1
|
Li Q, Wang Y, Guo Q, Cao J, Feng Y, Ke X. Nanostructured lipid carriers promote percutaneous absorption and hair follicle targeting of tofacitinib for treating alopecia areata. J Control Release 2024; 372:778-794. [PMID: 38936744 DOI: 10.1016/j.jconrel.2024.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Alopecia areata affects over 140 million people worldwide and causes severe psychological distress. The Janus kinase (JAK) inhibitor, tofacitinib, shows significant potential in therapeutic applications for treating alopecia areata; however, the systemic adverse effects of oral administration and low absorption rate at the target site limit its application. Hence, to address this issue, we designed topical formulations of tofacitinib-loaded cationic lipid nanoparticles (TFB-cNLPs) with particle sizes of approximately 200 nm. TFB-cNLPs promoted percutaneous absorption and hair follicle targeting in an ex vivo pig ear model. TFB-cNLP decreased IFN-γ-induced alopecia areata symptoms in an in vitro follicle model by blocking the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. It also reduced the number of CD8+NKG2D+T cells in a C3H mouse model of alopecia areata in vivo, thereby inhibiting the progression of alopecia areata and reversing hair loss. These findings suggest that TFB-cNLP enhanced hair follicle targeting and has the potential for topical treatment or prevention of alopecia areata.
Collapse
Affiliation(s)
- Qibin Li
- China Pharmaceutical University, Department of Pharmaceutics, 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Yameng Wang
- China Pharmaceutical University, Department of Pharmaceutics, 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Qing Guo
- China Pharmaceutical University, Department of Pharmaceutics, 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Jie Cao
- China Pharmaceutical University, Department of Pharmaceutics, 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Yangjun Feng
- China Pharmaceutical University, Department of Pharmaceutics, 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Xue Ke
- China Pharmaceutical University, Department of Pharmaceutics, 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
2
|
Salazar A, von Hagen J. Circadian Oscillations in Skin and Their Interconnection with the Cycle of Life. Int J Mol Sci 2023; 24:ijms24065635. [PMID: 36982706 PMCID: PMC10051430 DOI: 10.3390/ijms24065635] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Periodically oscillating biological processes, such as circadian rhythms, are carefully concerted events that are only beginning to be understood in the context of tissue pathology and organismal health, as well as the molecular mechanisms underlying these interactions. Recent reports indicate that light can independently entrain peripheral circadian clocks, challenging the currently prevalent hierarchical model. Despite the recent progress that has been made, a comprehensive overview of these periodic processes in skin is lacking in the literature. In this review, molecular circadian clock machinery and the factors that govern it have been highlighted. Circadian rhythm is closely linked to immunological processes and skin homeostasis, and its desynchrony can be linked to the perturbation of the skin. The interplay between circadian rhythm and annual, seasonal oscillations, as well as the impact of these periodic events on the skin, is described. Finally, the changes that occur in the skin over a lifespan are presented. This work encourages further research into the oscillating biological processes occurring in the skin and lays the foundation for future strategies to combat the adverse effects of desynchrony, which would likely have implications in other tissues influenced by periodic oscillatory processes.
Collapse
Affiliation(s)
- Andrew Salazar
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
- Correspondence:
| | - Jörg von Hagen
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
- Department of Life Science Engineering, University Applied Sciences, Wiesenstrasse 14, 35390 Gießen, Germany
- ryon—GreenTech Accelerator Gernsheim GmbH, Mainzer Str. 41, 64579 Gernsheim, Germany
| |
Collapse
|
3
|
Sato R, Kanai M, Yoshida Y, Fukushima S, Nogami M, Yamaguchi T, Iijima N, Sutherland K, Haga S, Ozaki M, Hamada K, Hamada T. Analysis of the Anticipatory Behavior Formation Mechanism Induced by Methamphetamine Using a Single Hair. Cells 2023; 12:cells12040654. [PMID: 36831320 PMCID: PMC9954696 DOI: 10.3390/cells12040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
While the suprachiasmatic nucleus (SCN) coordinates many daily rhythms, some circadian patterns of expression are controlled by SCN-independent systems. These include responses to daily methamphetamine (MAP) injections. Scheduled daily injections of MAP resulted in anticipatory activity, with an increase in locomotor activity immediately prior to the time of injection. The MAP-induced anticipatory behavior is associated with the induction and a phase advance in the expression rhythm of the clock gene Period1 (Per1). However, this unique formation mechanism of MAP-induced anticipatory behavior is not well understood. We recently developed a micro-photomultiplier tube (micro-PMT) system to detect a small amount of Per1 expression. In the present study, we used this system to measure the formation kinetics of MAP-induced anticipatory activity in a single whisker hair to reveal the underlying mechanism. Our results suggest that whisker hairs respond to daily MAP administration, and that Per1 expression is affected. We also found that elevated Per1 expression in a single whisker hair is associated with the occurrence of anticipatory behavior rhythm. The present results suggest that elevated Per1 expression in hairs might be a marker of anticipatory behavior formation.
Collapse
Affiliation(s)
- Riku Sato
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Megumi Kanai
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Yukina Yoshida
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Shiori Fukushima
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Masahiro Nogami
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Takeshi Yamaguchi
- Center for Basic Medical Research, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Norio Iijima
- Center for Basic Medical Research, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Kenneth Sutherland
- Global Center for Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8012, Japan
| | - Sanae Haga
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kazuko Hamada
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
| | - Toshiyuki Hamada
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Hakujikai Institute of Gerontology, 5-11-1, Shikahama, Adachi Ward, Tokyo 123-0864, Japan
- Correspondence: ; Tel.: +81-287-24-3481
| |
Collapse
|
4
|
Liu LP, Li MH, Zheng YW. Hair Follicles as a Critical Model for Monitoring the Circadian Clock. Int J Mol Sci 2023; 24:2407. [PMID: 36768730 PMCID: PMC9916850 DOI: 10.3390/ijms24032407] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/30/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Clock (circadian) genes are heterogeneously expressed in hair follicles (HFs). The genes can be modulated by both the central circadian system and some extrinsic factors, such as light and thyroid hormones. These circadian genes participate in the regulation of several physiological processes of HFs, including hair growth and pigmentation. On the other hand, because peripheral circadian genes are synchronized with the central clock, HFs could provide a noninvasive and practical method for monitoring and evaluating multiple circadian-rhythm-related conditions and disorders among humans, including day and night shifts, sleep-wake disorders, physical activities, energy metabolism, and aging. However, due to the complexity of circadian biology, understanding how intrinsic oscillation operates using peripheral tissues only may be insufficient. Combining HF sampling with multidimensional assays such as detection of body temperature, blood samples, or certain validated questionnaires may be helpful in improving HF applications. Thus, HFs can serve as a critical model for monitoring the circadian clock and can help provide an understanding of the potential mechanisms of circadian-rhythm-related conditions; furthermore, chronotherapy could support personalized treatment scheduling based on the gene expression profile expressed in HFs.
Collapse
Affiliation(s)
- Li-Ping Liu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
| | - Meng-Huan Li
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama 234-0006, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
5
|
Kudlova N, Slavik H, Duskova P, Furst T, Srovnal J, Bartek J, Mistrik M, Hajduch M. An efficient, non-invasive approach for in-vivo sampling of hair follicles: design and applications in monitoring DNA damage and aging. Aging (Albany NY) 2021; 13:25004-25024. [PMID: 34874896 PMCID: PMC8714131 DOI: 10.18632/aging.203744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/22/2021] [Indexed: 01/05/2023]
Abstract
In accordance with the 3 Rs principle (to replace, reduce and refine) animal models in biomedical research, we have developed and applied a new approach for sampling and analyzing hair follicles in various experimental settings. This involves use of a convenient device for non-invasive collection of hair follicles and processing methods that provide sufficient amounts of biological material to replace stressful and painful biopsies. Moreover, the main components of hair follicles are live cells of epithelial origin, which are highly relevant for most types of malignant tumors, so they provide opportunities for studying aging-related pathologies including cancer. Here, we report the successful use of the method to obtain mouse hair follicular cells for genotyping, quantitative PCR, and quantitative immunofluorescence. We present proof of concept data demonstrating its utility for routine genotyping and monitoring changes in quality and expression levels of selected proteins in mice after gamma irradiation and during natural or experimentally induced aging. We also performed pilot translation of animal experiments to human hair follicles irradiated ex vivo. Our results highlight the value of hair follicles as biological material for convenient in vivo sampling and processing in both translational research and routine applications, with a broad range of ethical and logistic advantages over currently used biopsy-based approaches.
Collapse
Affiliation(s)
- Natalie Kudlova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Hanus Slavik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Pavlina Duskova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Tomas Furst
- Faculty of Science, Palacky University and University Hospital in Olomouc, Olomouc 779 00, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc 779 00, Czech Republic.,Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark.,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm 171 77, Sweden
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc 779 00, Czech Republic
| |
Collapse
|
6
|
The Impact of the Circadian Clock on Skin Physiology and Cancer Development. Int J Mol Sci 2021; 22:ijms22116112. [PMID: 34204077 PMCID: PMC8201366 DOI: 10.3390/ijms22116112] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Skin cancers are growing in incidence worldwide and are primarily caused by exposures to ultraviolet (UV) wavelengths of sunlight. UV radiation induces the formation of photoproducts and other lesions in DNA that if not removed by DNA repair may lead to mutagenesis and carcinogenesis. Though the factors that cause skin carcinogenesis are reasonably well understood, studies over the past 10–15 years have linked the timing of UV exposure to DNA repair and skin carcinogenesis and implicate a role for the body’s circadian clock in UV response and disease risk. Here we review what is known about the skin circadian clock, how it affects various aspects of skin physiology, and the factors that affect circadian rhythms in the skin. Furthermore, the molecular understanding of the circadian clock has led to the development of small molecules that target clock proteins; thus, we discuss the potential use of such compounds for manipulating circadian clock-controlled processes in the skin to modulate responses to UV radiation and mitigate cancer risk.
Collapse
|
7
|
Nishida A, Miyawaki Y, Node K, Akashi M. Ex vivo Culture Assay Using Human Hair Follicles to Study Circadian Characteristics. Bio Protoc 2020; 10:e3638. [PMID: 33659309 DOI: 10.21769/bioprotoc.3638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 11/02/2022] Open
Abstract
Ex vivo culture assays of biopsy specimens are advantageous for the experimental evaluation of human circadian characteristics. We developed a simple and non-invasive experimental evaluation method for monitoring the expression of circadian clock genes in an ex vivo culture assay using human hair follicles. This method imposes little burden on subjects. This assay is useful for validating correlations between circadian characteristics in hair follicles and intrinsic characteristics observed in physiological and behavioral studies. While they should be further validated, this ex vivo method constitutes a useful tool for estimating in vivo circadian characteristics.
Collapse
Affiliation(s)
- Atsuhiro Nishida
- The Research Institute for Time Studies, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Yoshiki Miyawaki
- The Research Institute for Time Studies, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Nabeshima, Saga, Japan
| | - Makoto Akashi
- The Research Institute for Time Studies, Yamaguchi University, Yoshida, Yamaguchi, Japan
| |
Collapse
|
8
|
Benitah SA, Welz PS. Circadian Regulation of Adult Stem Cell Homeostasis and Aging. Cell Stem Cell 2020; 26:817-831. [DOI: 10.1016/j.stem.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Ahmed R, Ashimori A, Iwamoto S, Matsui T, Nakahata Y, Bessho Y. Replicative senescent human cells possess altered circadian clocks with a prolonged period and delayed peak-time. Aging (Albany NY) 2020; 11:950-973. [PMID: 30738414 PMCID: PMC6382424 DOI: 10.18632/aging.101794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/24/2019] [Indexed: 01/16/2023]
Abstract
Over the last decade, a wide array of evidence has been accumulated that disruption of circadian clock is prone to cause age-related diseases and premature aging. On the other hand, aging has been identified as one of the risk factors linked to the alteration of circadian clock. These evidences suggest that the processes of aging and circadian clock feedback on each other at the animal level. However, at the cellular level, we recently revealed that the primary fibroblast cells derived from Bmal1-/- mouse embryo, in which circadian clock is completely disrupted, do not demonstrate the acceleration of cellular aging, i.e., cellular senescence. In addition, little is known about the impact of cellular senescence on circadian clock. In this study, we show for the first time that senescent cells possess a longer circadian period with delayed peak-time and that the variability in peak-time is wider in the senescent cells compared to their proliferative counterparts, indicating that senescent cells show alterations of circadian clock. We, furthermore, propose that investigation at cellular level is a powerful and useful approach to dissect molecular mechanisms of aging in the circadian clock.
Collapse
Affiliation(s)
- Rezwana Ahmed
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Atsushige Ashimori
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Satoshi Iwamoto
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Takaaki Matsui
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| |
Collapse
|
10
|
Welz PS, Benitah SA. Molecular Connections Between Circadian Clocks and Aging. J Mol Biol 2019; 432:3661-3679. [PMID: 31887285 DOI: 10.1016/j.jmb.2019.12.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022]
Abstract
The mammalian circadian clockwork has evolved as a timing system that allows the daily environmental changes to be anticipated so that behavior and tissue physiology can be adjusted accordingly. The circadian clock synchronizes the function of all cells within tissues in order to temporally separate preclusive and potentially harmful physiologic processes and to establish a coherent temporal organismal physiology. Thus, the proper functioning of the circadian clockwork is essential for maintaining cellular and tissue homeostasis. Importantly, aging reduces the robustness of the circadian clock, resulting in disturbed sleep-wake cycles, a lowered capacity to synchronize circadian rhythms in peripheral tissues, and reprogramming of the circadian clock output at the molecular function levels. These circadian clock-dependent behavioral and molecular changes in turn further accelerate the process of aging. Here we review the current knowledge about how aging affects the circadian clock, how the functional decline of the circadian clock affects aging, and how the circadian clock machinery and the molecular processes that underlie aging are intertwined.
Collapse
Affiliation(s)
- Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - S A Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
11
|
de Assis LVM, Moraes MN, Castrucci AMDL. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target? Cell Mol Life Sci 2019; 76:3801-3826. [PMID: 31222374 PMCID: PMC11105295 DOI: 10.1007/s00018-019-03183-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
- School of Health Science, University Anhembi Morumbi, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil.
| |
Collapse
|
12
|
Nishida A, Miyawaki Y, Node K, Akashi M. A Method for Culturing Mouse Whisker Follicles to Study Circadian Rhythms ex vivo. Bio Protoc 2019; 9:e3148. [PMID: 33654893 DOI: 10.21769/bioprotoc.3148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 11/02/2022] Open
Abstract
Ex vivo tissue-culture experiments are often performed in the field of circadian biology. The major aim of these experiments is to evaluate circadian characteristics such as period length at the tissue-autonomous level by monitoring clock gene expression in real time. This culture method is also used to examine the tissue specificity of circadian entrainment factors. However, an ex vivo culture method for monitoring clock gene expression in hair follicles has yet to be established. In the present study, we developed an experimental method to analogize and evaluate circadian characteristics by performing ex vivo culture of mouse whisker follicles and monitoring clock gene expression in real time.
Collapse
Affiliation(s)
- Atsuhiro Nishida
- The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, Japan
| | - Yoshiki Miyawaki
- The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga, Japan
| | - Makoto Akashi
- The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, Japan
| |
Collapse
|
13
|
Kajimoto J, Matsumura R, Node K, Akashi M. Potential role of the pancreatic hormone insulin in resetting human peripheral clocks. Genes Cells 2018; 23:393-399. [PMID: 29644786 DOI: 10.1111/gtc.12582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/04/2018] [Indexed: 12/15/2022]
Abstract
Mammalian circadian rhythms are phase-adjusted and amplified by external cues such as light and food. While the light input pathway via the central clock, the suprachiasmatic nucleus, has been well defined, the mechanism of feeding-induced circadian resetting remains undefined, particularly in humans. Animal studies have indicated that insulin, a pancreatic hormone that is secreted rapidly in response to feeding, is an input factor for a few peripheral clocks, such as liver and adipose tissue. In this study, using plucked and cultured hair follicles as a representative human peripheral clock, we examined the effect of insulin on circadian characteristics of clock gene expression. Our results demonstrate that insulin phase-shifts or amplifies the clock gene expression rhythms of ex vivo cultured hair follicles in a phase-responsive manner. To reduce the possibility that differences in species, genetic or environmental background, and experimental methods affected experimental outcomes, we also treated surgically extracted whisker follicles of Period2::Luciferase (Per2Luc ) mice with insulin and found that the effect of insulin on clock gene expression was reproducible. These results suggest the possibility that feeding-induced insulin resets peripheral circadian clocks in humans.
Collapse
Affiliation(s)
- Jun Kajimoto
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| | - Ritsuko Matsumura
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Makoto Akashi
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|