the investigation expanded to evaluate CGRP expression in relation to lesion volume, microvascular dysfunction, and white matter injury, as well as working and spatial memory, anxiety-like, and depression-like behaviors in subjects of both sexes. RESULTS Female rats exhibited elevated levels of CGRP in the peri-impact brain tissue during both baseline conditions and in the acute and chronic phases of TBI, in comparison to age-matched male counterparts. Enhanced CGRP levels in specific brain sub-regions among female rats correlated with superior structural and functional outcomes following TBI compared to their male counterparts. CGRP inhibition induced heightened oxidative stress and a reduction in the expression of Nrf2 and eNOS in both male and female rats, with the observed alteration being more pronounced in females than in males. CONCLUSIONS This study marks the inaugural identification of CGRP as a downstream mediator contributing to the sexually dimorphic response observed in TBI outcomes.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, 11030, USA.
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Khaled Alok
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Steven Wadolowski
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Justin Turpin
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Ernest Barthélemy
- Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - David LeDoux
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| |
Collapse
|
4
|
Kang J, Zhou Y, Xiong Q, Dong X. Trigeminal nerve electrical stimulation attenuates early traumatic brain injury through the TLR4/NF-κB/NLRP3 signaling pathway mediated by orexin-A/OX1R system. Aging (Albany NY) 2024; 16:7946-7960. [PMID: 38713160 PMCID: PMC11131994 DOI: 10.18632/aging.205795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant contributor to global mortality and disability, and emerging evidence indicates that trigeminal nerve electrical stimulation (TNS) is a promising therapeutic intervention for neurological impairment following TBI. However, the precise mechanisms underlying the neuroprotective effects of TNS in TBI are poorly understood. Thus, the objective of this study was to investigate the potential involvement of the orexin-A (OX-A)/orexin receptor 1 (OX1R) mediated TLR4/NF-κB/NLRP3 signaling pathway in the neuroprotective effects of TNS in rats with TBI. METHODS Sprague-Dawley rats were randomly assigned to four groups: sham, TBI, TBI+TNS+SB334867, and TBI+TNS. TBI was induced using a modified Feeney's method, and subsequent behavioral assessments were conducted to evaluate neurological function. The trigeminal nerve trunk was isolated, and TNS was administered following the establishment of the TBI model. The levels of neuroinflammation, brain tissue damage, and proteins associated with the OX1R/TLR4/NF-κB/NLRP3 signaling pathway were assessed using hematoxylin-eosin staining, Nissl staining, western blot analysis, quantitative real-time polymerase chain reaction, and immunofluorescence techniques. RESULTS The findings of our study indicate that TNS effectively mitigated tissue damage, reduced brain edema, and alleviated neurological deficits in rats with TBI. Furthermore, TNS demonstrated the ability to attenuate neuroinflammation levels and inhibit the expression of proteins associated with the TLR4/NF-κB/NLRP3 signaling pathway. However, it is important to note that the aforementioned effects of TNS were reversible upon intracerebroventricular injection of an OX1R antagonist. CONCLUSION TNS may prevent brain damage and relieve neurological deficits after a TBI by inhibiting inflammation, possibly via the TLR4/NF-κB/NLRP3 signaling pathway mediated by OX-A/OX1R.
Collapse
Affiliation(s)
- Junwei Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Yifan Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qi Xiong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Xiaoyang Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
5
|
Powell K, Lin K, Tambo W, Saavedra AP, Sciubba D, Al Abed Y, Li C. Trigeminal nerve stimulation: a current state-of-the-art review. Bioelectron Med 2023; 9:30. [PMID: 38087375 PMCID: PMC10717521 DOI: 10.1186/s42234-023-00128-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 09/26/2024] Open
Abstract
Nearly 5 decades ago, the effect of trigeminal nerve stimulation (TNS) on cerebral blood flow was observed for the first time. This implication directly led to further investigations and TNS' success as a therapeutic intervention. Possessing unique connections with key brain and brainstem regions, TNS has been observed to modulate cerebral vasodilation, brain metabolism, cerebral autoregulation, cerebral and systemic inflammation, and the autonomic nervous system. The unique range of effects make it a prime therapeutic modality and have led to its clinical usage in chronic conditions such as migraine, prolonged disorders of consciousness, and depression. This review aims to present a comprehensive overview of TNS research and its broader therapeutic potentialities. For the purpose of this review, PubMed and Google Scholar were searched from inception to August 28, 2023 to identify a total of 89 relevant studies, both clinical and pre-clinical. TNS harnesses the release of vasoactive neuropeptides, modulation of neurotransmission, and direct action upon the autonomic nervous system to generate a suite of powerful multitarget therapeutic effects. While TNS has been applied clinically to chronic pathological conditions, these powerful effects have recently shown great potential in a number of acute/traumatic pathologies. However, there are still key mechanistic and methodologic knowledge gaps to be solved to make TNS a viable therapeutic option in wider clinical settings. These include bimodal or paradoxical effects and mechanisms, questions regarding its safety in acute/traumatic conditions, the development of more selective stimulation methods to avoid potential maladaptive effects, and its connection to the diving reflex, a trigeminally-mediated protective endogenous reflex. The address of these questions could overcome the current limitations and allow TNS to be applied therapeutically to an innumerable number of pathologies, such that it now stands at the precipice of becoming a ground-breaking therapeutic modality.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Emory University, Atlanta, GA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Daniel Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al Abed
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
6
|
Monaco A, Cattaneo R, Di Nicolantonio S, Strada M, Altamura S, Ortu E. Central effects of trigeminal electrical stimulation. Cranio 2023:1-24. [PMID: 38032105 DOI: 10.1080/08869634.2023.2280153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
This is a review of the literature on the main neuromodulation techniques, focusing on the possibility of introducing sensory threshold ULFTENS into them. Electro neuromodulation techniques have been in use for many years as promising methods of therapy for cognitive and emotional disorders. One of the most widely used forms of stimulation for orofacial pain is transcutaneous trigeminal stimulation on three levels: supraorbital area, dorsal surface of the tongue, and anterior skin area of the tragus. The purpose of this review is to trigger interest on using dental ULFTENS as an additional trigeminal neurostimulation and neuromodulation technique in the context of TMD. In particular, we point out the possibility of using ULFTENS at a lower activation level than that required to trigger a muscle contraction that is capable of triggering effects at the level of the autonomic nervous system, with extreme ease of execution and few side effects.
Collapse
Affiliation(s)
- Annalisa Monaco
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | - Ruggero Cattaneo
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | | | - Marco Strada
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | - Serena Altamura
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | - Eleonora Ortu
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
7
|
Mercante B, Enrico P, Deriu F. Cognitive Functions following Trigeminal Neuromodulation. Biomedicines 2023; 11:2392. [PMID: 37760833 PMCID: PMC10525298 DOI: 10.3390/biomedicines11092392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Vast scientific effort in recent years have been focused on the search for effective and safe treatments for cognitive decline. In this regard, non-invasive neuromodulation has gained increasing attention for its reported effectiveness in promoting the recovery of multiple cognitive domains after central nervous system damage. In this short review, we discuss the available evidence supporting a possible cognitive effect of trigeminal nerve stimulation (TNS). In particular, we ask that, while TNS has been widely and successfully used in the treatment of various neuropsychiatric conditions, as far as research in the cognitive field is concerned, where does TNS stand? The trigeminal nerve is the largest cranial nerve, conveying the sensory information from the face to the trigeminal sensory nuclei, and from there to the thalamus and up to the somatosensory cortex. On these bases, a bottom-up mechanism has been proposed, positing that TNS-induced modulation of the brainstem noradrenergic system may affect the function of the brain networks involved in cognition. Nevertheless, despite the promising theories, to date, the use of TNS for cognitive empowering and/or cognitive decline treatment has several challenges ahead of it, mainly due to little uniformity of the stimulation protocols. However, as the field continues to grow, standardization of practice will allow for data comparisons across studies, leading to optimized protocols targeting specific brain circuitries, which may, in turn, influence cognition in a designed manner.
Collapse
Affiliation(s)
- Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (B.M.); (P.E.)
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (B.M.); (P.E.)
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (B.M.); (P.E.)
- AOU Sassari, Unit of Endocrinology, Nutritional and Metabolic Disorders, 07100 Sassari, Italy
| |
Collapse
|
8
|
Nash C, Powell K, Lynch DG, Hartings JA, Li C. Nonpharmacological modulation of cortical spreading depolarization. Life Sci 2023:121833. [PMID: 37302793 DOI: 10.1016/j.lfs.2023.121833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
AIMS Cortical spreading depolarization (CSD) is a wave of pathologic neuronal dysfunction that spreads through cerebral gray matter, causing neurologic disturbance in migraine and promoting lesion development in acute brain injury. Pharmacologic interventions have been found to be effective in migraine with aura, but their efficacy in acutely injured brains may be limited. This necessitates the assessment of possible adjunctive treatments, such as nonpharmacologic methods. This review aims to summarize currently available nonpharmacological techniques for modulating CSDs, present their mechanisms of action, and provide insight and future directions for CSD treatment. MAIN METHODS A systematic literature review was performed, generating 22 articles across 3 decades. Relevant data is broken down according to method of treatment. KEY FINDINGS Both pharmacologic and nonpharmacologic interventions can mitigate the pathological impact of CSDs via shared molecular mechanisms, including modulating K+/Ca2+/Na+/Cl- ion channels and NMDA, GABAA, serotonin, and CGRP ligand-based receptors and decreasing microglial activation. Preclinical evidence suggests that nonpharmacologic interventions, including neuromodulation, physical exercise, therapeutic hypothermia, and lifestyle changes can also target unique mechanisms, such as increasing adrenergic tone and myelination and modulating membrane fluidity, which may lend broader modulatory effects. Collectively, these mechanisms increase the electrical initiation threshold, increase CSD latency, slow CSD velocity, and decrease CSD amplitude and duration. SIGNIFICANCE Given the harmful consequences of CSDs, limitations of current pharmacological interventions to inhibit CSDs in acutely injured brains, and translational potentials of nonpharmacologic interventions to modulate CSDs, further assessment of nonpharmacologic modalities and their mechanisms to mitigate CSD-related neurologic dysfunction is warranted.
Collapse
Affiliation(s)
- Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Barnard College, New York, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Daniel G Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
9
|
Ma H, Fan S, Xu Z, Wan X, Yang Q, Yin Y, Wu X, Wu S, Zhang H, Ma C. Trigeminal nerve stimulation for prolonged disorders of consciousness: A randomized double-blind sham-controlled study. Brain Stimul 2023; 16:819-827. [PMID: 37182683 DOI: 10.1016/j.brs.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Trigeminal nerve stimulation (TNS) has been proposed as a promising intervention for coma awakening. However, the effect of TNS on patients with prolonged disorders of consciousness (pDoC) is still unclear. OBJECTIVE This study aimed to investigate the therapeutic effects of TNS in pDoC caused by stroke, trauma, and anoxia. METHODS A total of 60 patients (male =25, female =35) aged over 18 who were in a vegetative state or minimally conscious state were randomly assigned to the TNS (N = 30) or sham TNS (N = 30) groups. 4 weeks of intervention and a followed up for 8 weeks were performed. The Glasgow Coma Scale (GCS) and Coma Recovery Scale-Revised (CRS-R) scores as primary outcomes were assessed at baseline and at 2, 4, 8, and 12 weeks. RESULTS The score changes in the TNS group over time for CRS-R (2-week: mean difference = 0.9, 95% CI = [0.3, 1.5], P = 0.006; 4-week: 1.6, 95% CI = [0.8, 2.5], P < 0.001; 8-week: mean difference = 2.4, 95% CI = [1.3, 3.5], P < 0.001; 12-week: mean difference = 2.3, 95% CI = [1.1, 3.4], P < 0.001) and GCS (4-week: mean difference = 0.7, 95% CI = [0.3, 1.2], P = 0.002; 8-week: mean difference = 1.1, 95% CI = [0.6, 1.7], P < 0.001; 12-week: 1.1, 95% CI = [0.5, 1.7], P = 0.003) were higher than those in the sham group. 18-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) revealed that the metabolism of the right parahippocampal cortex, right precuneus, and bilateral middle cingulate cortex was significantly increased in TNS group. CONCLUSION The results of this study indicate that TNS could increase local brain metabolism and may promote functional recovery in patients with prolonged disorders of consciousness. REGISTRATION INFORMATION Name of the registry: Chinese Clinical Trial Registry. REGISTRATION NUMBER ChiCTR1900025573. The date that the study was submitted to a registry: 2019-09-01. The date when the first patient was enrolled was 2021-01-20.
Collapse
Affiliation(s)
- Haiyun Ma
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Shengnuo Fan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Zhen Xu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoting Wan
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Qian Yang
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Yuping Yin
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Xuemeng Wu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Shaoling Wu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China.
| | - Hong Zhang
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China.
| | - Chao Ma
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Suzuki T, Waki H, Imai K, Hisajima T. Electroacupuncture on the Ophthalmic Branch of the Trigeminal Nerve Affects Cerebral Blood Flow in the Frontopolar Cortex During Mental Arithmetic: A Randomized Crossover Trial. Med Acupunct 2023. [DOI: 10.1089/acu.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Takuya Suzuki
- Faculty of Health Care, Teikyo Heisei University, and Research Institute of Oriental Medicine, Tokyo, Japan
| | - Hideaki Waki
- Faculty of Health Care, Teikyo Heisei University, and Research Institute of Oriental Medicine, Tokyo, Japan
| | - Kenji Imai
- Faculty of Health Care, Teikyo Heisei University, and Research Institute of Oriental Medicine, Tokyo, Japan
| | - Tatsuya Hisajima
- Faculty of Health Care, Teikyo Heisei University, and Research Institute of Oriental Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Wang L, Su XT, Cao Y, Yang NN, Hao XW, Li HP, Wang QY, Yang JW. Potential mechanisms of acupuncture in enhancing cerebral perfusion of ischemic stroke. Front Neurol 2022; 13:1030747. [PMID: 36388196 PMCID: PMC9650151 DOI: 10.3389/fneur.2022.1030747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ischemic stroke is the predominant cause of long-term disability and death worldwide. It is attributable to the sudden interruption of regional cerebral blood flow, resulting in brain cell death and neurological impairment. Acupuncture is a widely used adjuvant treatment for ischemic stroke in China and shows promising efficacy in clinical practice. This review mainly focused on the evidence to illustrate several possible mechanisms of acupuncture therapy on cerebral perfusion in ischemic stroke. Studies have shown that acupuncture is probably effective in the enhancement of cerebral perfusion after ischemic stroke. It promotes the improvement of hemodynamics, the release of vasoactive substances, the formation of new blood vessels, as well as the restitution of microcirculation. Multiple factors may contribute to the variability in acupuncture's therapeutic effects, including the acupoint selection, stimulation frequency and intensity, and retaining needle time. Acupuncture has the potential to become a non-pharmacological adjuvant approach to enhance cerebral perfusion in ischemic stroke. Future studies are required to gain our insight into acupuncture as well as accelerate its clinical translation.
Collapse
|
12
|
Gong P, Zhang S, Ren L, Zhang J, Zhao Y, Mao X, Gan L, Wang H, Ma C, Lin Y, Ye Q, Qian K, Lin X. Electroacupuncture of the trigeminal nerve causes N-methyl-D-aspartate receptors to mediate blood-brain barrier opening and induces neuronal excitatory changes. Front Cell Neurosci 2022; 16:1020644. [PMID: 36313622 PMCID: PMC9606778 DOI: 10.3389/fncel.2022.1020644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
The blood-brain barrier (BBB) is an important structure for maintaining environmental stability in the central nervous system (CNS). Our previous study showed that specific parameters of electroacupuncture (EA) at the head points Shuigou (GV26) and Baihui (GV20) can open the BBB; however, the mechanism by which stimulation of body surface acupuncture points on the head results in peripheral stimulation and affects the status of the central BBB and the neuronal excitatory changes has not been elucidated. We used laser spectroscopy, the In Vivo Imaging System (IVIS), immunofluorescence and immunoblotting to verified the role of the trigeminal nerve in BBB opening during EA, and we applied the central N-methyl-D-aspartate (NMDA) receptors blocker MK-801 to verify the mediating role of NMDA receptors in EA-induced BBB opening. Next, electroencephalogram (EEG) and in vivo calcium imaging techniques were applied to verify the possible electrical patterns of BBB opening promoted by different intensities of EA stimulation. The results showed that the trigeminal nerve plays an important role in the alteration of BBB permeability promoted by EA stimulation of the head acupoints. Brain NMDA receptors play a mediating role in promoting BBB permeability during EA of the trigeminal nerve, which may affect the expression of the TJ protein occludin, and thus alter BBB permeability. The analysis of the electrical mechanism showed that there was no significant change in the rhythm of local field potentials (LFP) in different brain regions across frequency bands immediately after EA of the trigeminal nerve at different intensities. However, the local primary somatosensory (S1BF) area corresponding to the trigeminal nerve showed a transient reduction in the delta rhythm of LFP with no change in the high-frequency band, and the action potential (spike) with short inter spike interval (ISI) varied with EA intensity. Meanwhile, EA of the trigeminal nerve resulted in rhythmic changes in calcium waves in the S1BF region, which were influenced by different EA intensities. This study provides a research perspective and a technical approach to further explore the mechanism of EA-induced BBB opening and its potential clinical applications.
Collapse
|
13
|
Tirado CF, Washburn SN, Covalin A, Hedenberg C, Vanderpool H, Benner C, Powell DP, McWade MA, Khodaparast N. Delivering transcutaneous auricular neurostimulation (tAN) to improve symptoms associated with opioid withdrawal: results from a prospective clinical trial. Bioelectron Med 2022; 8:12. [PMID: 35978394 PMCID: PMC9385243 DOI: 10.1186/s42234-022-00095-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background As pharmacological treatments are the primary option for opioid use disorder, neuromodulation has recently demonstrated efficacy in managing opioid withdrawal syndrome (OWS). This study investigated the safety and effectiveness of transcutaneous auricular neurostimulation (tAN) for managing OWS. Methods This prospective inpatient trial included a 30-minute randomized, sham-controlled, double-blind period followed by a 5-day open-label period. Adults with physical dependence on opioids were randomized to receive active or sham tAN following abrupt opioid discontinuation. The Clinical Opiate Withdrawal Scale (COWS) was used to determine withdrawal level, and participants were required to have a baseline COWS score ≥ 13 before enrollment. The double-blind period of the study occurred during the first 30-minutes to assess the acute effects of tAN therapy compared to a sham control. Group 1 received active tAN during both the 30-minute double-blind period and the 5-day open-label period. Group 2 received passive sham tAN (no stimulation) during the double-blind period, followed by active tAN during the 5-day open-label period. The primary outcome was change in COWS from baseline to 60-minutes of active tAN (pooled across groups, accounting for 30-minute delay). Secondary outcomes included difference in change in COWS scores between groups after 30-minutes of active or sham tAN, change in COWS scores after 120-minutes of active tAN, and change in COWS scores on Days 2–5. Non-opioid comfort medications were administered during the trial. Results Across all thirty-one participants, the mean (SD) COWS scores relative to baseline were reduced by 7.0 (4.7) points after 60-minutes of active tAN across both groups (p < 0.0001; Cohen’s d = 2.0), demonstrating a significant and clinically meaningful reduction of 45.9%. After 30-minutes of active tAN (Group 1) or sham tAN (Group 2), the active tAN group demonstrated a significantly greater COWS score reduction than the sham tAN group (41.7% vs. 24.1%; p = 0.036). Participants across both groups achieved an average COWS reduction up to 74.7% on Days 2–5. Conclusion Results demonstrate tAN is a safe and effective non-opioid approach for reducing symptoms of OWS. This study supported an FDA clearance. Clinical trial registration clinicaltrials.gov/ct2/show/NCT04075214, Identifier: NCT04075214, Release Date: August 28, 2019.
Collapse
Affiliation(s)
- Carlos F Tirado
- CARMAhealth Management, Inc., 630 W 34th St #301, Austin, TX, 78705, USA
| | | | - Alejandro Covalin
- Spark Biomedical, Inc., 18208 Preston Road, Ste D9-531, Dallas, TX, 75252, USA
| | - Caroline Hedenberg
- CARMAhealth Management, Inc., 630 W 34th St #301, Austin, TX, 78705, USA
| | - Heather Vanderpool
- Spark Biomedical, Inc., 18208 Preston Road, Ste D9-531, Dallas, TX, 75252, USA
| | - Caroline Benner
- Spark Biomedical, Inc., 18208 Preston Road, Ste D9-531, Dallas, TX, 75252, USA
| | - Daniel P Powell
- Spark Biomedical, Inc., 18208 Preston Road, Ste D9-531, Dallas, TX, 75252, USA
| | - Melanie A McWade
- Spark Biomedical, Inc., 18208 Preston Road, Ste D9-531, Dallas, TX, 75252, USA
| | - Navid Khodaparast
- Spark Biomedical, Inc., 18208 Preston Road, Ste D9-531, Dallas, TX, 75252, USA.
| |
Collapse
|
14
|
Falvey A, Metz CN, Tracey KJ, Pavlov VA. Peripheral nerve stimulation and immunity: the expanding opportunities for providing mechanistic insight and therapeutic intervention. Int Immunol 2022; 34:107-118. [PMID: 34498051 PMCID: PMC8783605 DOI: 10.1093/intimm/dxab068] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022] Open
Abstract
Pre-clinical research advances our understanding of the vagus nerve-mediated regulation of immunity and clinical trials successfully utilize electrical vagus nerve stimulation in the treatment of patients with inflammatory disorders. This symbiotic relationship between pre-clinical and clinical research exploring the vagus nerve-based 'inflammatory reflex' has substantially contributed to establishing the field of bioelectronic medicine. Recent studies identify a crosstalk between the vagus nerve and other neural circuitries in controlling inflammation and delineate new neural immunoregulatory pathways. Here we outline current mechanistic insights into the role of vagal and non-vagal neural pathways in neuro-immune communication and inflammatory regulation. We also provide a timely overview of expanding opportunities for bioelectronic neuromodulation in the treatment of various inflammatory disorders.
Collapse
Affiliation(s)
- Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
15
|
Powell K, White TG, Nash C, Rebeiz T, Woo HH, Narayan RK, Li C. The Potential Role of Neuromodulation in Subarachnoid Hemorrhage. Neuromodulation 2022; 25:1215-1226. [PMID: 35088724 DOI: 10.1016/j.neurom.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Aneurysmal subarachnoid hemorrhage (SAH) continues to be a difficult cerebrovascular disease with limited pharmacologic treatment options. Cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) are leading causes of morbidity and mortality after SAH. Despite the advances in the understanding of its pathophysiology and tremendous efforts to date, nimodipine is currently the sole Food and Drug Administration-approved treatment for patients with SAH, with benefits that are marginal at best. The neuromodulation therapies are promising, especially those that target CV and DCI to improve functional outcomes. The aim of this review is therefore to summarize the available evidence for each type of neuromodulation for CV and DCI, with a special focus on its pathophysiological mechanisms, in addition to their clinical utility and drawbacks, which we hope will lead to future translational therapy options after SAH. MATERIALS AND METHODS We conducted a comprehensive review of preclinical and clinical studies demonstrating the use of neuromodulation for SAH. The literature search was performed using PubMed, Embase, and ClinicalTrials.gov. A total of 21 articles published from 1992 to 2021 and eight clinical trials were chosen. RESULTS The studies reviewed provide a compelling demonstration that neuromodulation is a potentially useful strategy to target multiple mechanisms of DCI and thus to potentially improve functional outcomes from SAH. There are several types of neuromodulation that have been tested to treat CV and DCI, including the trigeminal/vagus/facial nerve stimulation, sphenopalatine ganglion and spinal cord stimulation, transcranial direct electrical stimulation, transcutaneous electrical neurostimulation, and electroacupuncture. Most of them are in the preclinical or early phases of clinical application; however, they show promising results. CONCLUSIONS DCI has a complex pathogenesis, making the unique anatomical distribution and pleiotropic capabilities of various types of neuromodulation a promising field of study. We may be at the cusp of a breakthrough in the use of these techniques for the treatment of this stubbornly difficult disease.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tania Rebeiz
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Henry H Woo
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
16
|
Yang Q, Zhang S, Xu Z, Liu L, Fan S, Wu S, Ma C. The Effectiveness of Trigeminal Nerve Stimulation on Traumatic Brain Injury. Neuromodulation 2022; 25:1330-1337. [PMID: 35088758 DOI: 10.1016/j.neurom.2021.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Trigeminal nerve stimulation (TNS) is a promising strategy in treating diseases of the nervous system. In this study, the effects of TNS on traumatic brain injury (TBI) were investigated in a mouse model. MATERIALS AND METHODS TBI was induced using a weight-drop device, and TNS treatment was delivered in the first hour after the TBI. Twenty-four hours later, the mice's behavior, brain edema, and expression of inflammatory factors were tested. Functional magnetic resonance imaging also was used to explore the possible effects of TNS on brain activity. RESULTS TNS alleviates TBI-induced neurological dysfunction in animal behavior tests, besides protecting the blood-brain barrier and reducing the level of brain edema. TNS also effectively reduces the level of tumor necrosis factor-α and interleukin 6 and downregulates the cleaved caspase-3 signaling pathway. A series of brain areas was found to be possibly regulated by TNS, thus affecting the neural functions of animals. CONCLUSION This study elucidates the role of TNS as an effective treatment for TBI by inhibiting the occurrence of a secondary brain injury.
Collapse
Affiliation(s)
- Qian Yang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Subo Zhang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhen Xu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lijiaqi Liu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shengnuo Fan
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaoling Wu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
17
|
Ptito A, Papa L, Gregory K, Folmer RL, Walker WC, Prabhakaran V, Wardini R, Skinner K, Yochelson M. A Prospective, Multicenter Study to Assess the Safety and Efficacy of Translingual Neurostimulation Plus Physical Therapy for the Treatment of a Chronic Balance Deficit Due to Mild-to-Moderate Traumatic Brain Injury. Neuromodulation 2021; 24:1412-1421. [PMID: 32347591 PMCID: PMC9291157 DOI: 10.1111/ner.13159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Translingual neurostimulation (TLNS) studies indicate improved outcomes in neurodegenerative disease or spinal cord injury patients. This study was designed to assess the safety and efficacy of TLNS plus targeted physical therapy (PT) in people with a chronic balance deficit after mild-to-moderate traumatic brain injury (mmTBI). MATERIALS AND METHODS This international, multicenter, randomized study enrolled 122 participants with a chronic balance deficit who had undergone PT following an mmTBI and had plateaued in recovery. Randomized participants received PT plus either high-frequency pulse (HFP; n = 59) or low-frequency pulse (LFP; n = 63) TLNS. The primary efficacy and safety endpoints were the proportion of sensory organization test (SOT) responders (SOT composite score improvement of ≥15 points) and fall frequency after five weeks of treatment, respectively. RESULTS The proportion of SOT responders was significant in the HFP + PT (71.2%) and LFP + PT (63.5%) groups compared with baseline (p < 0.0005). For the pooled population, the SOT responder rate was 67.2% (p < 0.00005), and there were clinically and statistically significant improvements in SOT composite scores after two and five weeks (p < 0.0005). Both groups had reductions in falls and headache disability index scores. Mean dynamic gait index scores in both groups also significantly increased from baseline at weeks 2 and 5. CONCLUSIONS Significant improvements in balance and gait, in addition to headaches, sleep quality, and fall frequency, were observed with TLNS plus targeted PT; in participants who had a chronic balance deficit following an mmTBI and had plateaued on prior conventional physiotherapy.
Collapse
Affiliation(s)
- Alain Ptito
- Psychology DepartmentMcGill University Health Centre; Montreal Neurological Institute and HospitalMontrealQCCanada
| | - Linda Papa
- Department of Emergency MedicineOrlando HealthOrlandoFLUSA
| | - Kenton Gregory
- Center for Regenerative MedicineOregon Health and Science UniversityPortlandORUSA
| | - Robert L. Folmer
- Department of OtolaryngologyOregon Health and Science UniversityPortlandORUSA
- National Center for Rehabilitative Auditory ResearchVA Portland Health Care SystemPortlandORUSA
| | - William C. Walker
- Department of Physical Medicine and RehabilitationVirginia Commonwealth UniversityRichmondVAUSA
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin Hospitals and ClinicsUniversity of WisconsinMadisonWIUSA
| | | | | | - Michael Yochelson
- Shepherd CenterAtlantaGAUSA
- MedStar National Rehabilitation NetworkWashingtonDCUSA
| |
Collapse
|
18
|
Li C, Shah KA, Powell K, Wu YC, Chaung W, Sonti AN, White TG, Doobay M, Yang WL, Wang P, Becker LB, Narayan RK. CBF oscillations induced by trigeminal nerve stimulation protect the pericontusional penumbra in traumatic brain injury complicated by hemorrhagic shock. Sci Rep 2021; 11:19652. [PMID: 34608241 PMCID: PMC8490389 DOI: 10.1038/s41598-021-99234-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Traumatic peri-contusional penumbra represents crucial targets for therapeutic interventions after traumatic brain injury (TBI). Current resuscitative approaches may not adequately alleviate impaired cerebral microcirculation and, hence, compromise oxygen delivery to peri-contusional areas. Low-frequency oscillations in cerebral blood flow (CBF) may improve cerebral oxygenation in the setting of oxygen deprivation. However, no method has been reported to induce controllable oscillations in CBF and it hasn't been applied as a therapeutic strategy. Electrical stimulation of the trigeminal nerve (TNS) plays a pivotal role in modulating cerebrovascular tone and cerebral perfusion. We hypothesized that TNS can modulate CBF at the targeted frequency band via the trigemino-cerebrovascular network, and TNS-induced CBF oscillations would improve cerebral oxygenation in peri-contusional areas. In a rat model of TBI complicated by hemorrhagic shock, TNS-induced CBF oscillations conferred significant preservation of peri-contusional tissues leading to reduced lesion volume, attenuated hypoxic injury and neuroinflammation, increased eNOS expression, improved neurological recovery and better 10-day survival rate, despite not significantly increasing CBF as compared with those in immediate and delayed resuscitation animals. Our findings indicate that low-frequency CBF oscillations enhance cerebral oxygenation in peri-contusional areas, and play a more significant protective role than improvements in non-oscillatory cerebral perfusion or volume expansion alone.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA. .,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Kevin A Shah
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yi-Chen Wu
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Anup N Sonti
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Mohini Doobay
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Lance B Becker
- Department of Emergency Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
19
|
Pacheco F, Guiomar R, Brunoni AR, Buhagiar R, Evagorou O, Roca-Lecumberri A, Poleszczyk A, Lambregtse-van den Berg M, Caparros-Gonzalez RA, Fonseca A, Osório A, Soliman M, Ganho-Ávila A. Efficacy of non-invasive brain stimulation in decreasing depression symptoms during the peripartum period: A systematic review. J Psychiatr Res 2021; 140:443-460. [PMID: 34147932 DOI: 10.1016/j.jpsychires.2021.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/04/2021] [Accepted: 06/04/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS) techniques have been suggested as alternative treatments to decrease depression symptoms during the perinatal period. These include brain stimulation techniques that do not require surgery and that are nonpharmacological and non-psychotherapeutic. NIBS with evidence of antidepressant effects include repetitive transcranial magnetic stimulation (rTMS), transcranial electric stimulation (TES) and electroconvulsive therapy (ECT). OBJECTIVES This systematic review aims to summarize evidence on NIBS efficacy, safety and acceptability in treating peripartum depression (PPD). METHODS We included randomized, non-randomized and case reports, that used NIBS during pregnancy and the postpartum. The reduction of depressive symptoms and neonatal safety were the primary and co-primary outcomes, respectively. RESULTS rTMS shows promising results for the treatment of PPD, with clinically significant decreases in depressive symptoms between baseline and end of treatment and overall good acceptability. Although the safety profile for rTMS is adequate in the postpartum, caution is warranted during pregnancy. In TES, evidence on efficacy derives mostly from single-arm studies, compromising the encouraging findings. Further investigation is necessary concerning ECT, as clinical practice relies on clinical experience and is only described in low-quality case-reports. LIMITATIONS The reduced number of controlled studies, the lack of complete datasets and the serious/high risk of bias of the reports warrant cautious interpretations. CONCLUSIONS AND IMPLICATIONS Existing evidence is limited across NIBS techniques; comparative studies are lacking, and standard stimulation parameters are yet to be established. Although rTMS benefits from the most robust research, future multicenter randomized clinical trials are needed to determine the position of each NIBS strategy within the pathways of care.
Collapse
Affiliation(s)
- Francisca Pacheco
- University of Coimbra, Faculty of Psychology and Educational Sciences, Coimbra, Portugal
| | - Raquel Guiomar
- Center for Research in Neuropsychology and Cognitive-Behavior Interventions, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Andre R Brunoni
- Department of Internal Medicine and Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Olympia Evagorou
- University General Hospital of Alexandroupolis, Department of Psychiatry, Greece
| | - Alba Roca-Lecumberri
- Perinatal Mental Health Unit, Psychiatry and Clinical Psychology Service, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Mijke Lambregtse-van den Berg
- Departments of Psychiatry and Child & Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Ana Fonseca
- University of Coimbra, Faculty of Psychology and Educational Sciences, Coimbra, Portugal; Center for Research in Neuropsychology and Cognitive-Behavior Interventions, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Osório
- Graduate Program on Developmental Disorders, Center for Biological and Health Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Mahmoud Soliman
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Ganho-Ávila
- Center for Research in Neuropsychology and Cognitive-Behavior Interventions, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
20
|
Li C, White TG, Shah KA, Chaung W, Powell K, Wang P, Woo HH, Narayan RK. Percutaneous Trigeminal Nerve Stimulation Induces Cerebral Vasodilation in a Dose-Dependent Manner. Neurosurgery 2021; 88:E529-E536. [PMID: 33677599 DOI: 10.1093/neuros/nyab053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The trigeminal nerve directly innervates key vascular structures both centrally and peripherally. Centrally, it is known to innervate the brainstem and cavernous sinus, whereas peripherally the trigemino-cerebrovascular network innervates the majority of the cerebral vasculature. Upon stimulation, it permits direct modulation of cerebral blood flow (CBF), making the trigeminal nerve a promising target for the management of cerebral vasospasm. However, trigeminally mediated cerebral vasodilation has not been applied to the treatment of vasospasm. OBJECTIVE To determine the effect of percutaneous electrical stimulation of the infraorbital branch of the trigeminal nerve (pTNS) on the cerebral vasculature. METHODS In order to determine the stimulus-response function of pTNS on cerebral vasodilation, CBF, arterial blood pressure, cerebrovascular resistance, intracranial pressure, cerebral perfusion pressure, cerebrospinal fluid calcitonin gene-related peptide (CGRP) concentrations, and the diameter of cerebral vessels were measured in healthy and subarachnoid hemorrhage (SAH) rats. RESULTS The present study demonstrates, for the first time, that pTNS increases brain CGRP concentrations in a dose-dependent manner, thereby producing controllable cerebral vasodilation. This vasodilatory response appears to be independent of the pressor response induced by pTNS, as it is maintained even after transection of the spinal cord at the C5-C6 level and shown to be confined to the infraorbital nerve by administration of lidocaine or destroying it. Furthermore, such pTNS-induced vasodilatory response of cerebral vessels is retained after SAH-induced vasospasm. CONCLUSION Our study demonstrates that pTNS is a promising vasodilator and increases CBF, cerebral perfusion, and CGRP concentration both in normal and vasoconstrictive conditions.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Timothy G White
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Kevin A Shah
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Henry H Woo
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
21
|
Verma N, Mudge JD, Kasole M, Chen RC, Blanz SL, Trevathan JK, Lovett EG, Williams JC, Ludwig KA. Auricular Vagus Neuromodulation-A Systematic Review on Quality of Evidence and Clinical Effects. Front Neurosci 2021; 15:664740. [PMID: 33994937 PMCID: PMC8120162 DOI: 10.3389/fnins.2021.664740] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The auricular branch of the vagus nerve runs superficially, which makes it a favorable target for non-invasive stimulation techniques to modulate vagal activity. For this reason, there have been many early-stage clinical trials on a diverse range of conditions. These trials often report conflicting results for the same indication. Methods: Using the Cochrane Risk of Bias tool we conducted a systematic review of auricular vagus nerve stimulation (aVNS) randomized controlled trials (RCTs) to identify the factors that led to these conflicting results. The majority of aVNS studies were assessed as having "some" or "high" risk of bias, which makes it difficult to interpret their results in a broader context. Results: There is evidence of a modest decrease in heart rate during higher stimulation dosages, sometimes at above the level of sensory discomfort. Findings on heart rate variability conflict between studies and are hindered by trial design, including inappropriate washout periods, and multiple methods used to quantify heart rate variability. There is early-stage evidence to suggest aVNS may reduce circulating levels and endotoxin-induced levels of inflammatory markers. Studies on epilepsy reached primary endpoints similar to previous RCTs testing implantable vagus nerve stimulation therapy. Preliminary evidence shows that aVNS ameliorated pathological pain but not evoked pain. Discussion: Based on results of the Cochrane analysis we list common improvements for the reporting of results, which can be implemented immediately to improve the quality of evidence. In the long term, existing data from aVNS studies and salient lessons from drug development highlight the need for direct measures of local neural target engagement. Direct measures of neural activity around the electrode will provide data for the optimization of electrode design, placement, and stimulation waveform parameters to improve on-target engagement and minimize off-target activation. Furthermore, direct measures of target engagement, along with consistent evaluation of blinding success, must be used to improve the design of controls-a major source of concern identified in the Cochrane analysis. The need for direct measures of neural target engagement and consistent evaluation of blinding success is applicable to the development of other paresthesia-inducing neuromodulation therapies and their control designs.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Jonah D. Mudge
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Maïsha Kasole
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Rex C. Chen
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Stephan L. Blanz
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | | | - Justin C. Williams
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin – Madison, Madison, WI, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
22
|
White TG, Powell K, Shah KA, Woo HH, Narayan RK, Li C. Trigeminal Nerve Control of Cerebral Blood Flow: A Brief Review. Front Neurosci 2021; 15:649910. [PMID: 33927590 PMCID: PMC8076561 DOI: 10.3389/fnins.2021.649910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 01/13/2023] Open
Abstract
The trigeminal nerve, the fifth cranial nerve, is known to innervate much of the cerebral arterial vasculature and significantly contributes to the control of cerebrovascular tone in both healthy and diseased states. Previous studies have demonstrated that stimulation of the trigeminal nerve (TNS) increases cerebral blood flow (CBF) via antidromic, trigemino-parasympathetic, and other central pathways. Despite some previous reports on the role of the trigeminal nerve and its control of CBF, there are only a few studies that investigate the effects of TNS on disorders of cerebral perfusion (i.e., ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury). In this mini review, we present the current knowledge regarding the mechanisms of trigeminal nerve control of CBF, the anatomic underpinnings for targeted treatment, and potential clinical applications of TNS, with a focus on the treatment of impaired cerebral perfusion.
Collapse
Affiliation(s)
- Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Kevin A Shah
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Henry H Woo
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
23
|
Roldán M, Kyriacou PA. Near-Infrared Spectroscopy (NIRS) in Traumatic Brain Injury (TBI). SENSORS (BASEL, SWITZERLAND) 2021; 21:1586. [PMID: 33668311 PMCID: PMC7956674 DOI: 10.3390/s21051586] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 01/03/2023]
Abstract
Traumatic brain injury (TBI) occurs when a sudden trauma causes damage to the brain. TBI can result when the head suddenly and violently impacts an object or when an object pierces the skull and enters brain tissue. Secondary injuries after traumatic brain injury (TBI) can lead to impairments on cerebral oxygenation and autoregulation. Considering that secondary brain injuries often take place within the first hours after the trauma, noninvasive monitoring might be helpful in providing early information on the brain's condition. Near-infrared spectroscopy (NIRS) is an emerging noninvasive monitoring modality based on chromophore absorption of infrared light with the capability of monitoring perfusion of the brain. This review investigates the main applications of NIRS in TBI monitoring and presents a thorough revision of those applications on oxygenation and autoregulation monitoring. Databases such as PubMed, EMBASE, Web of Science, Scopus, and Cochrane library were utilized in identifying 72 publications spanning between 1977 and 2020 which were directly relevant to this review. The majority of the evidence found used NIRS for diagnosis applications, especially in oxygenation and autoregulation monitoring (59%). It was not surprising that nearly all the patients were male adults with severe trauma who were monitored mostly with continue wave NIRS or spatially resolved spectroscopy NIRS and an invasive monitoring device. In general, a high proportion of the assessed papers have concluded that NIRS could be a potential noninvasive technique for assessing TBI, despite the various methodological and technological limitations of NIRS.
Collapse
Affiliation(s)
| | - Panayiotis A. Kyriacou
- Research Centre for Biomedical Engineering, School of Mathematics, Computer Sciences and Engineering, University of London, London EC1V 0HB, UK;
| |
Collapse
|
24
|
Zheng Y, Wu S, Yang Q, Xu Z, Zhang S, Fan S, Liu C, Li X, Ma C. Trigeminal nerve electrical stimulation: An effective arousal treatment for loss of consciousness. Brain Res Bull 2021; 169:81-93. [PMID: 33453332 DOI: 10.1016/j.brainresbull.2021.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND To determine if trigeminal nerve electrical stimulation (TNS) would be an effective arousal treatment for loss of consciousness (LOC), we applied neuroscientific methods to investigate the role of potential brain circuit and neuropeptide pathway in regulating level of consciousness. METHODS Consciousness behavioral analysis, Electroencephalogram (EEG) recording, Chemogenetics, Microarray analysis, Milliplex MAP rat peptide assay, Chromatin immune-precipitation (ChIP), Dual-luciferase reporter experiment, Western blot, PCR and Fluorescence in situ hybridization (FISH). RESULTS TNS can markedly activate the neuronal activities of the lateral hypothalamus (LH) and the spinal trigeminal nucleus (Sp5), as well as improve rat consciousness level and EEG activities. Then we proved that LH activation and upregulated neuropeptide hypocretin are beneficial for promotion of consciousness recovery. We then applied gene microarray experiment and found hypocretin might be mediated by a well-known transcription factor Early growth response gene 1 (EGR1), and the results were confirmed by ChIP and Dual-luciferase reporter experiment. CONCLUSION This study illustrates that TNS is an effective arousal strategy Treatment for LOC state via the activation of Sp5 and LH neurons and upregulation of hypocretin expression.
Collapse
Affiliation(s)
- Yaochao Zheng
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Shaoling Wu
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Qian Yang
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Zhen Xu
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Subo Zhang
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Shengnuo Fan
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Cuicui Liu
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Xiao Li
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Chao Ma
- Department of Rehabilitation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China.
| |
Collapse
|
25
|
Fickling SD, Greene T, Greene D, Frehlick Z, Campbell N, Etheridge T, Smith CJ, Bollinger F, Danilov Y, Rizzotti R, Livingstone AC, Lakhani B, D’Arcy RCN. Brain Vital Signs Detect Cognitive Improvements During Combined Physical Therapy and Neuromodulation in Rehabilitation From Severe Traumatic Brain Injury: A Case Report. Front Hum Neurosci 2020; 14:347. [PMID: 33132868 PMCID: PMC7513585 DOI: 10.3389/fnhum.2020.00347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Using a longitudinal case study design, we have tracked the recovery of motor function following severe traumatic brain injury (TBI) through a multimodal neuroimaging approach. In 2006, Canadian Soldier Captain (retired) Trevor Greene (TG) was attacked with an axe to the head while on tour in Afghanistan. TG continues intensive daily rehabilitation, which recently included the integration of physical therapy (PT) with neuromodulation using translingual neurostimulation (TLNS) to facilitate neuroplasticity. Recent findings with PT + TLNS demonstrated that recovery of motor function occurred beyond conventional time limits, currently extending past 14-years post-injury. To investigate whether PT + TLNS similarly resulted in associated cognitive function improvements, we examined event-related potentials (ERPs) with the brain vital signs framework. In parallel with motor function improvements, brain vital signs detected significant increases in basic attention (as measured by P300 response amplitude) and cognitive processing (as measured by contextual N400 response amplitude). These objective cognitive improvements corresponded with TG's self-reported improvements, including a noteworthy and consistent reduction in ongoing symptoms of post-traumatic stress disorder (PTSD). The findings provide valuable insight into the potential importance of non-invasive neuromodulation in cognitive rehabilitation, in addition to initial indications for physical rehabilitation.
Collapse
Affiliation(s)
- Shaun D. Fickling
- Centre for Neurology Studies, HealthTech Connex Inc., Vancouver, BC, Canada
- BrainNET, Health and Technology District, Vancouver, BC, Canada
- Applied Sciences and Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Trevor Greene
- Centre for Neurology Studies, HealthTech Connex Inc., Vancouver, BC, Canada
- BrainNET, Health and Technology District, Vancouver, BC, Canada
| | - Debbie Greene
- Centre for Neurology Studies, HealthTech Connex Inc., Vancouver, BC, Canada
- BrainNET, Health and Technology District, Vancouver, BC, Canada
| | - Zack Frehlick
- Centre for Neurology Studies, HealthTech Connex Inc., Vancouver, BC, Canada
- BrainNET, Health and Technology District, Vancouver, BC, Canada
| | - Natasha Campbell
- Centre for Neurology Studies, HealthTech Connex Inc., Vancouver, BC, Canada
- BrainNET, Health and Technology District, Vancouver, BC, Canada
| | - Tori Etheridge
- Centre for Neurology Studies, HealthTech Connex Inc., Vancouver, BC, Canada
- BrainNET, Health and Technology District, Vancouver, BC, Canada
| | - Christopher J. Smith
- Centre for Neurology Studies, HealthTech Connex Inc., Vancouver, BC, Canada
- BrainNET, Health and Technology District, Vancouver, BC, Canada
| | - Fabio Bollinger
- Centre for Neurology Studies, HealthTech Connex Inc., Vancouver, BC, Canada
- BrainNET, Health and Technology District, Vancouver, BC, Canada
| | - Yuri Danilov
- Department of Kinesiology, University of Wisconsin-Madison, Madison, AL, United States
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Rowena Rizzotti
- Centre for Neurology Studies, HealthTech Connex Inc., Vancouver, BC, Canada
- BrainNET, Health and Technology District, Vancouver, BC, Canada
- Centre of Excellence in Mental and Physical Rehabilitation, Legion Veteran’s Village, Surrey, BC, Canada
| | - Ashley C. Livingstone
- Centre for Neurology Studies, HealthTech Connex Inc., Vancouver, BC, Canada
- BrainNET, Health and Technology District, Vancouver, BC, Canada
| | - Bimal Lakhani
- Centre for Neurology Studies, HealthTech Connex Inc., Vancouver, BC, Canada
- BrainNET, Health and Technology District, Vancouver, BC, Canada
| | - Ryan C. N. D’Arcy
- Centre for Neurology Studies, HealthTech Connex Inc., Vancouver, BC, Canada
- BrainNET, Health and Technology District, Vancouver, BC, Canada
- Applied Sciences and Sciences, Simon Fraser University, Vancouver, BC, Canada
- Centre for Brain Health (Radiology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Clinically-derived vagus nerve stimulation enhances cerebrospinal fluid penetrance. Brain Stimul 2020; 13:1024-1030. [DOI: 10.1016/j.brs.2020.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/07/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
|
27
|
Suzuki T, Waki H, Imai K, Hisajima T. Electroacupuncture of the Ophthalmic Branch of the Trigeminal Nerve: Effects on Prefrontal Cortex Blood Flow. Med Acupunct 2020; 32:143-149. [PMID: 32595821 DOI: 10.1089/acu.2019.1406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: The current authors observed enhanced cerebral blood flow (CBF) in the prefrontal cortex (PFC) in response to 100-Hz electroacupuncture (EA) stimulation of the ophthalmic branch of the trigeminal nerve. However, it is not yet clear if responsiveness to 100-Hz EA depends on stimulus intensity. This study examined the effects of stimulus strength on PFC CBF during 100-Hz EA of the ophthalmic branch of the trigeminal nerve. Materials and Methods: Twelve subjects underwent 3 acupuncture sessions: I, control, no stimulation; II, 0.1 mA EA; and III, 0.2 mA EA). Needles were inserted 1 cm lateral of the head median line; the anterior insertion point was on the front hairline and the posterior insertion point was ∼7 cm behind the hairline. Stimulation frequency was set to 100-Hz. PFC CBF was measured in terms of oxygenated, deoxygenated, and total hemoglobin (OxyHb, DeoxyHb, TotalHb, respectively), using 16-channel (Ch) near-infrared spectroscopy. Results: Stimulation of 0.2 mA was associated with significant elevation of OxyHb levels in the 0.1 mA condition in Chs 6, 10, and 12. Ch 2-6, 10, 12 signals were notably higher than in the control condition. Stimulation of 0.2 mA and 0.1 mA were associated with significant declines in DeoxyHb levels, compared to the control condition in Ch 4. Finally, 0.2 mA stimulation in Chs 12 and 13 was associated with significant elevation of TotalHb levels in the control condition. Conclusions: Using 0.2-mA stimulation, 100-Hz EA of the ophthalmic nerve enhances PFC CBF more strongly than 0.1-mA stimulation.
Collapse
Affiliation(s)
- Takuya Suzuki
- Graduate School of Health Sciences, Teikyo Heisei University, Toshima-ku, Tokyo, Japan
| | - Hideaki Waki
- Faculty of Health Care, Teikyo Heisei University, Toshima-ku, Tokyo, Japan.,Research Institute of Oriental Medicine, Toshima-ku, Tokyo, Japan
| | - Kenji Imai
- Faculty of Health Care, Teikyo Heisei University, Toshima-ku, Tokyo, Japan.,Research Institute of Oriental Medicine, Toshima-ku, Tokyo, Japan
| | - Tatsuya Hisajima
- Faculty of Health Care, Teikyo Heisei University, Toshima-ku, Tokyo, Japan.,Research Institute of Oriental Medicine, Toshima-ku, Tokyo, Japan
| |
Collapse
|
28
|
Panneton WM, Gan Q. The Mammalian Diving Response: Inroads to Its Neural Control. Front Neurosci 2020; 14:524. [PMID: 32581683 PMCID: PMC7290049 DOI: 10.3389/fnins.2020.00524] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
The mammalian diving response (DR) is a remarkable behavior that was first formally studied by Laurence Irving and Per Scholander in the late 1930s. The DR is called such because it is most prominent in marine mammals such as seals, whales, and dolphins, but nevertheless is found in all mammals studied. It consists generally of breathing cessation (apnea), a dramatic slowing of heart rate (bradycardia), and an increase in peripheral vasoconstriction. The DR is thought to conserve vital oxygen stores and thus maintain life by directing perfusion to the two organs most essential for life-the heart and the brain. The DR is important, not only for its dramatic power over autonomic function, but also because it alters normal homeostatic reflexes such as the baroreceptor reflex and respiratory chemoreceptor reflex. The neurons driving the reflex circuits for the DR are contained within the medulla and spinal cord since the response remains after the brainstem transection at the pontomedullary junction. Neuroanatomical and physiological data suggesting brainstem areas important for the apnea, bradycardia, and peripheral vasoconstriction induced by underwater submersion are reviewed. Defining the brainstem circuit for the DR may open broad avenues for understanding the mechanisms of suprabulbar control of autonomic function in general, as well as implicate its role in some clinical states. Knowledge of the proposed diving circuit should facilitate studies on elite human divers performing breath-holding dives as well as investigations on sudden infant death syndrome (SIDS), stroke, migraine headache, and arrhythmias. We have speculated that the DR is the most powerful autonomic reflex known.
Collapse
Affiliation(s)
- W. Michael Panneton
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Qi Gan
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
29
|
Cuoco JA, Guilliams EL, Rogers CM, Patel BM, Marvin EA. Recurrent Cerebral Vasospasm and Delayed Cerebral Ischemia Weeks Subsequent to Elective Clipping of an Unruptured Middle Cerebral Artery Aneurysm. World Neurosurg 2020; 141:52-58. [PMID: 32492543 DOI: 10.1016/j.wneu.2020.05.235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Cerebral vasospasm and delayed ischemic neurologic deficits are well-known clinical aftereffects of subarachnoid hemorrhage due to rupture of an intracranial aneurysm. However, vasospasm with consequential ischemia after clipping of an unruptured aneurysm is an exceedingly rare sequela encountered in the reported neurosurgical literature. CASE DESCRIPTION A 53-year-old woman had presented for elective craniotomy with microsurgical clipping of an unruptured left middle cerebral artery bifurcation saccular aneurysm, which was successfully treated without complications. Despite an initially benign clinical course, she experienced diffuse vasospasm with profound ischemic neurologic deficits on postoperative day 13 with a left middle cerebral artery distribution ischemic infarct. Moreover, she developed recurrent delayed spasm of the right posterior cerebral artery on postoperative day 26 and, consequentially, a left homonymous hemianopsia despite treatment with intra-arterial verapamil infusion. CONCLUSIONS To the best of our knowledge, we have reported the first case of recurrent cerebral vasospasm and delayed ischemia neurologic deficits weeks subsequent to clipping of an unruptured aneurysm. The findings from the present case highlight the importance of considering delayed vasospasm as a cause of acute onset neurologic symptoms for patients who have recently undergone elective aneurysm surgery. We also reviewed the current data regarding the epidemiology, surgical factors, and proposed pathophysiologic mechanisms related to vasospasm after elective cases.
Collapse
Affiliation(s)
- Joshua A Cuoco
- Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
| | - Evin L Guilliams
- Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Cara M Rogers
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Biraj M Patel
- Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; Division of Neurointerventional Surgery, Department of Radiology, Carilion Clinic, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Eric A Marvin
- Section of Neurosurgery, Carilion Clinic, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
30
|
Bahr-Hosseini M, Saver JL. Mechanisms of action of acute and subacute sphenopalatine ganglion stimulation for ischemic stroke. Int J Stroke 2020; 15:839-848. [PMID: 32326842 DOI: 10.1177/1747493020920739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Sphenopalatine ganglion stimulation (SPG-Stim) for ischemic stroke, starting 8-24 h after onset and continuing through five days in a pooled analysis of two recent, randomized, sham-controlled trials, improved outcome of acute ischemic stroke patients with confirmed cortical involvement. As a neuromodulatory therapy, SPG-Stim differs substantially from existing pharmacologic (lytic and antiplatelets) and device (endovascular thrombectomy) acute ischemic stroke treatments. AIM Focused review of SPG anatomy, physiology, and neurovascular and neurobiologic mechanisms of action mediating benefit of SPG-Stim in acute ischemic stroke. SUMMARY OF REVIEW Located posterior to the maxillary sinus, the SPG is the main source of parasympathetic innervation to the anterior circulation. Preclinical and human studies delineate four distinct mechanisms of action by which the SPG-Stim may confer benefit in acute ischemic stroke: (1) collateral vasodilation and enhanced cerebral blood flow, mediated by release of neurotransmitters with vasodilatory effects, nitric oxide, and acetylcholine, (2) stimulation frequency- and intensity-dependent stabilization of the blood-brain barrier, reducing edema (3) direct acute neuroprotection from activation of the central cholinergic system with resulting anti-inflammatory, anti-apoptotic, and anti-excitatory effects; and (4) neuroplasticity enhancement from enhanced central cholinergic and adrenergic neuromodulation of cortical networks and nitrous oxide release stimulating neurogenesis. CONCLUSION The benefit of SPG-Stim in acute ischemic stroke is likely conferred not only by potent collateral augmentation, but also blood-barrier stabilization, direct neuroprotection, and neuroplasticity enhancement. Further studies clarifying the relative contribution of these mechanisms and the stimulation protocols that maximize each may help optimize SPG-Stim as a therapy for acute ischemic stroke.
Collapse
Affiliation(s)
- Mersedeh Bahr-Hosseini
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at 8783UCLA, Los Angeles, CA, USA
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at 8783UCLA, Los Angeles, CA, USA
| |
Collapse
|
31
|
Bain AR, Secher NH, Bailey DM. To survive a dive; cerebral oxygen delivery and our aquatic heritage. Exp Physiol 2020; 105:925-927. [PMID: 32189397 DOI: 10.1113/ep088612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Anthony R Bain
- Faculty of Human Kinetics, University of Windsor, Windsor, ON, Canada
| | - Niels H Secher
- Department of Anesthesia, Rigshospitalet, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| |
Collapse
|
32
|
AlSalahi SE, Braz ID, Ahmed A, Junejo RT, Fisher JP. Human cerebrovascular responses to diving are not related to facial cooling. Exp Physiol 2020; 105:940-949. [PMID: 32162738 DOI: 10.1113/ep087529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/24/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does facial cooling-mediated stimulation of cutaneous trigeminal afferents associated with the diving response increase cerebral blood flow or are factors associated with breath-holding (e.g. arterial carbon dioxide accumulation, pressor response) more important in humans? What is the main finding and its importance? Physiological factors associated with breath-holding such as arterial carbon dioxide accumulation and the pressor response, but not facial cooling (trigeminal nerve stimulation), make the predominant contribution to diving response-mediated increases in cerebral blood flow in humans. ABSTRACT Diving evokes a pattern of physiological responses purported to preserve oxygenated blood delivery to vital organs such as the brain. We sought to uncouple the effects of trigeminal nerve stimulation on cerebral blood flow (CBF) from other modifiers associated with the diving response, such as apnoea and changes in arterial carbon dioxide tension. Thirty-seven young healthy individuals participated in separate trials of facial cooling (FC, 3 min) and cold pressor test (CPT, 3 min) under poikilocapnic (Protocol 1) and isocapnic conditions (Protocol 2), facial cooling while either performing a breath-hold (FC +BH) or breathing spontaneously for a matched duration (FC -BH) (Protocol 3), and BH during facial cooling (BH +FC) or without facial cooling (BH -FC) (Protocol 4). Under poikilocapnic conditions neither facial cooling nor CPT evoked a change in middle cerebral artery blood flow velocity (MCA vmean ; transcranial Doppler) (P > 0.05 vs. baseline). Under isocapnic conditions, facial cooling did not change MCA vmean (P > 0.05), whereas CPT increased MCA vmean by 13% (P < 0.05). Facial cooling with a concurrent BH markedly increased MCA vmean (Δ23%) and internal carotid artery blood flow (ICAQ ; duplex Doppler ultrasound) (Δ26%) (P < 0.001), but no change in MCA vmean and ICAQ was observed when facial cooling was accompanied by spontaneous breathing (P > 0.05). Finally, MCA vmean and ICAQ were similarly increased by BH either with or without facial cooling. These findings suggest that physiological factors associated with BH, and not facial cooling (i.e. trigeminal nerve stimulation) per se, make the predominant contribution to increases in CBF during diving in humans.
Collapse
Affiliation(s)
- Sultan E AlSalahi
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Igor D Braz
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.,University Center of Volta Redonda, Volta Redonda, Rio de Janeiro, Brazil
| | - Amar Ahmed
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Rehan T Junejo
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - James P Fisher
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Tyler M, Skinner K, Prabhakaran V, Kaczmarek K, Danilov Y. Translingual Neurostimulation for the Treatment of Chronic Symptoms Due to Mild-to-Moderate Traumatic Brain Injury. Arch Rehabil Res Clin Transl 2019; 1:100026. [PMID: 33543056 PMCID: PMC7853385 DOI: 10.1016/j.arrct.2019.100026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To compare the efficacy of high- and low-frequency noninvasive translingual neurostimulation (TLNS) plus targeted physical therapy (PT) for treating chronic balance and gait deficits due to mild-to-moderate traumatic brain injury (mmTBI). DESIGN Participants were randomized 1:1 in a 26-week double-blind phase 1/2 study (NCT02158494) with 3 consecutive treatment stages: in-clinic, at-home, and no treatment. Arms were high-frequency pulse (HFP) and low-frequency pulse (LFP) TLNS. SETTING TLNS plus PT training was initiated in-clinic and then continued at home. PARTICIPANTS Participants (N=44; 18-65y) from across the United States were randomized into the HFP and LFP (each plus PT) arms. Forty-three participants (28 women, 15 men) completed at least 1 stage of the study. Enrollment requirements included an mmTBI ≥1 year prior to screening, balance disorder due to mmTBI, a plateau in recovery with current PT, and a Sensory Organization Test (SOT) score ≥16 points below normal. INTERVENTIONS Participants received TLNS (HFP or LFP) plus PT for a total of 14 weeks (2 in-clinic and 12 at home), twice daily, followed by 12 weeks without treatment. MAIN OUTCOME MEASURES The primary endpoint was change in SOT composite score from baseline to week 14. Secondary variables (eg, Dynamic Gait Index [DGI], 6-minute walk test [6MWT]) were also collected. RESULTS Both arms had a significant (P<.0001) improvement in SOT scores from baseline at weeks 2, 5, 14 (primary endpoint), and 26. DGI scores had significant improvement (P<.001-.01) from baseline at the same test points; 6MWT evaluations after 2 weeks were significant. The SOT, DGI, and 6MWT scores did not significantly differ between arms at any test point. There were no treatment-related serious adverse events. CONCLUSIONS Both the HFP+PT and LFP+PT groups had significantly improved balance scores, and outcomes were sustained for 12 weeks after discontinuing TLNS treatment. Results between arms did not significantly differ from each other. Whether the 2 dosages are equally effective or whether improvements are because of provision of PT cannot be conclusively established at this time.
Collapse
Key Words
- 6MWT, 6-minute walk test
- AE, adverse event
- ANOVA, analysis of variance
- Balance
- DGI, Dynamic Gait Index
- Facial nerve
- Gait
- HFP, high-frequency pulse
- ITP, in-clinic training program
- LFP, low-frequency pulse
- Neurostimulation
- PSQI, Pittsburgh Sleep Quality Index
- PT, physical therapy
- PoNS, portable neuromodulation stimulator
- Rehabilitation
- SOT, Sensory Organization Test
- TBI, traumatic brain injury
- TLNS, translingual neurostimulation
- Trigeminal nerve
- mmTBI, mild-to-moderate traumatic brain injury
Collapse
Affiliation(s)
- Mitchell Tyler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kim Skinner
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kurt Kaczmarek
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Yuri Danilov
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
34
|
Bouton CE. Restoring Movement in Paralysis with a Bioelectronic Neural Bypass Approach: Current State and Future Directions. Cold Spring Harb Perspect Med 2019; 9:a034306. [PMID: 30745288 PMCID: PMC6824398 DOI: 10.1101/cshperspect.a034306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bioelectronic medicine is a rapidly growing field that explores targeted neuromodulation in new treatment options addressing both disease and injury. New bioelectronic methods are being developed to monitor and modulate neural activity directly. The therapeutic benefit of these approaches has been validated in recent clinical studies in various conditions, including paralysis. By using decoding and modulation strategies together, it is possible to restore lost function to those living with paralysis and other debilitating conditions by interpreting and rerouting signals around the affected portion of the nervous system. This, in effect, creates a bioelectronic "neural bypass" to serve the function of the damaged/degenerated network. By learning the language of neurons and using neural interface technology to tap into critical networks, new approaches to repairing or restoring function in areas impacted by disease or injury may become a reality.
Collapse
Affiliation(s)
- Chad E Bouton
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| |
Collapse
|
35
|
Chowdhury T, Sternberg Z, Golanov E, Gelpi R, Rosemann T, Schaller BJ. Photic sneeze reflex: another variant of the trigeminocardiac reflex? FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2019-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photic sneeze reflex (PSR) is a condition of uncontrollable sneezing episodes in response to bright light. This reflex often manifests as a mild phenomenon but may cause devastating consequences in some situations (aeroplane pilots, car drivers, etc.). Its exact mechanism is poorly understood. Interestingly, the roles of the fifth and tenth cranial nerves, brainstem nuclei and inciting patterns closely mimic a well-known brainstem reflex, known as the trigeminocardiac reflex (TCR). In this critical review, we hypothesize that the PSR can be a variant of the TCR. This concept will lead to a better understanding of the PSR and sharpens the TCR characteristics and open the doors for new research possibilities.
Collapse
Affiliation(s)
- Tumul Chowdhury
- Department of Anaesthesiology & Perioperative Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Zohara Sternberg
- Department of Neurology, Buffalo University of New York, NY, USA
| | - Eugene Golanov
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA & Weill Cornell Medicine, NY, USA
| | - Riccardo Gelpi
- Department of Cardiovascular Pathophysiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Thomas Rosemann
- Department of Primary Care, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
36
|
Powell K, Shah K, Hao C, Wu YC, John A, Narayan RK, Li C. Neuromodulation as a new avenue for resuscitation in hemorrhagic shock. Bioelectron Med 2019; 5:17. [PMID: 32232106 PMCID: PMC7098257 DOI: 10.1186/s42234-019-0033-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
Hemorrhagic shock (HS), a major cause of early death from trauma, accounts for around 40% of mortality, with 33–56% of these deaths occurring before the patient reaches a medical facility. Intravenous fluid therapy and blood transfusions are the cornerstone of treating HS. However, these options may not be available soon after the injury, resulting in death or a poorer quality of survival. Therefore, new strategies are needed to manage HS patients before they can receive definitive care. Recently, various forms of neuromodulation have been investigated as possible supplementary treatments for HS in the prehospital phase of care. Here, we provide an overview of neuromodulation methods that show promise to treat HS, such as vagus nerve stimulation, electroacupuncture, trigeminal nerve stimulation, and phrenic nerve stimulation and outline their possible mechanisms in the treatment of HS. Although all of these approaches are only validated in the preclinical models of HS and are yet to be translated to clinical settings, they clearly represent a paradigm shift in the way that this deadly condition is managed in the future.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY USA
| | - Kevin Shah
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Caleb Hao
- Translational Brain Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY USA
| | - Yi-Chen Wu
- Translational Brain Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY USA
| | - Aashish John
- Translational Brain Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY USA
| | - Chunyan Li
- Translational Brain Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA.,Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| |
Collapse
|
37
|
Bong J, Ness JP, Zeng W, Kim H, Novello J, Pisaniello J, Lake WB, Ludwig KA, Williams JC, Ma Z, Suminski AJ. Flexible, multichannel cuff electrode for selective electrical stimulation of the mouse trigeminal nerve. Biosens Bioelectron 2019; 142:111493. [DOI: 10.1016/j.bios.2019.111493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 01/24/2023]
|
38
|
Central Noradrenergic Agonists in the Treatment of Ischemic Stroke-an Overview. Transl Stroke Res 2019; 11:165-184. [PMID: 31327133 DOI: 10.1007/s12975-019-00718-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/03/2023]
Abstract
Ischemic stroke is the leading cause of morbidity and mortality with a significant health burden worldwide and few treatment options. Among the short- and long-term effects of ischemic stroke is the cardiovascular sympathetic autonomic dysfunction, presented in part as the by-product of the ischemic damage to the noradrenergic centers of the brain. Unlike high levels in the plasma, the brain may face suboptimal levels of norepinephrine (NE), with adverse effects on the clinical and functional outcomes of ischemic stroke. The intravenous administration of NE and other sympathomimetic agents, in an attempt to increase cerebral perfusion pressure, often aggravates the ischemia-induced rise in blood pressure (BP) with life-threatening consequences for stroke patients, the majority of whom present with hypertension at the time of admission. Unlike the systemic administration, the central administration of NE reduces BP while exerting anti-inflammatory and neuroprotective effects. These characteristics of centrally administered NE, combined with the short latency of response, make it an ideal candidate for use in the acute phase of stroke, followed by the use of centrally acting noradrenergic agonists, such as NE reuptake inhibitors and B2-adrenergic receptor agonists for stroke rehabilitation. In addition, a number of nonpharmacological strategies, such as transcutaneous vagus nerve stimulation (tVNS) and trigeminal nerve stimulation (TNS), have the potential to enhance the central noradrenergic functional activities and improve stroke clinical outcomes. Many factors could influence the efficacy of the noradrenergic treatment in stroke patients. These factors include the type of the noradrenergic agent; the dose, frequency, and duration of administration; the timing of administration in relation to the acute event; and the site and characteristics of the ischemic lesions. Having this knowledge, combined with the better understanding of the regulation of noradrenergic receptors in different parts of the brain, would pave the path for the successful use of the centrally acting noradrenergic agents in the management of ischemic stroke.
Collapse
|
39
|
Li C, Chiluwal A, Afridi A, Chaung W, Powell K, Yang WL, Wang P, Narayan RK. Trigeminal Nerve Stimulation: A Novel Method of Resuscitation for Hemorrhagic Shock. Crit Care Med 2019; 47:e478-e484. [PMID: 30889027 DOI: 10.1097/ccm.0000000000003735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine if trigeminal nerve stimulation can ameliorate the consequences of acute blood loss and improve survival after severe hemorrhagic shock. DESIGN Animal study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS Severe hemorrhagic shock was induced in rats by withdrawing blood until the mean arterial blood pressure reached 27 ± 1 mm Hg for the first 5 minutes and then maintained at 27 ± 2 mm Hg for 30 minutes. The rats were randomly assigned to either control, vehicle, or trigeminal nerve stimulation treatment groups. The effects of trigeminal nerve stimulation on survival rate, autonomic nervous system activity, hemodynamics, brain perfusion, catecholamine release, and systemic inflammation after severe hemorrhagic shock in the absence of fluid resuscitation were analyzed. MEASUREMENTS AND MAIN RESULTS Trigeminal nerve stimulation significantly increased the short-term survival of rats following severe hemorrhagic shock in the absence of fluid resuscitation. The survival rate at 60 minutes was 90% in trigeminal nerve stimulation treatment group whereas 0% in control group (p < 0.001). Trigeminal nerve stimulation elicited strong synergistic coactivation of the sympathetic and parasympathetic nervous system as measured by heart rate variability. Without volume expansion with fluid resuscitation, trigeminal nerve stimulation significantly attenuated sympathetic hyperactivity paralleled by increase in parasympathetic tone, delayed hemodynamic decompensation, and improved brain perfusion following severe hemorrhagic shock. Furthermore, trigeminal nerve stimulation generated sympathetically mediated low-frequency oscillatory patterns of systemic blood pressure associated with an increased tolerance to central hypovolemia and increased levels of circulating norepinephrine levels. Trigeminal nerve stimulation also decreased systemic inflammation compared with the vehicle. CONCLUSIONS Trigeminal nerve stimulation was explored as a novel resuscitation strategy in an animal model of hemorrhagic shock. The results of this study showed that the stimulation of trigeminal nerve modulates both sympathetic and parasympathetic nervous system activity to activate an endogenous pressor response, improve cerebral perfusion, and decrease inflammation, thereby improving survival.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Amrit Chiluwal
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Adil Afridi
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Wayne Chaung
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Keren Powell
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Weng-Lang Yang
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Raj K Narayan
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| |
Collapse
|
40
|
Fan S, Wu X, Xie M, Li X, Liu C, Su Y, Chen Y, Wu S, Ma C. Trigeminal nerve stimulation successfully awakened an unconscious patient. Brain Stimul 2019; 12:361-363. [DOI: 10.1016/j.brs.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 11/24/2022] Open
|
41
|
Mercante B, Ginatempo F, Manca A, Melis F, Enrico P, Deriu F. Anatomo-Physiologic Basis for Auricular Stimulation. Med Acupunct 2018; 30:141-150. [PMID: 29937968 DOI: 10.1089/acu.2017.1254] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction: Stimulation of cranial nerves modulates central nervous system (CNS) activity via the extensive connections of their brainstem nuclei to higher-order structures. Clinical experience with vagus-nerve stimulation (VNS) demonstrates that it produces robust therapeutic effects, however, posing concerns related to its invasiveness and side-effects. Discussion: Trigeminal nerve stimulation (TNS) has been recently proposed as a valid alternative to VNS. The ear presents afferent vagus and trigeminal-nerve distribution; its innervation is the theoretical basis of different reflex therapies, including auriculotherapy. An increasing number of studies have shown that several therapeutic effects induced by invasive VNS and TNS, can be reproduced by noninvasive auricular-nerve stimulation. However, the sites and neurobiologic mechanisms by which VNS and TNS produce their therapeutic effects are not clear yet. Conclusions: Accumulating evidence suggests that VNS and TNS share multiple levels and mechanisms of action in the CNS.
Collapse
Affiliation(s)
- Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari Italy
| | - Francesca Ginatempo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari Italy
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari Italy
| | - Francesco Melis
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari Italy
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari Italy
| |
Collapse
|