1
|
Wang X, Li J, Nie J, Huang W, Tang J, Peng Y, Gao Y, Lu R. IL-33 protects retinal structure and function via mTOR/S6 signaling pathway in optic nerve crush. Exp Eye Res 2024; 248:110121. [PMID: 39401556 DOI: 10.1016/j.exer.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
This study demonstrated the functions and molecular mechanisms of the IL-33/ST2 axis in experimental optic neuropathy. C57BL/6J mice were used to establish an optic nerve crush (ONC) model. ONC mice were administered with IL-33 intraperitoneal injection, with PBS vehicle as control. Immunofluorescence, quantitative RT-PCR, and western blot techniques were utilized to assess the expression of the IL-33/ST2 axis. The electroretinography (ERG), optical coherence tomography (OCT), H&E, and luxol fast blue were used to assess the structural and functional changes. Western blot was employed to detect the activation of the mTOR/S6 pathway. The IL-33 expression level in the inner nuclear layer of the retina in ONC mice reached its peak on day 3, accompanied by a significant increase in IL-33 receptor ST2 expression. IL-33 treatment promoted the survival of retinal ganglion cells, restored the thickness of inner retina layer (IRL), alleviated the demyelination of the optic nerve, and recovered the decreased amplitude of b-wave in ONC mice. Furthermore, administration of IL-33 activated the mTOR/S6 signaling pathway in RGCs, which was significantly suppressed in the ONC condition. This study indicated that boosting the IL-33/ST2/mTOR/S6 pathway can protect against structural and functional damage to the retina and optic nerve induced by ONC. As a result, the IL-33/ST2 axis holds potential as a therapeutic option for treating various optic neuropathies.
Collapse
Affiliation(s)
- Xinyue Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jinmiao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiahe Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Weifeng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Junjie Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yue Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Nakamura R, Ciranna NS, Fernández JC, Peláez R, Pérez-Sala Á, Bobadilla M, López-Costa JJ, Loidl CF, Martínez A, Rey-Funes M. Methylene Blue Reduces Electroretinogram Distortion and Ganglion Cell Death in a Rat Model of Glaucoma. Biomedicines 2024; 12:1983. [PMID: 39335498 PMCID: PMC11429023 DOI: 10.3390/biomedicines12091983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma is the second leading cause of blindness worldwide and is, in most cases, a consequence of elevated intraocular pressure (IOP), ultimately resulting in the death of retinal ganglion cells (RGCs). Current treatments are mostly focused on normalizing IOP, but we propose the additional use of neuroprotective agents, including methylene blue (MB), to block the loss of RGCs. Wistar rats were subjected to episcleral vein cauterization (EVC) in the left eye while the right eye was sham-operated. One week later, they were divided into two groups, which were injected with either 2.0 mg/kg MB or phosphate-buffered saline (PBS), twice a day, for 7 days. Fifteen days after surgery, rats were tested with scotopic electroretinography (ERG) or pattern electroretinography (PERG). After sacrifice, the number of RGCs and the thickness of the inner retina (IR) were evaluated both in the peripheral and central areas of the retina. Scotopic ERG showed a marked reduction (p < 0.0001) on the a- and b-wave amplitude and oscillatory potential (OP) complexity of the eyes subjected to EVC. These parameters were significantly (p < 0.01) restored by the application of MB. PERG indicated that EVC was responsible for a very significant decrease in N2 amplitude (p < 0.0001) and prolongation of N2 implicit time (p < 0.0001). Treatment with MB significantly restored N2 amplitude (p < 0.0001). In parallel with the ERG results, morphological analysis showed a significant loss of RGCs (p < 0.0001) and IR thickness (p < 0.0001) in both the peripheral and central retinas subjected to EVC, which was significantly prevented (p < 0.0001) by MB treatment. We have shown that MB treatment can be effective in preventing physiological and morphological hallmarks of optic neuropathy in a model of ocular hypertension, which faithfully recapitulates human open-angle glaucoma. Due to its high safety profile, this drug could therefore represent a new pharmacologic strategy to prevent vision loss in glaucoma patients.
Collapse
Affiliation(s)
- Ronan Nakamura
- Institute of Cell Biology and Neurosciences "Prof. E. De Robertis", Faculty of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Nicolás S Ciranna
- Institute of Cell Biology and Neurosciences "Prof. E. De Robertis", Faculty of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Juan C Fernández
- Institute of Cell Biology and Neurosciences "Prof. E. De Robertis", Faculty of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Miriam Bobadilla
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Juan J López-Costa
- Institute of Cell Biology and Neurosciences "Prof. E. De Robertis", Faculty of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - César F Loidl
- Institute of Cell Biology and Neurosciences "Prof. E. De Robertis", Faculty of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Manuel Rey-Funes
- Institute of Cell Biology and Neurosciences "Prof. E. De Robertis", Faculty of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
3
|
Díaz de Cerio M, Oliván S, Ochoa I, García-Sanmartín J, Martínez A. Cold-shock proteins accumulate in centrosomes and their expression and primary cilium morphology are regulated by hypothermia and shear stress. Histol Histopathol 2024; 39:447-462. [PMID: 37694837 DOI: 10.14670/hh-18-656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Primary cilia act as cellular sensors for multiple extracellular stimuli and regulate many intracellular signaling pathways in response. Here we investigate whether the cold-shock proteins (CSPs), CIRP and RBM3, are present in the primary cilia and the physiological consequences of such a relationship. R28, an immortalized retinal precursor cell line, was stained with antibodies against CIRP, RBM3, and ciliary markers. Both CSPs were found in intimate contact with the basal body of the cilium during all stages of the cell cycle, including migrating with the centrosome during mitosis. In addition, the morphological and physiological manifestations of exposing the cells to hypothermia and shear stress were investigated. Exposure to moderately cold (32°C) temperatures, the hypothermia mimetic small molecule zr17-2, or to shear stress resulted in a significant reduction in the number and length of primary cilia. In addition, shear stress induced expression of CIRP and RBM3 in a complex pattern depending on the specific protein, flow intensity, and type of flow (laminar versus oscillatory). Flow-mediated CSP overexpression was detected by qRT-PCR and confirmed by Western blot, at least for CIRP. Furthermore, analysis of public RNA Seq databases on flow experiments confirmed an increase of CIRP and RBM3 expression following exposure to shear stress in renal cell lines. In conclusion, we found that CSPs are integral components of the centrosome and that they participate in cold and shear stress sensing.
Collapse
Affiliation(s)
- María Díaz de Cerio
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Sara Oliván
- Tissue Microenvironment Lab (TMELab), University of Zaragoza, Aragón Institute of Engineering Research (I3A), Institute for Health Research Aragon (IIS Aragón), Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TMELab), University of Zaragoza, Aragón Institute of Engineering Research (I3A), Institute for Health Research Aragon (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Institute for Health Research Aragon (IIS Aragón), Zaragoza, Spain
| | - Josune García-Sanmartín
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|
4
|
Du Y, Cai M, Mu J, Li X, Song Y, Yuan X, Hua X, Guo S. Type I Collagen-Adhesive and ROS-Scavenging Nanoreactors Enhanced Retinal Ganglion Cell Survival in an Experimental Optic Nerve Crush Model. Macromol Rapid Commun 2023; 44:e2300389. [PMID: 37661804 DOI: 10.1002/marc.202300389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Traumatic optic neuropathy (TON) is a severe condition characterized by retinal ganglion cell (RGC) death, often leading to irreversible vision loss, and the death of RGCs is closely associated with oxidative stress. Unfortunately, effective treatment options for TON are lacking. To address this, catalase (CAT) is encapsulated in a tannic acid (TA)/poly(ethylenimine)-crosslinked hollow nanoreactor (CAT@PTP), which exhibited enhanced anchoring in the retina due to TA-collagen adhesion. The antioxidative activity of both CAT and TA synergistically eliminated reactive oxygen species (ROS) to save RGCs in the retina, thereby treating TON. In vitro experiments demonstrated that the nanoreactors preserve the enzymatic activity of CAT and exhibit high adhesion to type I collagen. The combination of CAT and TA-based nanoreactors enhanced ROS elimination while maintaining high biocompatibility. In an optic nerve crush rat model, CAT@PTP is effectively anchored to the retina via TA-collagen adhesion after a single vitreous injection, and RGCs are significantly preserved without adverse events. CAT@PTP exhibited a protective effect on retinal function. Given the abundance of collagen that exists in ocular tissues, these findings may contribute to the further application of this multifunctional nanoreactor in ocular diseases to improve therapeutic efficacy and reduce adverse effects.
Collapse
Affiliation(s)
- Yuyuan Du
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Maoyu Cai
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Jingqing Mu
- Aier Eye Institute, Changsha, 410015, China
- Tianjin Aier Eye Hospital, Tianjin, 300190, China
| | - Xingwei Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yapeng Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Xia Hua
- Aier Eye Institute, Changsha, 410015, China
- Tianjin Aier Eye Hospital, Tianjin, 300190, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Rey-Funes M, Fernández JC, Peláez R, Soliño M, Contartese DS, Ciranna NS, Nakamura R, Sarotto A, Dorfman VB, Zapico JM, Ramos A, de Pascual-Teresa B, López-Costa JJ, Larrayoz IM, Martínez A, Loidl CF. A hypothermia mimetic molecule (zr17-2) reduces ganglion cell death, gliosis, and electroretinogram distortion in male rats subjected to perinatal asphyxia. Front Pharmacol 2023; 14:1252184. [PMID: 37767403 PMCID: PMC10520548 DOI: 10.3389/fphar.2023.1252184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction: Perinatal asphyxia (PA) represents a major problem in perinatology and may cause visual losses, including blindness. We, and others, have shown that hypothermia prevents retinal symptoms associated to PA. In the present work, we evaluate whether a hypothermia mimetic small molecule, zr17-2, has similar effects in the context of PA. Methods: Four experimental groups were studied in male rats: Naturally born rats as controls (CTL), naturally born rats injected s.c. with 50 µL of 330 nmols/L zr17-2 (ZR), animals that were exposed to PA for 20 min at 37°C (PA), and rats that were exposed to PA and injected with zr17-2 (PA-ZR). Forty-five days after treatment, animals were subjected to electroretinography. In addition, morphological techniques (TUNEL, H&E, multiple immunofluorescence) were applied to the retinas. Results: A reduction in the amplitude of the a- and b-wave and oscillatory potentials (OP) of the electroretinogram (ERG) was detected in PA animals. Treatment with zr17-2 resulted in a significant amelioration of these parameters (p < 0.01). In PA animals, a large number of apoptotic cells was found in the GCL. This number was significantly reduced by treatment with the small molecule (p < 0.0001). In a similar way, the thickness of the inner retina and the intensity of GFAP immunoreactivity (gliosis) increased in PA retinas (p < 0.0001). These parameters were corrected by the administration of zr17-2 (p < 0.0001). Furthermore, injection of the small molecule in the absence of PA did not modify the ERG nor the morphological parameters studied, suggesting a lack of toxicity. Discussion: In conclusion, our results indicate that a single s.c. injection of zr17-2 in asphyctic neonates may provide a novel and efficacious method to prevent the visual sequelae of PA.
Collapse
Affiliation(s)
- Manuel Rey-Funes
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Fernández
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Manuel Soliño
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela S. Contartese
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás S. Ciranna
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ronan Nakamura
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aníbal Sarotto
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica B. Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - José M. Zapico
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Ana Ramos
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Juan José López-Costa
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ignacio M. Larrayoz
- Department of Nursing, Biomarkers, Artificial Intelligence, and Signaling (BIAS), University of La Rioja, Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - César Fabián Loidl
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Contartese DS, Rey-Funes M, Peláez R, Soliño M, Fernández JC, Nakamura R, Ciranna NS, Sarotto A, Dorfman VB, López-Costa JJ, Zapico JM, Ramos A, de Pascual-Teresa B, Larrayoz IM, Loidl CF, Martínez A. A hypothermia mimetic molecule (zr17-2) reduces ganglion cell death and electroretinogram distortion in a rat model of intraorbital optic nerve crush (IONC). Front Pharmacol 2023; 14:1112318. [PMID: 36755945 PMCID: PMC9899795 DOI: 10.3389/fphar.2023.1112318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction: Ocular and periocular traumatisms may result in loss of vision. Our previous work showed that therapeutic hypothermia prevents retinal damage caused by traumatic neuropathy. We also generated and characterized small molecules that elicit the beneficial effects of hypothermia at normal body temperature. Here we investigate whether one of these mimetic molecules, zr17-2, is able to preserve the function of eyes exposed to trauma. Methods: Intraorbital optic nerve crush (IONC) or sham manipulation was applied to Sprague-Dawley rats. One hour after surgery, 5.0 µl of 330 nmol/L zr17-2 or PBS, as vehicle, were injected in the vitreum of treated animals. Electroretinograms were performed 21 days after surgery and a- and b-wave amplitude, as well as oscillatory potentials (OP), were calculated. Some animals were sacrificed 6 days after surgery for TUNEL analysis. All animal experiments were approved by the local ethics board. Results: Our previous studies showed that zr17-2 does not cross the blood-ocular barrier, thus preventing systemic treatment. Here we show that intravitreal injection of zr17-2 results in a very significant prevention of retinal damage, providing preclinical support for its pharmacological use in ocular conditions. As previously reported, IONC resulted in a drastic reduction in the amplitude of the b-wave (p < 0.0001) and OPs (p < 0.05), a large decrease in the number of RGCs (p < 0.0001), and a large increase in the number of apoptotic cells in the GCL and the INL (p < 0.0001). Interestingly, injection of zr17-2 largely prevented all these parameters, in a very similar pattern to that elicited by therapeutic hypothermia. The small molecule was also able to reduce oxidative stress-induced retinal cell death in vitro. Discussion: In summary, we have shown that intravitreal injection of the hypothermia mimetic, zr17-2, significantly reduces the morphological and electrophysiological consequences of ocular traumatism and may represent a new treatment option for this cause of visual loss.
Collapse
Affiliation(s)
- Daniela S Contartese
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Manuel Rey-Funes
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Peláez
- Biomarkers and Molecular Signaling, Neurodegenerative Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Manuel Soliño
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan C Fernández
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ronan Nakamura
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás S Ciranna
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aníbal Sarotto
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Juan J López-Costa
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José M Zapico
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Ana Ramos
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling, Neurodegenerative Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - César F Loidl
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Martínez
- Angiogenesis Group, Center for Biomedical Research of La Rioja, Logroño, Spain
| |
Collapse
|
7
|
Hu Y, Liu Y, Quan X, Fan W, Xu B, Li S. RBM3 is an outstanding cold shock protein with multiple physiological functions beyond hypothermia. J Cell Physiol 2022; 237:3788-3802. [PMID: 35926117 DOI: 10.1002/jcp.30852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
RNA-binding motif protein 3 (RBM3), an outstanding cold shock protein, is rapidly upregulated to ensure homeostasis and survival in a cold environment, which is an important physiological mechanism in response to cold stress. Meanwhile, RBM3 has multiple physiological functions and participates in the regulation of various cellular physiological processes, such as antiapoptosis, circadian rhythm, cell cycle, reproduction, and tumogenesis. The structure, conservation, and tissue distribution of RBM3 in human are demonstrated in this review. Herein, the multiple physiological functions of RBM3 were summarized based on recent research advances. Meanwhile, the cytoprotective mechanism of RBM3 during stress under various adverse conditions and its regulation of transcription were discussed. In addition, the neuroprotection of RBM3 and its oncogenic role and controversy in various cancers were investigated in our review.
Collapse
Affiliation(s)
- Yajie Hu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Yang Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Xin Quan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Wenxuan Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| |
Collapse
|
8
|
Xie F, Li Z, Yang N, Yang J, Hua D, Luo J, He T, Xing Y. Inhibition of Heat Shock Protein B8 Alleviates Retinal Dysfunction and Ganglion Cells Loss Via Autophagy Suppression in Mouse Axonal Damage. Invest Ophthalmol Vis Sci 2022; 63:28. [PMID: 35758906 PMCID: PMC9248752 DOI: 10.1167/iovs.63.6.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose Heat shock protein B8 (HspB8) can be upregulated rapidly in many pathologic processes, but its role in traumatic optic neuropathy remains unclear. In this study, we investigated the involvement of autophagy in the effects of HspB8 by using the optic nerve crush (ONC) model. Methods Male C57BL/6J mice were intravitreally injected with recombinant adeno-associated virus type 2 (AAV2-shHspB8 or AAV2-GFP) and subsequently received ONC by a self-closing tweezers. Western blot and immunohistochemistry staining were used to evaluate the expression of HspB8. We conducted retinal flat-mount immunofluorescence to measure the quantities of retinal ganglion cells (RGCs), and full-field flash electroretinogram (ff-ERG) and optomotor response (OMR) were used to evaluate retinal function. The autophagy level was reflected by western blot, immunohistochemistry staining, and transmission electron microscope (TEM) images. We also applied 3-methyladenine (3MA) and rapamycin (Rapa) to regulate autophagy level in optic nerve injury. Results ONC stimulated the expression of HspB8. Declines of RGCs and ff-ERG b-wave amplitudes resulting from ONC can be alleviated by HspB8 downregulation. Increased autophagy activity after ONC was observed; however, this change can be reversed by intravitreal injection of AAV2-shHspB8. Furthermore, application of autophagy inhibitor 3MA had the same neuroprotective effects as AAV2-shHspB8, as illustrated by ff-ERG and quantities of RGCs. Also, protection of AAV2-shHspB8 was compromised by the autophagy activator Rapa. Conclusions Inhibition of HspB8 in mice optic nerve injury had neuroprotective effects, which may be derived from its downregulation of autophagy.
Collapse
Affiliation(s)
- Feijia Xie
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong Province, People's Republic of China
| | - Zongyuan Li
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ning Yang
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jiayi Yang
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Dihao Hua
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jinyuan Luo
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Tao He
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Yiqiao Xing
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
9
|
Intraocular Temperature Distribution in Eyes Undergoing Different Types of Surgical Procedures during Vitreous Surgery. J Clin Med 2022; 11:jcm11072053. [PMID: 35407660 PMCID: PMC8999351 DOI: 10.3390/jcm11072053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vitreous temperature has been reported to vary during intraocular surgery. We measured the temperature at three intraocular sites, just posterior to the crystalline lens (BL), mid-vitreous (MV), and just anterior to the optic disc (OD), and investigated temperature changes before and after different types of surgical procedures in 78 eyes. The mean temperature at the beginning was 30.1 ± 1.70 °C in the anterior chamber, 32.4 ± 1.41 °C at the BL, 33.8 ± 0.95 °C at the MV, and 34.7 ± 0.95 °C at the OD. It was lowest at the BL, and highest at the OD. The mean temperature after cataract surgery was slightly lower especially at an anterior location. Thus, the temperature gradient became slightly flatter. The mean temperature after core vitrectomy was even lower at all sites and a gradient of the temperature was not present. The mean temperature after membrane peeling was significantly higher than that after core vitrectomy, and there was no gradient. The mean temperature after fluid/air exchange was lower at the BL and higher at the MV and at the OD. Thus, a gradient of higher temperatures at the OD appeared. The intraocular temperature distribution is different depending on the surgical procedure which can then change the temperature gradient. The temperature changes at the different intraocular sites and the gradients should be further investigated because they may affect the physiology of the retina and the recovery process.
Collapse
|
10
|
Traumatic optic neuropathy: a review of current studies. Neurosurg Rev 2022; 45:1895-1913. [PMID: 35034261 DOI: 10.1007/s10143-021-01717-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/26/2021] [Accepted: 12/09/2021] [Indexed: 10/24/2022]
Abstract
Traumatic optic neuropathy (TON) is a serious complication of craniofacial trauma that directly or indirectly damages the optic nerve and can cause severe vision loss. The incidence of TON has been gradually increasing in recent years. Research on the protection and regeneration of the optic nerve after the onset of TON is still at the level of laboratory studies and which is insufficient to support clinical treatment of TON. And, due to without clear guidelines, there is much ambiguity regarding its diagnosis and management. Clinical interventions for TON include observation only, treatment with corticosteroids alone, or optic canal (OC) decompression (with or without steroids). There is controversy in clinical practice concerning which treatment is the best. A review of available studies shows that the visual acuity of patients with TON can be significantly improved after OC decompression surgery (especially endoscopic transnasal/transseptal optic canal decompression (ETOCD)) with or without the use of corticosteroids. And new findings of laboratory studies such as mitochondrial therapy, lipid change studies, and other studies in favor of TON therapy have also been identified. In this review, we discuss the evolving perspective of surgical treatment and experimental study.
Collapse
|
11
|
Zhang Y, Li M, Yu B, Lu S, Zhang L, Zhu S, Yu Z, Xia T, Huang H, Jiang W, Zhang S, Sun L, Ye Q, Sun J, Zhu H, Huang P, Hong H, Yu S, Li W, Ai D, Fan J, Li W, Song H, Xu L, Chen X, Chen T, Zhou M, Ou J, Yang J, Li W, Hu Y, Wu W. Cold protection allows local cryotherapy in a clinical-relevant model of traumatic optic neuropathy. eLife 2022; 11:75070. [PMID: 35352678 PMCID: PMC9068221 DOI: 10.7554/elife.75070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Therapeutic hypothermia (TH) is potentially an important therapy for central nervous system (CNS) trauma. However, its clinical application remains controversial, hampered by two major factors: (1) Many of the CNS injury sites, such as the optic nerve (ON), are deeply buried, preventing access for local TH. The alternative is to apply TH systemically, which significantly limits the applicable temperature range. (2) Even with possible access for 'local refrigeration', cold-induced cellular damage offsets the benefit of TH. Here we present a clinically translatable model of traumatic optic neuropathy (TON) by applying clinical trans-nasal endoscopic surgery to goats and non-human primates. This model faithfully recapitulates clinical features of TON such as the injury site (pre-chiasmatic ON), the spatiotemporal pattern of neural degeneration, and the accessibility of local treatments with large operating space. We also developed a computer program to simplify the endoscopic procedure and expand this model to other large animal species. Moreover, applying a cold-protective treatment, inspired by our previous hibernation research, enables us to deliver deep hypothermia (4 °C) locally to mitigate inflammation and metabolic stress (indicated by the transcriptomic changes after injury) without cold-induced cellular damage, and confers prominent neuroprotection both structurally and functionally. Intriguingly, neither treatment alone was effective, demonstrating that in situ deep hypothermia combined with cold protection constitutes a breakthrough for TH as a therapy for TON and other CNS traumas.
Collapse
Affiliation(s)
- Yikui Zhang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Mengyun Li
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Bo Yu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Shengjian Lu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Lujie Zhang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of TechnologyBeijingChina
| | - Senmiao Zhu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Zhonghao Yu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Tian Xia
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of MedicinePalo AltoUnited States
| | - WenHao Jiang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Si Zhang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Lanfang Sun
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Qian Ye
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Jiaying Sun
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Hui Zhu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Pingping Huang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Huifeng Hong
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Shuaishuai Yu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Wenjie Li
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of TechnologyBeijingChina
| | - Danni Ai
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of TechnologyBeijingChina
| | - Jingfan Fan
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of TechnologyBeijingChina
| | - Wentao Li
- School of Computer Science & Technology, Beijing Institute of TechnologyBeijingChina
| | - Hong Song
- School of Computer Science & Technology, Beijing Institute of TechnologyBeijingChina
| | - Lei Xu
- Medical Radiology Department, 2nd Affiliated Hospital, Wenzhou Medical UniversityWenzhouChina
| | - Xiwen Chen
- Animal Facility Center, Wenzhou Medical UniversityWenzhouChina
| | - Tongke Chen
- Animal Facility Center, Wenzhou Medical UniversityWenzhouChina
| | - Meng Zhou
- School of Biomedical Engineering, The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated, Hospital, Guangdong Province Engineering Laboratory for Transplantation MedicineGuangzhouChina,Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of TechnologyBeijingChina
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institute of Health, NIHBethesdaUnited States
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of MedicinePalo AltoUnited States
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
12
|
Cialdai F, Bolognini D, Vignali L, Iannotti N, Cacchione S, Magi A, Balsamo M, Vukich M, Neri G, Donati A, Monici M, Capaccioli S, Lulli M. Effect of space flight on the behavior of human retinal pigment epithelial ARPE-19 cells and evaluation of coenzyme Q10 treatment. Cell Mol Life Sci 2021; 78:7795-7812. [PMID: 34714361 PMCID: PMC11073052 DOI: 10.1007/s00018-021-03989-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood. In the current study, we aimed to explore the cellular and molecular effects induced in the human retinal pigment ARPE-19 cell line by their transfer to and 3-day stay on board the ISS in the context of an experiment funded by the Agenzia Spaziale Italiana. Treatment of cells on board the ISS with the well-known bioenergetic, antioxidant, and antiapoptotic coenzyme Q10 was also evaluated. In the ground control experiment, the cells were exposed to the same conditions as on the ISS, with the exception of microgravity and radiation. The transfer of ARPE-19 retinal cells to the ISS and their living on board for 3 days did not affect cell viability or apoptosis but induced cytoskeleton remodeling consisting of vimentin redistribution from the cellular boundaries to the perinuclear area, underlining the collapse of the network of intermediate vimentin filaments under unloading conditions. The morphological changes endured by ARPE-19 cells grown on board the ISS were associated with changes in the transcriptomic profile related to the cellular response to the space environment and were consistent with cell dysfunction adaptations. In addition, the results obtained from ARPE-19 cells treated with coenzyme Q10 indicated its potential to increase cell resistance to damage.
Collapse
Affiliation(s)
- Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Davide Bolognini
- Department of Experimental and Clinical Medicine, Università Degli Studi Di Firenze, Firenze, Italy
| | - Leonardo Vignali
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Nicola Iannotti
- Department of Life Sciences, Università Degli Studi Di Siena, Siena, Italy
| | - Stefano Cacchione
- Department of Biology and Biotechnology "Charles Darwin", Università Di Roma "La Sapienza", Roma, Italy
| | - Alberto Magi
- Department of Information Engineering, Università Degli Studi Di Firenze, Firenze, Italy
| | | | | | | | | | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Sergio Capaccioli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, viale Morgagni 50, 50134, Firenze, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, viale Morgagni 50, 50134, Firenze, Italy.
| |
Collapse
|
13
|
Rey-Funes M, Contartese DS, Peláez R, García-Sanmartín J, Narro-Íñiguez J, Soliño M, Fernández JC, Sarotto A, Ciranna NS, López-Costa JJ, Dorfman VB, Larrayoz IM, Loidl CF, Martínez A. Hypothermic Shock Applied After Perinatal Asphyxia Prevents Retinal Damage in Rats. Front Pharmacol 2021; 12:651599. [PMID: 33897437 PMCID: PMC8060653 DOI: 10.3389/fphar.2021.651599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Perinatal asphyxia (PA) can cause retinopathy and different degrees of visual loss, including total blindness. In a rat model of PA, we have previously shown a protective effect of hypothermia on the retina when applied simultaneously with the hypoxic insult. In the present work, we evaluated the possible protective effect of hypothermia on the retina of PA rats when applied immediately after delivery. Four experimental groups were studied: Rats born naturally as controls (CTL), animals that were exposed to PA for 20 min at 37°C (PA), animals exposed to PA for 20 min at 15°C (HYP), and animals that were exposed to PA for 20 min at 37°C and, immediately after birth, kept for 15 min at 8°C (HYP-PA). To evaluate the integrity of the visual pathway, animals were subjected to electroretinography at 45 days of age. Molecular (real time PCR) and histological (immunohistochemistry, immunofluorescence, TUNEL assay) techniques were applied to the eyes of all experimental groups collected at 6, 12, 24, and 48 h, and 6 days after birth. PA resulted in a significant reduction in the amplitude of the a- and b-wave and oscillatory potentials (OP) of the electroretinogram. All animals treated with hypothermia had a significant correction of the a-wave and OP, but the b-wave was fully corrected in the HYP group but only partially in the HYP-PA group. The number of TUNEL-positive cells increased sharply in the ganglion cell layer of the PA animals and this increase was significantly prevented by both hypothermia treatments. Expression of the cold-shock proteins, cold-inducible RNA binding protein (CIRP) and RNA binding motif protein 3 (RBM3), was undetectable in retinas of the CTL and PA groups, but they were highly expressed in ganglion neurons and cells of the inner nuclear layer of the HYP and HYP-PA groups. In conclusion, our results suggest that a post-partum hypothermic shock could represent a useful and affordable method to prevent asphyxia-related vision disabling sequelae.
Collapse
Affiliation(s)
- Manuel Rey-Funes
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela S Contartese
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Josune García-Sanmartín
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Judit Narro-Íñiguez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Manuel Soliño
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Fernández
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aníbal Sarotto
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás S Ciranna
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan José López-Costa
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires, Argentina
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - C Fabián Loidl
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja, Logroño, Spain
| |
Collapse
|
14
|
Research Progress of the Application of Hypothermia in the Eye. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3897168. [PMID: 33381263 PMCID: PMC7758138 DOI: 10.1155/2020/3897168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Hypothermia is widely used in the medical field to protect organs or tissues from damage. Different research fields have different explanations of the protection mechanism of hypothermia. Hypothermia is also widely used in the field of ophthalmology, for example, in the eye bank, the preservation of corneal tissue and the preservation of the eyeball. Low temperature can also be applied to some ophthalmic diseases, such as allergic conjunctivitis, retinal ischemia, and retinal hypoxia. It is used to relieve eye symptoms or reduce tissue damage. Hypothermic techniques have important applications in ophthalmic surgery, such as corneal refractive surgery, vitrectomy surgery, and ciliary body cryotherapy for end-stage glaucoma. Hypothermia can reduce the inflammation of the cornea and protect the retinal tissue. The eyeball is a complex organ, including collagen tissue of the eyeball wall and retinal nerve tissue and retinal blood vessels. The mechanism of low temperature protecting eye tissue is complicated. It is important to understand the mechanism of hypothermia and its applications in ophthalmology. This review introduces the mechanism of hypothermia and its application in the eye banks, eye diseases (allergic conjunctivitis, retinal ischemia, and hypoxia), and eye surgeries (corneal transplant surgery, corneal refractive surgery, and vitrectomy).
Collapse
|
15
|
Jiang L, Wan W, Xun Y, Xiong L, Wu B, Xiang Y, Li Z, Zhu L, Ji Y, Yang P, Hu K. Effect of hypothermic perfusion on phacoemulsification in cataract patients complicated with uveitis: a randomised trial. BMC Ophthalmol 2020; 20:232. [PMID: 32546211 PMCID: PMC7298810 DOI: 10.1186/s12886-020-01507-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022] Open
Abstract
Background To evaluate the effectiveness and safety of hypothermic perfusion in the phacoemulsification of cataract caused by uveitis. Methods This was a prospective, single-masked, randomised, controlled clinical trial. One hundred and six patients with uveitis-associated cataract underwent phacoemulsification with perfusion fluid temperature at 4 °C (treatment group) or 24 °C (control group). Anterior chamber inflammation grade, corneal endothelial cell count, corneal thickness, macular fovea thickness, and intraocular pressure (IOP) were observed on the 1st day and 7th day after operation. Results The aqueous flare score was 0.83 ± 0.76 in the 4 °C group, which was lower than that in the 24 °C group (1.51 ± 1.02, p = 0.006) on the first day after operation. The aqueous cells score was lower in the 4 °C group (0.17 ± 0.38) than that in the 24 °C group (0.62 ± 0.94, p = 0.025). The mean corneal thickness of incision in the 4 °C group (907.66 ± 85.37 μm) was thinner than that in the 24 °C group (963.75 ± 103.81 μm, p = 0.005). Corneal endothelial cells density, macular fovea thickness, or percentage of transiently increased IOP showed no difference between the two groups (p > 0.05). There was no significant difference in all the main outcome parameters between the two groups on the 7th day after operation (p > 0.05). Conclusions Hypothermic perfusion in the phacoemulsification of uveitis-associated cataract is safe, and it can effectively inhibit anterior chamber inflammation and reduce the incisional corneal edema in the early postoperative stage. Trial registration The study was registered with the Chinese Clinical Trial Registry. (http://www.chictr.org.cn/, Registration Number: ChiCTR1800016145).
Collapse
Affiliation(s)
- Lu Jiang
- Chongqing Medical University, Chongqing, China
| | - Wenjuan Wan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Yan Xun
- Chongqing Medical University, Chongqing, China
| | - Liang Xiong
- Chongqing Medical University, Chongqing, China
| | - Binge Wu
- The Second affiliated hospital of Baotou medical college, Baotou, Inner Mongolia Autonomous Region, China
| | | | - Zhouyu Li
- Chongqing Medical University, Chongqing, China
| | - Lu Zhu
- Chongqing Medical University, Chongqing, China
| | - Yan Ji
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Ke Hu
- Chongqing Medical University, Chongqing, China. .,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China.
| |
Collapse
|
16
|
Fernández JC, Peláez R, Rey-Funes M, Soliño M, Contartese DS, Dorfman VB, López-Costa JJ, Larrayoz IM, Loidl CF, Martínez A. Methylene Blue Prevents Retinal Damage Caused by Perinatal Asphyxia in the Rat. Front Cell Neurosci 2020; 14:157. [PMID: 32581722 PMCID: PMC7289067 DOI: 10.3389/fncel.2020.00157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/12/2020] [Indexed: 01/24/2023] Open
Abstract
Perinatal asphyxia (PA) is responsible for a large proportion of neonatal deaths and numerous neurological sequelae, including visual dysfunction and blindness. In PA, the retina is exposed to ischemia/reoxygenation, which results in nitric oxide (NO) overproduction and neurotoxicity. We hypothesized that methylene blue (MB), a guanylyl cyclase inhibitor, and free-radical scavenger currently used in the clinic, may block this pathway and prevent PA-induced retinal degeneration. Male rat pups were subjected to an experimental model of PA. Four groups were studied: normally delivered (CTL), normally delivered treated with 2 mg Kg-1 MB (MB), exposed to PA for 20 min at 37°C (PA), and exposed to PA and, then, treated with MB (PA-MB). Scotopic electroretinography performed 45 days after birth showed that PA animals had significant defects in the a- and b-waves and oscillatory potentials (OP). The same animals presented a significant increase in the thickness of the inner retina and a large number of TUNEL-positive cells. All these physiological and morphological parameters were significantly prevented by the treatment with MB. Gene expression analysis demonstrated significant increases in iNOS, MMP9, and VEGF in the eyes of PA animals, which were prevented by MB treatment. In conclusion, MB regulates key players of inflammation, matrix remodeling, gliosis, and angiogenesis in the eye and could be used as a treatment to prevent the deleterious visual consequences of PA. Given its safety profile and low cost, MB may be used clinically in places where alternative treatments may be unavailable.
Collapse
Affiliation(s)
- Juan Carlos Fernández
- Instituto de Biología Celular y Neurociencia "Prof. E. de Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Primera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Peláez
- Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Manuel Rey-Funes
- Instituto de Biología Celular y Neurociencia "Prof. E. de Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Manuel Soliño
- Instituto de Biología Celular y Neurociencia "Prof. E. de Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela S Contartese
- Instituto de Biología Celular y Neurociencia "Prof. E. de Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Juan José López-Costa
- Instituto de Biología Celular y Neurociencia "Prof. E. de Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - César F Loidl
- Instituto de Biología Celular y Neurociencia "Prof. E. de Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Martínez
- Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
17
|
Van Hook MJ. Temperature effects on synaptic transmission and neuronal function in the visual thalamus. PLoS One 2020; 15:e0232451. [PMID: 32353050 PMCID: PMC7192487 DOI: 10.1371/journal.pone.0232451] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous neuronal properties including the synaptic vesicle release process, neurotransmitter receptor complement, and postsynaptic ion channels are involved in transforming synaptic inputs into postsynaptic spiking. Temperature is a significant influencer of neuronal function and synaptic integration. Changing temperature can affect neuronal physiology in a diversity of ways depending on how it affects different members of the cell’s ion channel complement. Temperature’s effects on neuronal function are critical for pathological states such as fever, which can trigger seizure activity, but are also important in interpreting and comparing results of experiments conducted at room vs physiological temperature. The goal of this study was to examine the influence of temperature on synaptic properties and ion channel function in thalamocortical (TC) relay neurons in acute brain slices of the dorsal lateral geniculate nucleus, a key synaptic target of retinal ganglion cells in the thalamus. Warming the superfusate in patch clamp experiments with acutely-prepared brain slices led to an overall inhibition of synaptically-driven spiking behavior in TC neurons in response to a retinal ganglion cell spike train. Further study revealed that this was associated with an increase in presynaptic synaptic vesicle release probability and synaptic depression and altered passive and active membrane properties. Additionally, warming the superfusate triggered activation of an inwardly rectifying potassium current and altered the voltage-dependence of voltage-gated Na+ currents and T-type calcium currents. This study highlights the importance of careful temperature control in ex vivo physiological experiments and illustrates how numerous properties such as synaptic inputs, active conductances, and passive membrane properties converge to determine spike output.
Collapse
Affiliation(s)
- Matthew J. Van Hook
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail: ,
| |
Collapse
|
18
|
Sterculic Acid: The Mechanisms of Action beyond Stearoyl-CoA Desaturase Inhibition and Therapeutic Opportunities in Human Diseases. Cells 2020; 9:cells9010140. [PMID: 31936134 PMCID: PMC7016617 DOI: 10.3390/cells9010140] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
In many tissues, stearoyl-CoA desaturase 1 (SCD1) catalyzes the biosynthesis of monounsaturated fatty acids (MUFAS), (i.e., palmitoleate and oleate) from their saturated fatty acid (SFA) precursors (i.e., palmitate and stearate), influencing cellular membrane physiology and signaling, leading to broad effects on human physiology. In addition to its predominant role in lipid metabolism and body weight control, SCD1 has emerged recently as a potential new target for the treatment for various diseases, such as nonalcoholic steatohepatitis, Alzheimer’s disease, cancer, and skin disorders. Sterculic acid (SA) is a cyclopropene fatty acid originally found in the seeds of the plant Sterculia foetida with numerous biological activities. On the one hand, its ability to inhibit stearoyl-CoA desaturase (SCD) allows its use as a coadjuvant of several pathologies where this enzyme has been associated. On the other hand, additional effects independently of its SCD inhibitory properties, involve anti-inflammatory and protective roles in retinal diseases such as age-related macular degeneration (AMD). This review aims to summarize the mechanisms by which SA exerts its actions and to highlight the emerging areas where this natural compound may be of help for the development of new therapies for human diseases.
Collapse
|
19
|
Sun YJ, Ma S, Fan B, Wang Y, Wang SR, Li GY. Therapeutic hypothermia protects photoreceptors through activating Cirbp pathway. Neurochem Int 2019; 126:86-95. [DOI: 10.1016/j.neuint.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 02/02/2023]
|
20
|
Coderch C, Díaz de Cerio M, Zapico JM, Peláez R, Larrayoz IM, Ramos A, Martínez A, de Pascual-Teresa B. In silico identification and in vivo characterization of small molecule therapeutic hypothermia mimetics. Bioorg Med Chem 2017; 25:6597-6604. [PMID: 29137939 DOI: 10.1016/j.bmc.2017.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/20/2017] [Accepted: 10/29/2017] [Indexed: 01/05/2023]
Abstract
Hypothermia has been proved to have a beneficial effect on several pathologies. CIRBP is one of the so termed cold-shock proteins involved in this process. In this work, we have detected small molecules capable of modulating the activity of CIRBP in the absence of a cold stimulus, by High Throughput Virtual Screening (HTVS) of the Diversity Set IV of the NCI and 15 compounds of our in-house data base. Fifteen compounds were selected from the HTVS to carry out a second screening through a cell-based Western blot assay. This assay, together with molecular modeling studies allowed us to select compound zr17-2 for an in vivo experiment, which showed an interesting increase of CIRBP expression in several organs of experimental animals. Therefore, we have demonstrated that the effect of hypothermia can be mimicked by small molecules, which can be developed as first-in-class new drugs for the treatment of several diseases.
Collapse
Affiliation(s)
- Claire Coderch
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - María Díaz de Cerio
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Jose María Zapico
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Rafael Peláez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Ignacio M Larrayoz
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Ana Ramos
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Beatriz de Pascual-Teresa
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain.
| |
Collapse
|